1
|
Lengvenyte A, Cognasse F, Hamzeh-Cognasse H, Sénèque M, Strumila R, Olié E, Courtet P. Baseline circulating biomarkers, their changes, and subsequent suicidal ideation and depression severity at 6 months: A prospective analysis in patients with mood disorders. Psychoneuroendocrinology 2024; 168:107119. [PMID: 39003840 DOI: 10.1016/j.psyneuen.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Identifying circulating biomarkers associated with prospective suicidal ideation (SI) and depression could help better understand the dynamics of these phenomena and identify people in need of intense care. In this study, we investigated the associations between baseline peripheral biomarkers implicated in neuroplasticity, vascular homeostasis and inflammation, and prospective SI and depression severity during 6 months of follow-up in patients with mood disorders. METHODS 149 patients underwent a psychiatric evaluation and gave blood to measure 32 plasma soluble proteins. At follow-up, SI incidence over six months was measured with the Columbia Suicide Severity Rating Scale, and depressive symptoms were assessed with the Inventory for Depressive Symptomatology. Ninety-six patients provided repeated blood samples. Statistical analyses included Spearman partial correlation and Elastic Net regression, followed by the covariate-adjusted regression models. RESULTS 51.4 % (N = 71) of patients reported SI during follow-up. After adjustment for covariates, higher baseline levels of interferon-γ were associated with SI occurrence during follow-up. Higher baseline interferon-γ and lower orexin-A were associated with increased depression severity, and atypical and anxious, but not melancholic, symptoms. There was also a tendency for associations of elevated baseline levels of interferon-γ, interleukin-1β, and lower plasma serotonin levels with SI at the six-month follow-up time point. Meanwhile, reduction in transforming growth factor- β1 (TGF-β1) plasma concentration correlated with atypical symptoms reduction. CONCLUSION We identified interferon-γ and orexin-A as potential predictive biomarkers of SI and depression, whereas TGF-β1 was identified as a possible target of atypical symptoms.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
2
|
Liu Z, Wang Y, Wang S, Wu J, Jia C, Tan X, Liu X, Huang X, Zhang L. Unraveling the causative connection between urticaria, inflammatory cytokines, and mental disorders: Perspectives from genetic evidence. Skin Res Technol 2024; 30:e13906. [PMID: 39300828 PMCID: PMC11413335 DOI: 10.1111/srt.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The genetic association between urticaria and mental disorders and whether inflammatory cytokines mediate this process remains unclear. MATERIALS AND METHODS A Mendelian randomization (MR) approaches to elucidate the causal relationship between urticaria and mental disorders and to validate the mediation of inflammatory cytokines. Genome-wide association study (GWAS) databases used were obtained from Psychiatric Genomics Cooperation (PGC), GWAS Catalog, and FinnGen Consortium. Our study was conducted using inverse variance weighted (IVW) and Bayesian weighted MR (BWMR) methods for joint analysis. RESULTS The MR results showed that urticaria increased the risk of attention deficit hyperactivity disorder (ADHD) (odds ratio [OR] = $ = $ 1.088, 95% confidence interval [CI]: 1.026-1.154, p = $ = $ 0.0051); cholinergic urticaria increased the risk of bipolar disorder (BD) (OR = $ = $ 1.012, 95% CI: 1.001-1.022, p = $ = $ 0.0274); dermatographic urticaria increased the risk of ADHD (OR = $ = $ 1.057, 95% CI: 1.005-1.112, p = $ = $ 0.0323); idiopathic urticaria increased the risk of schizophrenia (SCZ) (OR = $ = $ 1.057, 95% CI: 1.005-1.112, p = $ = $ 0.0323); other unspecified urticaria increased the risk of ADHD (OR = $ = $ 1.085, 95% CI: 1.023-1.151, p = $ = $ 0.0063). We found that eight inflammatory cytokines were negatively associated with mental disorders and seven inflammatory cytokines were positively associated with mental disorders. Finally, our results suggested that inflammatory cytokines do not act as mediators between urticaria and mental disorders. CONCLUSIONS Our study reveals a causal relationship between urticaria and the increased risk of mental disorders. We suggest that the treatment of urticaria could incorporate psychiatric interventions and mental health assessment of patients.
Collapse
Affiliation(s)
- ZhiRong Liu
- Department of General SurgeryChengdu Second People's HospitalChengduChina
| | | | - ShiHao Wang
- School of Biological Science and TechnologyChengdu Medical CollegeChengduChina
| | - JiaXin Wu
- Graduate SchoolChengdu Medical CollegeChengduChina
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan ProvinceInstitute of NeuroscienceDepartment of Pathology and PathophysiologyChengdu Medical CollegeChengduChina
| | - Xuan Tan
- School of Biological Science and TechnologyChengdu Medical CollegeChengduChina
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan ProvinceInstitute of NeuroscienceDepartment of Pathology and PathophysiologyChengdu Medical CollegeChengduChina
| | - XinWei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationClinical Research Center for Anesthesiology and Perioperative MedicineTranslational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan ProvinceInstitute of NeuroscienceDepartment of Pathology and PathophysiologyChengdu Medical CollegeChengduChina
| |
Collapse
|
3
|
Fu L, Ren J, Lei X, Wang Y, Chen X, Zhang R, Li Q, Teng X, Guo C, Wu Z, Yu L, Wang D, Chen Y, Qin J, Yuan A, Zhang C. Association of anhedonia with brain-derived neurotrophic factor and interleukin-10 in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111023. [PMID: 38701878 DOI: 10.1016/j.pnpbp.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Anhedonia, a core symptom of major depressive disorder (MDD), manifests in two forms: anticipatory and consummatory, reflecting a diminished capacity to anticipate or enjoy pleasurable activities. Prior studies suggest that brain-derived neurotrophic factor (BDNF) and interleukin-10 (IL-10) may play key roles in the emergence of anhedonia in MDD. The specific relationships between these biomarkers and the two forms of anhedonia remain unclear. This study investigated the potential links between BDNF, IL-10, and both forms of anhedonia in MDD patients. METHODS This study included 43 participants diagnosed with MDD and 58 healthy controls. It involved detailed assessments of depression and anxiety levels, anticipatory and consummatory pleasure, cognitive functions, and a broad spectrum of plasma biomarkers, such as C-reactive protein, various interleukins, and BDNF. Using partial correlation, variables related to pleasant experiences were identified. Stepwise multiple linear regression analysis was applied to pinpoint the independent predictors of anhedonia in the MDD group. RESULTS Demographically, both groups were comparable in terms of age, sex, body mass index, educational year, and marital status. Individuals with MDD displayed markedly reduced levels of anticipatory and consummatory pleasure, higher anxiety, and depression scores compared to healthy controls. Additionally, cognitive performance was notably poorer in the MDD group. These patients also had lower plasma diamine oxidase levels. Analysis linked anhedonia to impaired delayed memory. Regression results identified IL-10 and BDNF as independent predictors of anticipatory and consummatory anhedonia, respectively. CONCLUSION These findings demonstrate that anticipatory and consummatory anhedonia are influenced by independent factors, thereby providing critical insights into the distinct neuroimmunological mechanisms that underlie various forms of anhedonia. Clinicl Trial Registration Number: NCT03790085.
Collapse
Affiliation(s)
- Lirong Fu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Lei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Teng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyue Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinmei Qin
- Mental Health Center of Xuhui District, Shanghai, China.
| | - Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Su WJ, Hu T, Jiang CL. Cool the Inflamed Brain: A Novel Anti-inflammatory Strategy for the Treatment of Major Depressive Disorder. Curr Neuropharmacol 2024; 22:810-842. [PMID: 37559243 PMCID: PMC10845090 DOI: 10.2174/1570159x21666230809112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Abundant evidence suggests that inflammatory cytokines contribute to the symptoms of major depressive disorder (MDD) by altering neurotransmission, neuroplasticity, and neuroendocrine processes. Given the unsatisfactory response and remission of monoaminergic antidepressants, anti-inflammatory therapy is proposed as a feasible way to augment the antidepressant effect. Recently, there have been emerging studies investigating the efficiency and efficacy of anti-inflammatory agents in the treatment of MDD and depressive symptoms comorbid with somatic diseases. METHODS In this narrative review, prospective clinical trials focusing on anti-inflammatory treatment for depression have been comprehensively searched and screened. Based on the included studies, we summarize the rationale for the anti-inflammatory therapy of depression and discuss the utilities and confusions regarding the anti-inflammatory strategy for MDD. RESULTS This review included over 45 eligible trials. For ease of discussion, we have grouped them into six categories based on their mechanism of action, and added some other anti-inflammatory modalities, including Chinese herbal medicine and non-drug therapy. Pooled results suggest that anti-inflammatory therapy is effective in improving depressive symptoms, whether used as monotherapy or add-on therapy. However, there remain confusions in the application of anti-inflammatory therapy for MDD. CONCLUSION Based on current clinical evidence, anti-inflammatory therapy is a promisingly effective treatment for depression. This study proposes a novel strategy for clinical diagnosis, disease classification, personalized treatment, and prognostic prediction of depression. Inflammatory biomarkers are recommended to be assessed at the first admission of MDD patients, and anti-inflammatory therapy are recommended to be included in the clinical practice guidelines for diagnosis and treatment. Those patients with high levels of baseline inflammation (e.g., CRP > 3 mg/L) may benefit from adjunctive anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
5
|
Amodeo G, Franchi S, D’Agnelli S, Galimberti G, Baciarello M, Bignami EG, Sacerdote P. Supraspinal neuroinflammation and anxio-depressive-like behaviors in young- and older- adult mice with osteoarthritis pain: the effect of morphine. Psychopharmacology (Berl) 2023; 240:2131-2146. [PMID: 37530884 PMCID: PMC10506934 DOI: 10.1007/s00213-023-06436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Asteoarthritis (OA) is a leading cause of chronic pain in the elderly population and is often associated with emotional comorbidities such as anxiety and depression. Despite age is a risk factor for both OA and mood disorders, preclinical studies are mainly conducted in young adult animals. OBJECTIVES Here, using young adult (11-week-old) and older adult (20-month-old) mice, we evaluate in a monosodium-iodoacetate-(MIA)-induced OA model the development of anxio-depressive-like behaviors and whether brain neuroinflammation may underlie the observed changes. We also test whether an effective pain treatment may prevent behavioral and biochemical alterations. METHODS Mechanical allodynia was monitored throughout the experimental protocol, while at the end of protocol (14 days), anxio-depressive-like behaviors and cognitive dysfunction were assessed. Neuroinflammatory condition was evaluated in prefrontal cortex, hippocampus and hypothalamus. Serum IFNγ levels were also measured. Moreover, we test the efficacy of a 1-week treatment with morphine (2.5 mg/kg) on pain, mood alterations and neuroinflammation. RESULTS We observed that young adult and older adult controls (CTRs) mice had comparable allodynic thresholds and developed similar allodynia after MIA injection. Older adult CTRs were characterized by altered behavior in the tests used to assess the presence of depression and cognitive impairment and by elevated neuroinflammatory markers in brain areas compared to younger ones. The presence of pain induced depressive-like behavior and neuroinflammation in adult young mice, anxiety-like behavior in both age groups and worsened neuroinflammation in older adult mice. Morphine treatment counteracted pain, anxio-depressive behaviors and neuroinflammatory activation in both young adult and older adult mice. CONCLUSIONS Here, we demonstrated that the presence of chronic pain in young adult mice induces mood alterations and supraspinal biochemical changes and aggravates the alterations already evident in older adult animals. A treatment with morphine, counteracting the pain, prevents the development of anxio-depressive disorders and reduces neuroinflammation.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Silvia Franchi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Galimberti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paola Sacerdote
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| |
Collapse
|
6
|
Małujło-Balcerska E, Pietras T. Deiodinase Types 1 and 3 and Proinflammatory Cytokine Values May Discriminate Depressive Disorder Patients from Healthy Controls. J Clin Med 2023; 12:6163. [PMID: 37834806 PMCID: PMC10573790 DOI: 10.3390/jcm12196163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Depressive disorders are multifactorial diseases in that a variety of factors may play a role in their etiology, including inflammation and abnormalities in the thyroid hormone (TH) metabolism and levels. The purpose of this study was to evaluate iodothyronine deiodinases (DIOs) and DIO-interacting cytokines as possible biomarkers in the diagnosis of depressive disorders. METHODS This study enrolled 73 patients diagnosed with recurrent depressive disorder (rDD) and 54 controls. The expressions of DIO1, DIO2, DIO3, IL1B, IL6, TNFA, and IFNG genes, encoding three types of DIOs (1, 2, and 3), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, were assessed using the polymerase chain reaction in blood cells and an enzymatic immunoassay method in serum. The levels of examined molecules between patients and controls were compared, and correlations and diagnostic values were evaluated. RESULTS Lower levels of DIO2 and higher levels of IL1B, IL6, and TNFA were found in patients compared to controls. The protein concentrations of DIO1 and DIO2 were lower, while that of DIO3 was higher, in patients than in controls. Serum IL-1β, IL-6, and TNF-α were also higher in patients than in controls. The area under the curve (AUC) of the IL-1β, IL-6, DIO1, and DIO3 proteins was >0.7 for discriminating patients with rDD from controls. CONCLUSIONS The expressions of genes for DIO2, IL-1β, IL-6, and TNF-α may have a role in the estimation of processes present in depressive disorders. We can cautiously claim that DIO1 and DIO3 and pivotal cytokines, mainly IL-1β and IL-6, may play a role in depression diagnosis, and further studies are suggested to explain the exact role of these molecules in larger samples with more precise methods.
Collapse
Affiliation(s)
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Łódź, 90-419 Łódź, Poland;
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
7
|
Chen S, Chen G, Li Y, Yue Y, Zhu Z, Li L, Jiang W, Shen Z, Wang T, Hou Z, Xu Z, Shen X, Yuan Y. Predicting the diagnosis of various mental disorders in a mixed cohort using blood-based multi-protein model: a machine learning approach. Eur Arch Psychiatry Clin Neurosci 2023; 273:1267-1277. [PMID: 36567366 DOI: 10.1007/s00406-022-01540-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
The lack of objective diagnostic methods for mental disorders challenges the reliability of diagnosis. The study aimed to develop an easily accessible and useable objective method for diagnosing major depressive disorder (MDD), schizophrenia (SZ), bipolar disorder (BPD), and panic disorder (PD) using serum multi-protein. Serum levels of brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), bicaudal C homolog 1 (BICC1), C-reactive protein (CRP), and cortisol, which are generally recognized to be involved in different pathogenesis of various mental disorders, were measured in patients with MDD (n = 50), SZ (n = 50), BPD (n = 55), and PD along with 50 healthy controls (HC). Linear discriminant analysis (LDA) was employed to construct a multi-classification model to classify these mental disorders. Both leave-one-out cross-validation (LOOCV) and fivefold cross-validation were applied to validate the accuracy and stability of the LDA model. All five serum proteins were included in the LDA model, and it was found to display a high overall accuracy of 96.9% when classifying MDD, SZ, BPD, PD, and HC groups. Multi-classification accuracy of the LDA model for LOOCV and fivefold cross-validation (within-study replication) reached 96.9 and 96.5%, respectively, demonstrating the feasibility of the blood-based multi-protein LDA model for classifying common mental disorders in a mixed cohort. The results suggest that combining multiple proteins associated with different pathogeneses of mental disorders using LDA may be a novel and relatively objective method for classifying mental disorders. Clinicians should consider combining multiple serum proteins to diagnose mental disorders objectively.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Gang Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yinghui Li
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, 210009, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zixin Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lei Li
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhongxia Shen
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Psychiatry, The Third People's Hospital of Huzhou, Huzhou, 313000, China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xinhua Shen
- Department of Psychiatry, The Third People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Nanjing Medical University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Heyburn L, Batuure A, Wilder D, Long J, Sajja VS. Neuroinflammation Profiling of Brain Cytokines Following Repeated Blast Exposure. Int J Mol Sci 2023; 24:12564. [PMID: 37628746 PMCID: PMC10454588 DOI: 10.3390/ijms241612564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Due to use of explosive devices and heavy weapons systems in modern conflicts, the effect of BW on the brain and body is of increasing concern. These exposures have been commonly linked with neurodegenerative diseases and psychiatric disorders in veteran populations. A likely neurobiological link between exposure to blasts and the development of neurobehavioral disorders, such as depression and PTSD, could be neuroinflammation triggered by the blast wave. In this study, we exposed rats to single or repeated BW (up to four exposures-one per day) at varied intensities (13, 16, and 19 psi) to mimic the types of blast exposures that service members may experience in training and combat. We then measured a panel of neuroinflammatory markers in the brain tissue with a multiplex cytokine/chemokine assay to understand the pathophysiological process(es) associated with single and repeated blast exposures. We found that single and repeated blast exposures promoted neuroinflammatory changes in the brain that are similar to those characterized in several neurological disorders; these effects were most robust after 13 and 16 psi single and repeated blast exposures, and they exceeded those recorded after 19 psi repeated blast exposures. Tumor necrosis factor-alpha and IL-10 were changed by 13 and 16 psi single and repeated blast exposures. In conclusion, based upon the growing prominence of negative psychological health outcomes in veterans and soldiers with a history of blast exposures, identifying the molecular etiology of these disorders, such as blast-induced neuroinflammation, is necessary for rationally establishing countermeasures and treatment regimens.
Collapse
|
9
|
Zhang E, Huang Z, Zang Z, Qiao X, Yan J, Shao X. Identifying circulating biomarkers for major depressive disorder. Front Psychiatry 2023; 14:1230246. [PMID: 37599893 PMCID: PMC10436517 DOI: 10.3389/fpsyt.2023.1230246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To date, the current diagnosis of major depressive disorder (MDD) still depends on clinical symptomatologic criteria, misdiagnosis and ineffective treatment are common. The study aimed to explore circulating biomarkers for MDD diagnosis. Methods A high-throughput antibody array technology was utilized to detect 440 circulating cytokines in eight MDD patients and eight age-and gender-matched healthy controls. LASSO regression was conducted for MDD-related characteristic proteins selection. Enzyme-linked immunosorbent assay (ELISA) was used to validate the characteristic proteins in 40 MDD patients and 40 healthy controls. Receiver operating characteristic (ROC) curve was employed to evaluate the diagnostic values of characteristic proteins for discriminating MDD patients from healthy controls. Correlations between the levels of characteristic proteins and depression severity (HAMD-17 scores) were evaluated using linear regression. Results The levels of 59 proteins were found aberrant in MDD patients compared with healthy controls. LASSO regression found six MDD-related characteristic proteins including insulin, CD40L, CD155, Lipocalin-2, HGF and LIGHT. ROC curve analysis showed that the area under curve (AUC) values of six characteristic proteins were more than 0.85 in discriminating patients with MDD from healthy controls. Furthermore, significant relationship was found between the levels of insulin, CD155, Lipocalin-2, HGF, LIGHT and HAMD-17 scores in MDD group. Conclusion These results suggested that six characteristic proteins screened from 59 proteins differential in MDD may hold promise as diagnostic biomarkers in discriminating patients with MDD. Among six characteristic proteins, insulin, CD155, Lipocalin-2, HGF and LIGHT might be useful to estimate the severity of depressive symptoms.
Collapse
Affiliation(s)
- En Zhang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zhongfei Huang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Zongjun Zang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu City, Wuhu, China
| | - Xin Qiao
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Jiaxin Yan
- College of Humanities and Management, Wannan Medical College, Wuhu, China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Integrating functional neuroimaging and serum proteins improves the diagnosis of major depressive disorder. J Affect Disord 2023; 325:421-428. [PMID: 36642308 DOI: 10.1016/j.jad.2023.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/25/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND The lack of effective objective diagnostic biomarkers for major depressive disorder (MDD) leads to high misdiagnosis. Compared with healthy controls (HC), abnormal brain functions and protein levels are often observed in MDD. However, it is unclear whether combining these changed multidimensional indicators could help improve the diagnosis of MDD. METHODS Sixty-three MDD and eighty-one HC subjects underwent resting-state fMRI scans, among whom 37 MDD and 45 HC provided blood samples. Amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and serum levels of brain-derived neurotrophic factor (BDNF), cortisol, and multiple cytokines were measured and put into the linear discriminant analysis (LDA) to construct corresponding MDD diagnostic models. The area under the receiver operating characteristic curve (AUC) of 5-fold cross-validation was calculated to evaluate each model's performance. RESULTS Compared with HC, MDD patients' spontaneous brain activity, serum BDNF, cortisol, interleukin (IL)-4, IL-6, and IL-10 levels changed significantly. The combinations of unidimensional multi-indicator had better diagnostic performance than a single one. The model consisted of multidimensional multi-indicator further exhibited conspicuously superior diagnostic efficiency than those constructed with unidimensional multi-indicator, and its AUC, sensitivity, specificity, and accuracy of 5-fold cross-validation were 0.99, 92.0 %, 100.0 %, and 96.3 %, respectively. LIMITATIONS This cross-sectional study consists of relatively small samples and should be replicated in larger samples with follow-up data to optimize the diagnostic model. CONCLUSIONS MDD patients' neuroimaging features and serum protein levels significantly changed. The model revealed by LDA could diagnose MDD with high accuracy, which may serve as an ideal diagnostic biomarker for MDD.
Collapse
|
11
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
12
|
Druzhkova TA, Yakovlev AA, Rider FK, Zinchuk MS, Guekht AB, Gulyaeva NV. Elevated Serum Cortisol Levels in Patients with Focal Epilepsy, Depression, and Comorbid Epilepsy and Depression. Int J Mol Sci 2022; 23:ijms231810414. [PMID: 36142325 PMCID: PMC9499608 DOI: 10.3390/ijms231810414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes and neurotrophic factor systems are involved in pathogenesis of both epilepsy and depressive disorders. The study aimed to explore these systems in patients with focal epilepsy (PWE, n = 76), epilepsy and comorbid depression (PWCED n = 48), and major depressive disorder (PWMDD, n = 62) compared with healthy controls (HC, n = 78). Methods: Parameters of the HPA axis, neurotrophic factors, and TNF-α were measured in blood serum along with the hemogram. Results: Serum cortisol level was augmented in PWE, PWCED, and PWMDD compared with HC and was higher in PWMDD than in PWE. Serum cortisol negatively correlated with Mini–Mental State Examination (MMSE) score in PWE, and positively with depression inventory–II (BDI-II) score in PWMDD. Only PWMDD demonstrated elevated plasma ACTH. Serum TNF-α, lymphocytes, and eosinophils were augmented in PWMDD; monocytes elevated in PWE and PWCED, while neutrophils were reduced in PWE and PWMDD. Serum BDNF was decreased in PWE and PWCED, CNTF was elevated in all groups of patients. In PWE, none of above indices depended on epilepsy etiology. Conclusions: The results confirm the involvement of HPA axis and inflammatory processes in pathogenesis of epilepsy and depression and provide new insights in mechanisms of epilepsy and depression comorbidity.
Collapse
Affiliation(s)
- Tatyana A. Druzhkova
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alexander A. Yakovlev
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Flora K. Rider
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail S. Zinchuk
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alla B. Guekht
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 119049 Moscow, Russia
| | - Natalia V. Gulyaeva
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Chen X, Jiang F, Yang Q, Zhang P, Zhu H, Liu C, Zhang T, Li W, Xu J, Shen H. Bilateral repetitive transcranial magnetic stimulation ameliorated sleep disorder and hypothalamic-pituitary-adrenal axis dysfunction in subjects with major depression. Front Psychiatry 2022; 13:951595. [PMID: 36090377 PMCID: PMC9452697 DOI: 10.3389/fpsyt.2022.951595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In this study, we sought to explore the effectiveness of bilateral repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) on depressive symptoms and dysfunction of hypothalamic-pituitary-adrenal (HPA) axis in patients with major depressive disorder (MDD). MATERIALS AND METHODS One hundred and thirty-six adults with MDD were administrated drugs combined with 3 weeks of active rTMS (n = 68) or sham (n = 68) treatment. The 17-item Hamilton Depression Rating Scale for Depression (HAMD-17) was to elevate depression severity at baseline and weeks 4. To test the influence of rTMS on the HPA axis, plasma adrenocorticotropic hormone (ACTH) and serum cortisol (COR) were detected in pre- and post-treatment. RESULTS No statistical significance was found for the baseline of sociodemographic, characteristics of depression, and psychopharmaceutical dosages between sham and rTMS groups (p > 0.05). There was a significant difference in the HAMD-17 total score between the two groups at end of 4 weeks after treatment (p < 0.05). Compared to the sham group, the rTMS group demonstrated a more significant score reduction of HAMD-17 and sleep disorder factor (HAMD-SLD) including sleep onset latency, middle awakening, and early awakening items at end of 4-week after treatment (p < 0.05). Furthermore, total score reduction of HAMD-17 was correlated with a decrease in plasma ACTH, not in COR, by rTMS stimulation (p < 0.05). CONCLUSION Bilateral rTMS for 3 weeks palliated depression via improvement of sleep disorder, and plasma ACTH is a predictor for the efficacy of rTMS, especially in male patients with MDD.
Collapse
Affiliation(s)
- Xing Chen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Fei Jiang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Qun Yang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Peiyun Zhang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Haijiao Zhu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Chao Liu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Tongtong Zhang
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Weijun Li
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Jian Xu
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China
| | - Hongmei Shen
- Laboratory of Biological Psychiatry, Nantong Mental Health Center & Nantong Brain Hospital, Nantong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Fonseca F, Mestre-Pinto JI, Rodríguez-Minguela R, Papaseit E, Pérez-Mañá C, Langohr K, Barbuti M, Farré M, Torrens M. BDNF and Cortisol in the Diagnosis of Cocaine-Induced Depression. Front Psychiatry 2022; 13:836771. [PMID: 35370811 PMCID: PMC8964529 DOI: 10.3389/fpsyt.2022.836771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and cocaine use disorder (CUD) are related with disability and high mortality rates. The assessment and treatment of psychiatric comorbidity is challenging due to its high prevalence and its clinical severity, mostly due to suicide rates and the presence of medical comorbidities. The aim of this study is to investigate differences in brain derived neurotrophic factor (BDNF) and cortisol plasmatic levels in patients diagnosed with CUD-primary-MDD and CUD-induced-MDD and also to compare them to a sample of MDD patients (without cocaine use), a sample of CUD (without MDD), and a group of healthy controls (HC) after a stress challenge. METHODS A total of 46 subjects were included: MDD (n = 6), CUD (n = 15), CUD-primary-MDD (n = 16), CUD-induced-MDD (n = 9), and 21 HC. Psychiatric comorbidity was assessed with the Spanish version of the Psychiatric Research Interview for Substance and Mental Disorders IV (PRISM-IV), and depression severity was measured with the Hamilton Depression Rating Scale (HDRS). Patients were administered the Trier Social Stress Test (TSST) before and after the biological measures, including BDNF, and cortisol levels were obtained. RESULTS After the TSST, Cohen's d values between CUD-primary-MDD and CUD-induced-MDD increased in each assessment from 0.19 post-TSST to 2.04 post-90-TSST. Pairwise differences among CUD-induced-MDD and both MDD and HC groups had also a large effect size value in post-30-TSST and post-90-TSST. In the case of the BDNF concentrations, CUD-primary-MDD and CUD-induced-MDD in post-90-TSST (12,627.27 ± 5488.09 vs.17,144.84 ± 6581.06, respectively) had a large effect size (0.77). CONCLUSION Results suggest a different pathogenesis for CUD-induced-MDD with higher levels of cortisol and BDNF compared with CUD-primary-MDD. Such variations should imply different approaches in treatment.
Collapse
Affiliation(s)
- Francina Fonseca
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Ignasi Mestre-Pinto
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Rocío Rodríguez-Minguela
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Esther Papaseit
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Clara Pérez-Mañá
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Klaus Langohr
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain.,Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Magí Farré
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Marta Torrens
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | |
Collapse
|