1
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Narain P, Petković A, Šušić M, Haniffa S, Anwar M, Arnoux M, Drou N, Antonio-Saldi G, Chaudhury D. Nighttime-specific differential gene expression in suprachiasmatic nucleus and habenula is associated with resilience to chronic social stress. Transl Psychiatry 2024; 14:407. [PMID: 39358331 PMCID: PMC11447250 DOI: 10.1038/s41398-024-03100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular mechanisms that link stress and biological rhythms still remain unclear. The habenula (Hb) is a key brain region involved in regulating diverse types of emotion-related behaviours while the suprachiasmatic nucleus (SCN) is the body's central clock. To investigate the effects of chronic social stress on transcription patterns, we performed gene expression analysis in the Hb and SCN of stress-naïve and stress-exposed mice. Our analysis revealed a large number of differentially expressed genes and enrichment of synaptic and cell signalling pathways between resilient and stress-naïve mice at zeitgeber 16 (ZT16) in both the Hb and SCN. This transcriptomic signature was nighttime-specific and observed only in stress-resilient mice. In contrast, there were relatively few differences between the stress-susceptible and stress-naïve groups across time points. Our results reinforce the functional link between circadian gene expression patterns and differential responses to stress, thereby highlighting the importance of temporal expression patterns in homoeostatic stress responses.
Collapse
Affiliation(s)
- Priyam Narain
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Aleksa Petković
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marko Šušić
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Salma Haniffa
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mariam Anwar
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Dipesh Chaudhury
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE.
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Ghashang SK, Suwandi A, Buettner M, Hamdan I, Grassl GA, Gutenbrunner C, Nugraha B. Alterations in anthropometric, inflammatory and mental health parameters during Ramadan intermittent fasting in a group of healthy people: a prospective cohort study. Front Nutr 2024; 11:1298281. [PMID: 38362105 PMCID: PMC10867316 DOI: 10.3389/fnut.2024.1298281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Fasting has been practiced with different time span in different areas of the world and for various reasons. One of the types of fasting regimens is Ramadan intermittent fasting (RIF), which is described as intermittent dry fasting and known as the most commonly practiced form of religious fasting. Different studies have shown its effects on body composition parameters and mental health, fatigue and quality of life (QoL). Elucidating the relationship of RIF on biological parameters would also be of importance to show its mechanism. Therefore, we evaluated several biological mediators related to mental health, such as ß-nerve growth factor (ß-NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-like growth factor-1 (IGF-1), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and matrix-metalloproteinase-9 (MMP-9). This study consisted of fasting (FG; n = 25) and non-fasting group (NFG; n = 25). Four different time points were assessed for FG: one week before (T1), mid (T2), last days (T3), and one week after (T4) RIF. T1 and T3 were the assessment time points for NFG. Biological mediators were determined from serum samples by using Human Magnetic Luminex and enzyme-linked immunosorbent assay. Furthermore, we then performed correlation analyses between biological mediators and our previously published clinical parameters including body composition and mental health parameters at all time points. Significant alterations were shown in FG for ß-NGF (T2vsT3, p < 0.05; T2vsT4, p < 0.05), GDNF (T1vsT4, p < 0.05; T2vsT4, p < 0.05), IL-8 (T2vsT3, p < 0.05; T3vsT4, p < 0.05), TNF-α (T1vsT3, p < 0.05; T1vsT4, p < 0.001; T2vsT4, p < 0.001), and MMP-9 (T1vsT4, p < 0.01). There were no statistically significant differences between FG and NFG in all biological mediators at T1 and T3. Correlation analysis showed that MMP-9 levels had negative correlation with body mass index (BMI) at T3. At T3 BDNF levels had negative correlation with Epworth Sleepiness Scale (ESS) as one of measured QoL parameters. ß-NGF, GDNF, TNF-α, and MMP-9 had positive correlation with some of body composition and mental health parameters. Findings demonstrate that RIF altered different biological mediators could give benefit to health. Its benefit is mediated by the alteration of biological mediators.
Collapse
Affiliation(s)
- Samaneh Khosandam Ghashang
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Centre, Minden, Germany
| | - Abdulhadi Suwandi
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Imad Hamdan
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Gutenbrunner
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Hannover Rehabilitation Services and Science Consulting, Hannover, Germany
| | - Boya Nugraha
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Hannover Rehabilitation Services and Science Consulting, Hannover, Germany
| |
Collapse
|
4
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
5
|
Abstract
Background Neurotrophins have been implicated in multiple psychiatric disorders. Nerve Growth Factor (NGF) is one of the major neurotrophins that has attracted much research interest. Therefore, we undertook, to the best of our knowledge, the first scoping review encompassing all major psychiatric disorders and their relation to NGF. This review aimed to identify the current position of NGF in psychiatric research and to outline present gaps in knowledge, which can be answered with a more detailed systematic review in the future. Methods Suitable studies were identified using PubMed. A total of 20 studies were included in the review: two on bipolar affective disorder (BPAD), three on schizophrenia, seven on depression, and eight on alcohol use disorder. Results NGF levels are definitively reduced in BPAD and depression, while NGF levels in schizophrenia decreased further after treatment than in the drug-naïve state. The effect of treatment on NGF levels in depression varied based on treatment modalities and severity of depression. In patients with depression, raised NGF was a predictor of conversion to bipolar disorder (BD). NGF levels were raised in acute alcohol intoxication and withdrawal but normalized slowly as abstinence was maintained. NGF may play a protective role in preventing the toxic ill effect of acute alcohol intoxication on the central nervous system. Conclusion Based on current knowledge, NGF levels may be a useful biomarker of a chronic mental stress condition. However, further research is needed before it can be used to identify a specific psychiatric illness or predict treatment response.
Collapse
Affiliation(s)
- Alankrit Jaiswal
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Umesh Shreekantiah
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Nishant Goyal
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Robeva R, Elenkova A, Kirilov G, Zacharieva S. Plasma-free metanephrines, nerve growth factor, and renalase significance in patients with PCOS. Endocrine 2023; 81:602-612. [PMID: 37248367 PMCID: PMC10226715 DOI: 10.1007/s12020-023-03404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Polycystic ovarian syndrome (PCOS) is a common heterogeneous condition with probably multifactorial genesis. Animal studies have proven the essential role of the sympathetic nervous system in the syndrome development, while human studies are still contradictory. The present study aims to investigate the possible influence of plasma-free metanephrine (MN), and normetanephrine (NMN), nerve growth factor (NGF), and renalase (RNL) on the hormonal and metabolic parameters in women with PCOS and healthy controls. METHODS Fifty patients with PCOS and 30 healthy women participated in the study. The plasma-free MN and NMN, NGF, RNL, anti-Mullerian hormone (AMH), gonadotropin, androgen levels, and metabolic parameters were investigated. RESULTS Plasma-free NMN and NGF concentrations were increased in PCOS individuals, while RNL levels were decreased compared to healthy volunteers. Increased plasma-free NMN (OR = 1.0213 [95%CI 1.0064-1.0364], p = 0.005) and NGF (OR = 1.0078 [95%CI 1.0001-1.0155], p = 0.046) but not MN or RNL levels were associated with a higher risk of PCOS after adjustment for age. Plasma-free NMN levels were positively associated with the LH (r = +0.253; p = 0.039). androstenedione (r = +0.265; p = 0.029), 17-OH progesterone (r = +0.285; p = 0.024), NGF (r = +0.320; p = 0.008), and AMH (r = +0.417; p < 0.001) concentrations of the investigated women. RNL levels were inversely related to the BMI (r = -0.245; p = 0.029), HOMA-IR (r = -0.250; p = 0.030), free testosterone (r = -0.303; p = 0.006) levels. systolic (r = -0.294; p = 0.008) and diastolic (r = -0.342; p = 0.002) blood pressure. CONCLUSIONS Increased sympathetic noradrenergic activity and NGF synthesis might be related to the increased AMH and delta-4 androgen levels in a subgroup of PCOS patients. RNL levels might influence the metabolic status of PCOS patients. Further studies are needed to explore the significance of adrenal medullar and autonomic dysfunction for developing different PCOS phenotypes and their subsequent cardiovascular complications.
Collapse
Affiliation(s)
- Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria.
| | - Atanaska Elenkova
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Georgi Kirilov
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Sabina Zacharieva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
7
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Malan L, van Wyk R, von Känel R, Ziemssen T, Vilser W, Nilsson PM, Magnusson M, Jujic A, Mak D, Steyn F, Malan NT. The chronic stress risk phenotype mirrored in the human retina as a neurodegenerative condition. Stress 2023:1-43. [PMID: 37154816 DOI: 10.1080/10253890.2023.2210687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A 3-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disc ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and 3-yr changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase 3-like-1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal-barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal-barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Collapse
Affiliation(s)
- Leoné Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| | - Roelof van Wyk
- Surgical Ophthalmologist; 85 Peter Mokaba Street, Potchefstroom, South Africa
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus; Technische Universität Dresden, Germany
| | - Walthard Vilser
- Institute of Biomedical Engineering and informatics; Technical University Ilmenau, Germany
- Department of Pediatrics and Adolescent Medicine, Section Neonatalogy; University Hospital, Jena, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
- Hypertension in Africa Research Team (HART); North-West University, Potchefstroom, South Africa
- Department of Cardiology; Skåne University Hospital, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Malmö Sweden
| | - Amra Jujic
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Daniel Mak
- Centre for Regenerative Medicine and Health; Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, People's Republic of China
| | - Faans Steyn
- Statistical Consultation Services; North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
9
|
Jasim H. Topical review - salivary biomarkers in chronic muscle pain. Scand J Pain 2023; 23:3-13. [PMID: 36228098 DOI: 10.1515/sjpain-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Muscle related temporomandibular disorders (myogenous TMD), one of the most common orofacial pain conditions, is characterized by facial pain and often accompanied by jaw movement limitations. Although the underlying biological mechanisms are still unclear, a cluster of proteins and peptides is assumed to be involved in the pathophysiology. These proteins and peptides may be measured in a simple non-invasive saliva sample. This work investigated whether saliva can be used to sample algogenic substances that can serve as molecular biomarkers for TMD myalgia. METHODS Saliva and blood samples were collected from healthy individuals (n=69) and patients diagnosed with TMD myalgia (n=39) according to the Diagnostic Criteria for TMD. Unstimulated and stimulated whole, parotid, and sublingual saliva were analysed. The protein profiles were investigated using two-dimensional gel electrophoresis followed by identification with liquid chromatography tandem mass spectrometry. Levels of nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), and brain derived neuro-tropic factor (BDNF) were determined using western blotting based technology and multiplex electro-chemiluminescence assay panel. Glutamate, serotonin, and substance p (SP) were determined using commercially available methods. RESULTS Different saliva collection approaches resulted in significant differences in the protein profile as well as in the expression of NGF, BDNF, CGRP, SP, and glutamate. Stimulated whole saliva showed least variability in protein concentration (35%) and was correlated to plasma levels of glutamate. Unlike SP and glutamate, NGF and BDNF expressed a rhythmic variation in salivary expression with higher levels in the morning (p<0.05). Patients with a diagnosis of TMD myalgia had significantly higher levels of salivary glutamate but lower salivary NGF and BDNF compared to controls; in addition, the lower NGF and BDNF levels correlated to psychological dysfunction. The quantitative proteomics data revealed 20 proteins that were significantly altered in patients compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. Dissimilarities in protein profile and clinical variables were observed between TMD myalgia and myofascial pain. CONCLUSIONS The work highlights the importance of consistency in saliva collection approaches, including the timing of the collection. It displayed significant changes in pain specific mediators and protein profile in TMD myalgia and furthermore dissimilarities between subclasses indicating different pathophysiology. After extensive validation, potential salivary biomarkers can be combined with clinical features to better understand and diagnose TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Eastman Institutet, Folktandvården Stockholms Län AB, Stockholm, Sweden
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial Neuroscience (SCON), Huddinge, Sweden
| |
Collapse
|
10
|
Lyu Q, Zhou X, Shi LQ, Chen HY, Lu M, Ma XD, Ren L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front Behav Neurosci 2023; 17:1107265. [PMID: 36873772 PMCID: PMC9978012 DOI: 10.3389/fnbeh.2023.1107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
11
|
Xiao L, Loh YP. Neurotrophic Factor-α1/Carboxypeptidase E Functions in Neuroprotection and Alleviates Depression. Front Mol Neurosci 2022; 15:918852. [PMID: 35711734 PMCID: PMC9197069 DOI: 10.3389/fnmol.2022.918852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a major psychiatric disease affecting all ages and is often co-morbid with neurodegeneration in the elderly. Depression and neurodegeneration are associated with decreased neurotrophic factors. In this mini-review the functions and potential therapeutic use of a newly discovered trophic factor, Neurotrophic factor-α1 (NF-α1), also known as Carboxypeptidase E (CPE), in depression and neuroprotection are discussed. NF-α1/CPE expression is enriched in CA3 neurons of the hippocampus. Families carrying null and homozygous non-sense mutations of the NF-α1/CPE gene share common clinical features including childhood onset obesity, type 2 diabetes, impaired intellectual abilities and hypogonadotrophic hypogonadism. Studies in animal models such as CPE knockout (KO) mice and CPEfat/fat mutant mice exhibit similar phenotypes. Analysis of CPE-KO mouse brain revealed that hippocampal CA3 was completely degenerated after weaning stress, along with deficits in hippocampal long-term potentiation. Carbamazepine effectively blocked weaning stress-induced hippocampal CA3 degeneration, suggesting the stress induced epileptic-like neuronal firing led to the degeneration. Analysis of possible mechanisms underlying NF-α1/CPE -mediated neuroprotection revealed that it interacts with the serotonin receptor, 5-HTR1E, and via β arrestin activation, subsequently upregulates ERK1/2 signaling and pro-survival protein, BCL2, levels. Furthermore, the NF-α1/CPE promoter contains a peroxisome proliferator-activated receptor (PPARγ) binding site which can be activated by rosiglitazone, a PPARγ agonist, to up-regulate expression of NF-α1/CPE and neurogenesis, resulting in anti-depression in animal models. Rosiglitazone, an anti-diabetic drug administered to diabetic patients resulted in decline of depression. Thus, NF-α1/CPE is a potential therapeutic agent or drug target for treating depression and neurodegenerative disorders.
Collapse
|
12
|
Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, Lin J, Yin J, Li H, Cui L, Lin Z, Cai Y. Peripheral Blood Circular RNAs as a Biomarker for Major Depressive Disorder and Prediction of Possible Pathways. Front Neurosci 2022; 16:844422. [PMID: 35431783 PMCID: PMC9009243 DOI: 10.3389/fnins.2022.844422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and have been reported to be associated with neuropsychiatric diseases, but their potential role in major depressive disorder (MDD) remains unclear. Here, we demonstrated that there was a disorder of circRNAs in the blood of MDD patients. It has been preliminarily proved that hsa_circ_0002473, hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 were highly expressed in MDD patients and can be used as diagnostic markers for MDD. Bioinformatics analysis revealed that hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 may affect the neuroplasticity of MDD through the ceRNA mechanism.
Collapse
Affiliation(s)
- Dandan Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - RunSen Chen
- Department of Rehabilitation Medicine Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hezhan Li
- School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Zhixiong Lin,
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yujie Cai,
| |
Collapse
|
13
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Tsai PC, Wu YK, Hu JH, Li IC, Lin TW, Chen CC, Kuo CF. Preclinical Bioavailability, Tissue Distribution, and Protein Binding Studies of Erinacine A, a Bioactive Compound from Hericium erinaceus Mycelia Using Validated LC-MS/MS Method. Molecules 2021; 26:molecules26154510. [PMID: 34361662 PMCID: PMC8347307 DOI: 10.3390/molecules26154510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Erinacine A, derived from the mycelia of Hericium erinaceus, has attracted much attention due to its neuroprotective properties. However, very few studies have been conducted on the bioavailability, tissue distribution, and protein binding of erinacine A. This study aimed to investigate the bioavailability, tissue distribution, and protein binding of erinacine A in Sprague-Dawley rats. After oral administration (po) and intravenous administration (iv) of 2.381 g/kg BW of the H. erinaceus mycelia extract (equivalent to 50 mg/kg BW of erinacine A) and 5 mg/kg BW of erinacine A, respectively, the absolute bioavailability of erinacine A was estimated as 24.39%. Erinacine A was detected in brain at 1 h after oral dosing and reached the peak at 8 h. Protein binding assay showed unbound erinacine A fractions in brain to blood ratio is close to unity, supporting passive diffusion as the dominating transport. Feces was the major route for the elimination of erinacine A. This study is the first to show that erinacine A can penetrate the blood-brain barrier of rats by the means of passive diffusion and thus support the development of H. erinaceus mycelia for the improvement of neurohealth.
Collapse
Affiliation(s)
- Pei-Ching Tsai
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan; (P.-C.T.); (Y.-K.W.); (J.-H.H.); (C.-C.C.)
| | - Yi-Kai Wu
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan; (P.-C.T.); (Y.-K.W.); (J.-H.H.); (C.-C.C.)
| | - Jun-Hao Hu
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan; (P.-C.T.); (Y.-K.W.); (J.-H.H.); (C.-C.C.)
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan; (I.-C.L.); (T.-W.L.)
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan; (I.-C.L.); (T.-W.L.)
| | - Chin-Chu Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan; (P.-C.T.); (Y.-K.W.); (J.-H.H.); (C.-C.C.)
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 32542, Taiwan; (I.-C.L.); (T.-W.L.)
| | - Chia-Feng Kuo
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan; (P.-C.T.); (Y.-K.W.); (J.-H.H.); (C.-C.C.)
- Correspondence:
| |
Collapse
|
15
|
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of Selected Genes Involved in Neurogenesis in the Etiopathogenesis of Depressive Disorders. J Pers Med 2021; 11:jpm11030168. [PMID: 33804468 PMCID: PMC7998568 DOI: 10.3390/jpm11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The neurogenic theory suggests that impaired neurogenesis within the dentate gyrus of the hippocampus is one of the factors causing depression. Immunology also has an impact on neurotrophic factors. The aim of the study was to assess the importance of selected genes involved in the process of neurogenesis i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and neuron-restrictive silencer factor (REST gene) in the etiopathogenesis of depressive disorders. (2) Methods: A total of 189 subjects took part in the study (95 depressed patients, 94 healthy controls). Sociodemographic data were collected. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). RT-PCR was used to assess gene expression at the mRNA levels, while Enzyme-Linked Immunosorbent Assay (ELISA) was used to assess gene expression at the protein level. (3) Results: Expression of NGF, BDNF, REST genes is lower in depressed patients than in the control group, whereas the expression of GDNF gene is higher in patients with depressive disorders than in the group of healthy volunteers. (4) Conclusions: The expression of selected genes might serve as a biomarker of depression.
Collapse
Affiliation(s)
- Katarzyna Bliźniewska-Kowalska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
- Correspondence: ; Tel.: +48-608-203-624
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Monika Talarowska
- Department of Clinical Psychology, Institute of Psychology University of Lodz, 91-433 Lodz, Poland;
| |
Collapse
|
16
|
Soga T, Teo CH, Parhar I. Genetic and Epigenetic Consequence of Early-Life Social Stress on Depression: Role of Serotonin-Associated Genes. Front Genet 2021; 11:601868. [PMID: 33584798 PMCID: PMC7874148 DOI: 10.3389/fgene.2020.601868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life adversity caused by poor social bonding and deprived maternal care is known to affect mental wellbeing and physical health. It is a form of chronic social stress that persists because of a negative environment, and the consequences are long-lasting on mental health. The presence of social stress during early life can have an epigenetic effect on the body, possibly resulting in many complex mental disorders, including depression in later life. Here, we review the evidence for early-life social stress-induced epigenetic changes that modulate juvenile and adult social behavior (depression and anxiety). This review has a particular emphasis on the interaction between early-life social stress and genetic variation of serotonin associate genes including the serotonin transporter gene (5-HTT; also known as SLC6A4), which are key molecules involved in depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | | |
Collapse
|
17
|
Zappella M, Biamonte F, Balzamino BO, Manieri R, Cortes M, Santucci D, Di Stasio E, Rizzuto M, Micera A. Relaxation Response in Stressed Volunteers: Psychometric Tests and Neurotrophin Changes in Biological Fluids. Front Psychiatry 2021; 12:655453. [PMID: 34220571 PMCID: PMC8247444 DOI: 10.3389/fpsyt.2021.655453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To evaluate the beneficial effects of relaxation response (RR) training in adult stressed subjects by evaluating the psychometric response recorded at relaxation session. Cortisol as well as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) mediators were quantified in both saliva and tears, and their levels were related to each other and to the psychometric response. Methods: Stressed subjects (n = 23; 10M/13F; age range 21-53 years old) were voluntarily enrolled in the study. RR training sessions were carried out for 2 months, 1 day per week, at the same time (3-5 p.m.). Two different psychological questionnaires, the Perceived Stress Scale-10 (PSS-10) and the Beck Depression Inventory - Short Form (BDI-SF) and Ocular Surface Disease Index (OSDI) tests, were administered before each session. Saliva and tears were sampled for cortisol (EIA), NGF (ELISA), and BDNF (ELISA) quantifications. Questionnaires' data were analyzed and compared to biochemical ones. Results: All subjects reported beneficial effects from training. RR significantly reduced the psychological stress indexes (p = 0.039 for PSS-10 and p = 0.001 for BDI-SF). Specifically, RR training lowered the perception of Perceived Helplessness (items 1, 3, 10; p < 0.05) in PSS-10 and increased the Perceived Self-Efficacy (p < 0.05). OSDI score was in the normal range (0-25). Biochemically, a decrease in cortisol, a trend to a decrease in NGF, and an increase in BDNF levels were observed in saliva samples after RR treatment. Furthermore, a trend to a decrease in NGF and an increase in BDNF were quantified in tear samples. A correlation between PSS-10 total score and saliva NGF variation (%) as well as between BDI-SF total score and BDNF tear levels were also observed. Conclusion: RR training appeared useful to lowering psychological, mental, and physical stress, as supported by both psychological total and single scores. The finding on biochemical levels of BDNF in saliva and tears are sustained by previous studies while those of NGF require further investigation. Overall, these data on a small population highlight the potential use of RR training and potential neurotrophic changes in biological fluids, in stressed volunteers.
Collapse
Affiliation(s)
- Miriam Zappella
- Department of Psychology, Salesian University of Rome, Rome, Italy.,Department of Neuroscience, IRCCS Children's Hospital Bambino Gesù, Rome, Italy
| | - Filippo Biamonte
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences; IRCCS - Fondazione Bietti, Rome, Italy
| | - Rocco Manieri
- Department of Laboratory and Infectivological Sciences, UOC Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Magdalena Cortes
- Hebrew Hospital Rome Ophthalmology Department, Rome, Italy.,Prevention and Health Care Department, Campus Bio Medico University, Rome, Italy
| | - Daniela Santucci
- Cellular Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - Enrico Di Stasio
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy.,Department of Laboratory and Infectivological Sciences, UOC Chemistry, Biochemistry and Molecular Biology Clinic, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maurizio Rizzuto
- Department of Psychology, Salesian University of Rome, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences; IRCCS - Fondazione Bietti, Rome, Italy
| |
Collapse
|
18
|
Jasim H, Ghafouri B, Gerdle B, Hedenberg-Magnusson B, Ernberg M. Altered levels of salivary and plasma pain related markers in temporomandibular disorders. J Headache Pain 2020; 21:105. [PMID: 32842964 PMCID: PMC7449051 DOI: 10.1186/s10194-020-01160-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Different pain syndromes may be characterized by different profiles of mediators reflecting pathophysiological differences, and these alterations may be measured in a simple saliva sample. The aims of the current study were to compare concentration of glutamate, serotonin (5-HT), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and substance P (SP) in saliva and plasma from a well-defined group of patients with chronic temporomandibular disorders myalgia (TMD-myalgia) with a group of pain-free controls, and further investigate the relationship between these markers and clinical characteristics. Methods Patients diagnosed according to the diagnostic criteria for TMD (n = 39), and matched healthy pain-free controls (n = 39) were included. Stimulated whole saliva and plasma samples were collected in the morning. Glutamate was analysed using a colorimetric assay, and 5-HT and SP were analysed by commercially available ELISA. Levels of NGF and BDNF were determined using multiplex electrochemiluminescence assay panel. Results Patients expressed higher salivary and plasma levels of glutamate (saliva: 40.22 ± 13.23 μmol/L; plasma: 30.31 ± 18.73 μmol/L) than controls (saliva: 33.24 ± 11.27 μmol/L; plasma: 20.41 ± 15.96 μmol/L) (p < 0.05). Salivary NGF (0.319 ± 0.261 pg/ml) and BDNF (3.57 ± 1.47 pg/ml) were lower in patients compared to controls (NGF: 0.528 ± 0.477 pg/ml; BDNF 4.62 ± 2.51 pg/ml)(p’s < 0.05). Contrary, plasma BDNF, was higher in patients (263.33 ± 245.13 pg/ml) than controls (151.81 ± 125.90 pg/ml) (p < 0.05). 5-HT was undetectable in saliva. Neither plasma 5-HT, nor SP levels differed between groups. BDNF and NGF concentrations correlated to levels of psychological distress (p < 0.0005). Conclusion The higher levels of salivary and plasma glutamate in patients with TMD-myalgia compared to controls strengthens its importance in the pathophysiology of TMD-myalgia. However, the lack of correlation to pain levels question its role as a putative biomarker. Patients with TMD-myalgia further had lower levels of salivary NGF and BDNF, but higher plasma BDNF. These results and their correlations to psychological distress warrant further investigations.
Collapse
Affiliation(s)
- Hajer Jasim
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Section for Orofacial Pain and Jaw function, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), BOX 4064, SE141 04, Huddinge, Sweden.
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE581 83, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE581 83, Linköping, Sweden
| | - Britt Hedenberg-Magnusson
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Section for Orofacial Pain and Jaw function, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), BOX 4064, SE141 04, Huddinge, Sweden.,Folktandvården Stockholms Län AB, SE 11382, Stockholm, Sweden
| | - Malin Ernberg
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Section for Orofacial Pain and Jaw function, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), BOX 4064, SE141 04, Huddinge, Sweden
| |
Collapse
|
19
|
Carvalho AF, Solmi M, Sanches M, Machado MO, Stubbs B, Ajnakina O, Sherman C, Sun YR, Liu CS, Brunoni AR, Pigato G, Fernandes BS, Bortolato B, Husain MI, Dragioti E, Firth J, Cosco TD, Maes M, Berk M, Lanctôt KL, Vieta E, Pizzagalli DA, Smith L, Fusar-Poli P, Kurdyak PA, Fornaro M, Rehm J, Herrmann N. Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl Psychiatry 2020; 10:152. [PMID: 32424116 PMCID: PMC7235270 DOI: 10.1038/s41398-020-0835-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/03/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023] Open
Abstract
The literature on non-genetic peripheral biomarkers for major mental disorders is broad, with conflicting results. An umbrella review of meta-analyses of non-genetic peripheral biomarkers for Alzheimer's disease, autism spectrum disorder, bipolar disorder (BD), major depressive disorder, and schizophrenia, including first-episode psychosis. We included meta-analyses that compared alterations in peripheral biomarkers between participants with mental disorders to controls (i.e., between-group meta-analyses) and that assessed biomarkers after treatment (i.e., within-group meta-analyses). Evidence for association was hierarchically graded using a priori defined criteria against several biases. The Assessment of Multiple Systematic Reviews (AMSTAR) instrument was used to investigate study quality. 1161 references were screened. 110 met inclusion criteria, relating to 359 meta-analytic estimates and 733,316 measurements, on 162 different biomarkers. Only two estimates met a priori defined criteria for convincing evidence (elevated awakening cortisol levels in euthymic BD participants relative to controls and decreased pyridoxal levels in participants with schizophrenia relative to controls). Of 42 estimates which met criteria for highly suggestive evidence only five biomarker aberrations occurred in more than one disorder. Only 15 meta-analyses had a power >0.8 to detect a small effect size, and most (81.9%) meta-analyses had high heterogeneity. Although some associations met criteria for either convincing or highly suggestive evidence, overall the vast literature of peripheral biomarkers for major mental disorders is affected by bias and is underpowered. No convincing evidence supported the existence of a trans-diagnostic biomarker. Adequately powered and methodologically sound future large collaborative studies are warranted.
Collapse
Affiliation(s)
- André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada.
| | - Marco Solmi
- Neuroscience Department, University of Padova, Padova, Italy
- Neuroscience Center, University of Padova, Padova, Italy
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marcos Sanches
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Krembil Centre for NeuroInformatics, Toronto, ON, Canada
| | - Myrela O Machado
- Division of Dermatology, Women's College Hospital, Toronto, ON, Canada
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Chelsea Sherman
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Yue Ran Sun
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Celina S Liu
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo, São Paulo, SP, Brazil
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Giorgio Pigato
- Neuroscience Department, University of Padova, Padova, Italy
- Neuroscience Center, University of Padova, Padova, Italy
| | - Brisa S Fernandes
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | | | - Muhammad I Husain
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Joseph Firth
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Theodore D Cosco
- Gerontology Research Center, Simon Fraser University, Vancouver, Canada
- Oxford Institute of Population Ageing, University of Oxford, Oxford, UK
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Krista L Lanctôt
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Eduard Vieta
- Psychiatry and Psychology Department of the Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Diego A Pizzagalli
- Department of Psychiatry & McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- OASIS Service, South London and Maudsley National Health Service Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paul A Kurdyak
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Canada Institute for Clinical Evaluative Sciences (ICES), Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michele Fornaro
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Psychiatr, University School of Medicine Federico II, Naples, Italy
| | - Jürgen Rehm
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, Canada
- Addiction Policy, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Institute of Clinical Psychology and Psychotherapy & Center for Clinical Epidemiology and Longitudinal Studies, Technische Universität Dresden, Dresden, Germany
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
20
|
Kiani AK, Maltese PE, Dautaj A, Paolacci S, Kurti D, Picotti PM, Bertelli M. Neurobiological basis of chiropractic manipulative treatment of the spine in the care of major depression. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020006. [PMID: 33170171 PMCID: PMC8023121 DOI: 10.23750/abm.v91i13-s.10536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023]
Abstract
Background and aim: Major depressive disorder is associated with an autonomic nervous system imbalance. All the symptoms of depression (high cortisol, high adrenalin, insomnia, agitation, anxiety) can probably be attributed to over-activation of the sympathetic nervous system. We performed this review in order to highlight the possible links between chiropractic intervention, its potential molecular effects and its possible outcomes on patients with depression. Methods: We performed a literature search for all the relevant manuscript regarding the effects of chiropractic and depression on the autonomic nervous system. Results: Chiropractic care and spinal manipulation regulate the autonomic nervous system at peripheral level and its projections to the central nervous system. In particular, they may activate the parasympathetic system to counterbalance the activity of the sympathetic system. Vagal parasympathetic stimulation is also considered an effective therapy for major depression as it releases neurotrophins essential for anti-depressive therapies, including brain-derived neurotrophic factor and nerve growth factor. Conclusion: Chiropractic and spinal manipulative therapies along with vagal nerve stimulation may therefore be regarded as treatment options for depression. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy, MAGI’S LAB, Rovereto (TN), Italy, EBTNA-LAB, Rovereto (TN), Italy
| |
Collapse
|
21
|
Short Communication: Interaction of Nerve Growth Factor (NGF) and Vascular Endothelial Growth Factor (VEGF) in Healthy Individuals. DISEASE MARKERS 2019; 2019:7510315. [PMID: 31827642 PMCID: PMC6885270 DOI: 10.1155/2019/7510315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
NGF and VEGF are known to be involved in different psychiatric diseases. In order to verify hints from basic research that both neurotrophines interact with each other, serum levels of NGF and VEGF were measured in a cohort of 33 healthy individuals and correlated. NGF level was 126.30 pg/mL (±155.43), and VEGF level was 57.28 pg/mL (±44.48). Both factors were significantly correlated, confirming their interaction and legitimising the usage of their respective ratio (0.8 (±0.42)) as a less varying additional marker in prospective studies.
Collapse
|
22
|
Unresolved Problems in the Treatment of Arterial Hypertension and What to Do. Fam Med 2018. [DOI: 10.30841/2307-5112.5.2018.166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
da Silva SK, Wiener C, Ghisleni G, Oses JP, Jansen K, Molina ML, Silva R, Souza LD. Effects of cognitive-behavioral therapy on neurotrophic factors in patients with major depressive disorder. ACTA ACUST UNITED AC 2018; 40:361-366. [PMID: 29898192 PMCID: PMC6899377 DOI: 10.1590/1516-4446-2017-2357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Objective: To correlate neurotrophic factors – brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and beta-nerve growth factor (beta-NGF) – and severity of depressive symptoms in patients diagnosed with major depressive disorder (MDD) undergoing cognitive-behavioral therapy (CBT). Methods: In this quasi-experimental study, participants were selected by convenience and received 16 sessions of CBT. The outcomes of interest were severity of depressive symptoms and changes in neurotrophic factor levels after CBT. The differences between variables before and after treatment (deltas) were analyzed. Results: Patients had significant changes in symptom severity after treatment. No significant associations were found between Beck Depression Inventory II (BDI-II) scores and any independent variable. No correlations were observed between BDNF or GDNF levels and BDI scores before or after treatment, although there was a trend toward significant differences in beta-NGF levels. Conclusion: BDNF, beta-NGF, and GDNF were not influenced by the effects of CBT on depressive symptoms.
Collapse
Affiliation(s)
- Sally K da Silva
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Carolina Wiener
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Gabriele Ghisleni
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Jean P Oses
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Karen Jansen
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Mariane L Molina
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Ricardo Silva
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Luciano D Souza
- Departamento de Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
24
|
Li IC, Lee LY, Tzeng TT, Chen WP, Chen YP, Shiao YJ, Chen CC. Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behav Neurol 2018; 2018:5802634. [PMID: 29951133 PMCID: PMC5987239 DOI: 10.1155/2018/5802634] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Hericium erinaceus, an ideal culinary-medicinal mushroom, has become a well-established candidate in promoting positive brain and nerve health-related activities by inducing the nerve growth factor from its bioactive ingredient. Among its active compounds, only erinacine A has confirmed pharmacological actions in the central nervous system in rats. Hence, this review has summarized the available information on the neurohealth properties of H. erinaceus mycelia enriched with erinacines, which may contribute to further research on the therapeutic roles of these mycelia. The safety of this mushroom has also been discussed. Although it has been difficult to extrapolate the in vivo studies to clinical situations, preclinical studies have shown that there can be improvements in ischemic stroke, Parkinson's disease, Alzheimer's disease, and depression if H. erinaceus mycelia enriched with erinacines are included in daily meals.
Collapse
Affiliation(s)
- I-Chen Li
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
| | - Li-Ya Lee
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
| | - Tsai-Teng Tzeng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Wan-Ping Chen
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
| | - Yen-Po Chen
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
| | - Young-Ju Shiao
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Chin-Chu Chen
- Grape King Bio Ltd, Zhong-Li Dist., Taoyuan City, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei City, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei City, Taiwan
- Institute of Biotechnology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
25
|
Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 2017; 13:1245-1262. [PMID: 28546750 PMCID: PMC5436791 DOI: 10.2147/ndt.s114542] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A plethora of research has implicated hundreds of putative biomarkers for depression, but has not yet fully elucidated their roles in depressive illness or established what is abnormal in which patients and how biologic information can be used to enhance diagnosis, treatment and prognosis. This lack of progress is partially due to the nature and heterogeneity of depression, in conjunction with methodological heterogeneity within the research literature and the large array of biomarkers with potential, the expression of which often varies according to many factors. We review the available literature, which indicates that markers involved in inflammatory, neurotrophic and metabolic processes, as well as neurotransmitter and neuroendocrine system components, represent highly promising candidates. These may be measured through genetic and epigenetic, transcriptomic and proteomic, metabolomic and neuroimaging assessments. The use of novel approaches and systematic research programs is now required to determine whether, and which, biomarkers can be used to predict response to treatment, stratify patients to specific treatments and develop targets for new interventions. We conclude that there is much promise for reducing the burden of depression through further developing and expanding these research avenues.
Collapse
Affiliation(s)
- Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Ostrovskaya RU, Yagubova SS, Gudasheva TA, Seredenin SB. Low-Molecular-Weight NGF Mimetic Corrects the Cognitive Deficit and Depression-like Behavior in Experimental Diabetes. Acta Naturae 2017; 9:94-102. [PMID: 28740732 PMCID: PMC5509006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 10/25/2022] Open
Abstract
Based on the comorbidity of diabetes, depression, and dementia and recognizing that a deficiency of the nerve growth factor (NGF) is involved in all of these kinds of pathologies, we studied the effect of the mimetic of dimeric dipeptide NGF loop 4, GK-2, on a model of streptozotocin-induced type 2 diabetes in C57Bl/6 mice. GK-2 [hexamethylenediamide bis-(N-monosuccinyl-glutamyl-lysine)] was synthesized at the V.V. Zakusov Scientific Research Institute of Pharmacology. The study revealed the ability of GK-2 to ameliorate hyperglycemia induced by streptozotocine (STZ 100 mg/kg i.p.) in C57Bl/6 mice, to restore learning ability in the Morris Water Maze test, and to overcome depression after both intraperitoneal (0.5 mg/kg) and peroral (5 mg/kg) long-term administration. The presence of the listed properties and their preservation in the case of peroral treatment determines the prospects of research. Taking into account the previous findings on the ability of GK-2 to selectively activate PI3K/Akt, these data suggest that Akt-signaling is sufficient for pancreatic beta cell function. GK-2 has been shown to exhibit pronounced neuroprotective activity. The coexistence of neuroprotective and antidiabetic effects is in agreement with the fundamental concept holding that the function of neurons and pancreatic beta cells is controlled by similar mechanisms.
Collapse
Affiliation(s)
- R. U. Ostrovskaya
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - S. S. Yagubova
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - T. A. Gudasheva
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| | - S. B. Seredenin
- V.V. Zakusov Institute of Pharmacology, Baltijskaya Str., 8, Moscow, 125315, Russia
| |
Collapse
|
27
|
Oddone F, Roberti G, Micera A, Busanello A, Bonini S, Quaranta L, Agnifili L, Manni G. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages. PLoS One 2017; 12:e0168565. [PMID: 28068360 PMCID: PMC5221757 DOI: 10.1371/journal.pone.0168565] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters. Materials and Methods 45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated. Results Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03). Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019) and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04) but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06) compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01). Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008) and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001) but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32) compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004). Conclusions BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that both factors could be further investigated as potential circulating biomarkers for the early detection of glaucoma.
Collapse
Affiliation(s)
| | | | | | | | - Stefano Bonini
- Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
| | - Luciano Quaranta
- Section of Ophthalmology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University of Brescia, Brescia, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
28
|
Salles FHM, Soares PSM, Wiener CD, Mondin TC, da Silva PM, Jansen K, de Mattos Souza LD, da Silva RA, Oses JP. Mental disorders, functional impairment, and nerve growth factor. Psychol Res Behav Manag 2016; 10:9-15. [PMID: 28053561 PMCID: PMC5189700 DOI: 10.2147/prbm.s104814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nerve growth factor (NGF) is an important member of the neurotrophin family and its alteration has been associated with psychiatric disorders. Functionality consists of the activities that an individual can perform, as well as their social participation, which is an important factor in analyzing the carrier living conditions of subjects with psychiatric suffering. Several studies have evaluated functionality in bipolar disorder; however, no studies have evaluated the functionality in other mental disorders. There are also few studies investigating the association between functionality and the biological bases of mental disorders. This study aimed to evaluate the serum NGF levels in psychiatric patients and to verify a possible association between the serum neurotrophic levels and functionality. This was a cross-sectional study with a convenient sample obtained from the Public Mental Health Service from the south of Brazil. The final sample was composed of 286 patients enrolled from July 2013 to October 2014. Data was collected using a sociodemographic questionnaire, and the diagnosis was confirmed using the Mini International Neuropsychiatric Interview (M.I.N.I) and a Functioning Assessment Short Test. The serum NGF levels were determined using the enzyme-linked immunosorbent assay method. Statistical analyses were performed using IBM SPSS Statistic 21.0 software. NGF serum levels were increased significantly in patients with obsessive-compulsive disorder compared with patients with no obsessive-compulsive disorder (P=0.015). An increase in serum NGF levels in generalized anxiety disorder patients was observed compared with patients with no generalized anxiety disorder (P=0.047). NGF was negatively associated with autonomy (P=0.024, r=-0.136), work (P=0.040, r=-0.124), and cognition (P=0.024, r=-0.137), thereby showing that changes in serum levels of NGF are associated with functionality in mental disorders.
Collapse
Affiliation(s)
- Fanny Helena Martins Salles
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Pedro San Martin Soares
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carolina David Wiener
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaise Campos Mondin
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Paula Moraes da Silva
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Translational Psychiatry Program; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA
| | - Luciano Dias de Mattos Souza
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jean Pierre Oses
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Translational Psychiatry Program; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA
| |
Collapse
|
29
|
Wu CK, Tseng PT, Chen YW, Tu KY, Lin PY. Significantly higher peripheral fibroblast growth factor-2 levels in patients with major depressive disorder: A preliminary meta-analysis under MOOSE guidelines. Medicine (Baltimore) 2016; 95:e4563. [PMID: 27537581 PMCID: PMC5370807 DOI: 10.1097/md.0000000000004563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In vivo and in vitro studies demonstrate the important roles of fibroblast growth factor (FGF) and FGF receptors (FGFRs) in neural survival, neurogenesis, oxidative stress, and emotional behavior. However, evidence on the role of FGF and FGFR in the pathophysiology of major depressive disorder (MDD) remains limited and inconclusive. OBJECTIVES This preliminary meta-analysis aimed to examine changes in peripheral or central FGF and FGFR levels in patients with MDD. DATA SOURCES Electronic research through platform of PubMed and ClinicalTrials.gov. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We used the inclusion criteria: articles discussing the comparisons of FGF levels, either in peripheral or central environment, in patients with MDD and in healthy controls (HC); articles on clinical trials in humans; and case-control trials. Case reports or series and nonclinical trials were excluded. STUDY APPRAISAL AND SYNTHESIS METHODS Using a thorough literature search, the FGF/FGFR levels in patients with MDD and HC were compared. Four studies on peripheral FGF-2 and 3 on central FGF-2 and FGFR1 levels were included. RESULTS The findings reveal significantly higher peripheral FGF-2 protein and central FGFR1 RNA levels in patients with MDD than in HC (P = 0.005 and 0.006, separately), but no significant association with clinical variables. There was also no significant difference in the central FGF-2 levels in patients with MDD and in HC (P = 0.180). LIMITATION The study has limitations of a small number of included studies, lack of meta-analysis of the FGF changes along with treatment, and lack of direct evidence on correlation of peripheral FGF-2 with central FGF-2 levels. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS This preliminary meta-analysis points out a new direction for future studies investigating the relationship among MDD, oxidative stress, and the FGF family.
Collapse
Affiliation(s)
- Ching-Kuan Wu
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | - Ping-Tao Tseng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | | | - Kun-Yu Tu
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Correspondence: Pao-Yen Lin, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, 123, Dapi Road, Niaosong, Kaohsiung 833, Taiwan (e-mail: )
| |
Collapse
|
30
|
Kálmán S, Garbett KA, Janka Z, Mirnics K. Human dermal fibroblasts in psychiatry research. Neuroscience 2016; 320:105-21. [PMID: 26855193 DOI: 10.1016/j.neuroscience.2016.01.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In order to decipher the disease etiology, progression and treatment of multifactorial human brain diseases we utilize a host of different experimental models. Recently, patient-derived human dermal fibroblast (HDF) cultures have re-emerged as promising in vitro functional system for examining various cellular, molecular, metabolic and (patho)physiological states and traits of psychiatric disorders. HDF studies serve as a powerful complement to postmortem and animal studies, and often appear to be informative about the altered homeostasis in neural tissue. Studies of HDFs from patients with schizophrenia (SZ), depression, bipolar disorder (BD), autism, attention deficit and hyperactivity disorder and other psychiatric disorders have significantly advanced our understanding of these devastating diseases. These reports unequivocally prove that signal transduction, redox homeostasis, circadian rhythms and gene*environment (G*E) interactions are all amenable for assessment by the HDF model. Furthermore, the reported findings suggest that this underutilized patient biomaterial, combined with modern molecular biology techniques, may have both diagnostic and prognostic value, including prediction of response to therapeutic agents.
Collapse
Affiliation(s)
- S Kálmán
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K A Garbett
- Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| | - Z Janka
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K Mirnics
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary; Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Tu KY, Wu MK, Chen YW, Lin PY, Wang HY, Wu CK, Tseng PT. Significantly Higher Peripheral Insulin-Like Growth Factor-1 Levels in Patients With Major Depressive Disorder or Bipolar Disorder Than in Healthy Controls: A Meta-Analysis and Review Under Guideline of PRISMA. Medicine (Baltimore) 2016; 95:e2411. [PMID: 26825882 PMCID: PMC5291552 DOI: 10.1097/md.0000000000002411] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An increasing amount of research has focused on insulin-like growth factor-1 (IGF-1) because of multiple neurotrophic effects, including neurogenesis, remyelination, and synaptogenesis. In addition, IGF-1 can mediate an antidepressant effect in patients with major affective disorder, and its levels in the cerebrospinal fluid have been found to vary with antidepressant treatment. Furthermore, it has been proven to crossover the blood-brain barrier, with a reciprocal feedback loop being the central effect. However, recent studies have reported inconclusive findings about the role of IGF-1 in major affective disorder. The aim of the current study was to conduct a thorough meta-analysis of changes in peripheral IGF-1 levels in patients with major depressive disorder (MDD) or bipolar disorder (BD). We conducted a thorough literature search and compared peripheral IGF-1 levels in patients with MDD or BD and in healthy controls, and investigated clinical variables through meta-regression. Electronic research was conducted through platform of PubMed. We used inclusion criteria as clinical trials discussing comparisons of peripheral IGF-1 protein levels in patients with MDD or BD and those in healthy controls. We analyzed the cases from 9 studies with the random-effect model. The main finding was that peripheral IGF-1 levels in the patients were significantly higher than in the healthy controls (P < 0.001), with a significant inverse association with duration of illness (P = 0.03). In meta-analysis comparing peripheral IGF-1 levels in patients with BD or MDD before and after treatment, there was no significant change in peripheral IGF-1 levels after treatment (P = 0.092). The small numbers of studies and lack of correlation data with growth hormone in current studies are the main limitations of this meta-analysis. Our results indicated that peripheral IGF-1 levels may not be an indicator of disease severity, but may be a disease trait marker or an indicator of cognition. However, further investigations on the correlation between cognitive function and peripheral IGF-1 levels are needed to explore the role of IGF-1 in the pathophysiology of MDD and BD.
Collapse
Affiliation(s)
- Kun-Yu Tu
- From the Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan (K-YT, H-YW, C-KW, P-TT); Department of Neurology, E-Da Hospital, Kaohsiung, Taiwan (Y-WC); Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (M-KW, P-YL); and Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (P-YL)
| | | | | | | | | | | | | |
Collapse
|