1
|
Ng ASC, Tai ES, Chee MWL. Effects of night-to-night variations in objectively measured sleep on blood glucose in healthy university students. Sleep 2025; 48:zsae224. [PMID: 39325824 PMCID: PMC11807882 DOI: 10.1093/sleep/zsae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
STUDY OBJECTIVES We examined associations between daily variations in objectively measured sleep and blood glucose in a sample of non-diabetic young adults to complement laboratory studies on how sleep affects blood glucose levels. METHODS One hundred and nineteen university students underwent sleep measurement using an Oura Ring 2 and continuous glucose monitoring (CGM) for up to 14 days. In 69 individuals who consumed a standardized diet across the study, multilevel models examined associations between sleep duration, timing, efficiency, and daily CGM profiles. Separately, in 58 individuals, multilevel models were used to evaluate postprandial glycaemic responses to a test meal challenge on 7 days. Participants also underwent oral glucose tolerance testing once after a night of ad libitum sleep, and again following a night of sleep restriction by 1-2 hours relative to that individual's habitual sleep duration. Between-condition glucose and insulin excursions, HOMA-IR and Matsuda index were compared. RESULTS Nocturnal sleep did not significantly influence following-day CGM profiles, postprandial glucose, or nocturnal mean glucose levels (all ps > .05). Longer sleep durations were associated with lower same-night glucose variability (all ps < .001). However, the range of variation in sugar levels was small and unlikely to be of functional significance. Considering naps in the analysis did not alter the findings. Sleep restriction by an average of 1.73 hours (SD = 0.97) did not significantly impact excursions in glucose or insulin or insulin sensitivity the following morning (all ps > .05). CONCLUSIONS Glucose handling in young, healthy adults may be more resilient to real-life fluctuations in sleep patterns than previously thought. CLINICAL TRIAL INFORMATION Monitoring Sleep and Glucose Among University Students https://clinicaltrials.gov/study/NCT04880629, ID: NCT04880629.
Collapse
Affiliation(s)
- Alyssa S C Ng
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W L Chee
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Martinot JB, Le-Dong NN, Malhotra A, Pépin JL. Enhancing artificial intelligence-driven sleep apnea diagnosis: The critical importance of input signal proficiency with a focus on mandibular jaw movements. J Prosthodont 2024. [PMID: 39676388 DOI: 10.1111/jopr.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
PURPOSE This review aims to highlight the pivotal role of the mandibular jaw movement (MJM) signal in advancing artificial intelligence (AI)-powered technologies for diagnosing obstructive sleep apnea (OSA). METHODS A scoping review was conducted to evaluate various aspects of the MJM signal and their contribution to improving signal proficiency for users. RESULTS The comprehensive literature analysis is structured into four key sections, each addressing factors essential to signal proficiency. These factors include (1) the comprehensiveness of research, development, and application of MJM-based technology; (2) the physiological significance of the MJM signal for various clinical tasks; (3) the technical transparency; and (4) the interpretability of the MJM signal. Comparisons with the photoplethysmography (PPG) signal are made where applicable. CONCLUSIONS Proficiency in biosignal interpretation is essential for the success of AI-driven diagnostic tools and for maximizing the clinical benefits through enhanced physiological insight. Through rigorous research ensuring an enhanced understanding of the signal and its extensive validation, the MJM signal sets a new benchmark for the development of AI-driven diagnostic solutions in OSA diagnosis.
Collapse
Affiliation(s)
- Jean-Benoit Martinot
- Sleep Laboratory, CHU Université catholique de Louvain (UCL), Namur Site Sainte-Elisabeth, Namur, Belgium
- Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, Belgium
| | | | - Atul Malhotra
- University of California San Diego, La Jolla, California, USA
| | - Jean-Louis Pépin
- HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France
- EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
3
|
Liang T, Yilmaz G, Soon CS. Deriving Accurate Nocturnal Heart Rate, rMSSD and Frequency HRV from the Oura Ring. SENSORS (BASEL, SWITZERLAND) 2024; 24:7475. [PMID: 39686012 DOI: 10.3390/s24237475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Cardiovascular diseases are a major cause of mortality worldwide. Long-term monitoring of nighttime heart rate (HR) and heart rate variability (HRV) may be useful in identifying latent cardiovascular risk. The Oura Ring has shown excellent correlation only with ECG-derived HR, but not HRV. We thus assessed if stringent data quality filters can improve the accuracy of time-domain and frequency-domain HRV measures. 92 younger (<45 years) and 22 older (≥45 years) participants from two in-lab sleep studies with concurrent overnight Oura and ECG data acquisition were analyzed. For each 5 min segment during time-in-bed, the validity proportion (percentage of interbeat intervals rated as valid) was calculated. We evaluated the accuracy of Oura-derived HR and HRV measures against ECG at different validity proportion thresholds: 80%, 50%, and 30%; and aggregated over different durations: 5 min, 30 min, and Night-level. Strong correlation and agreements were obtained for both age groups across all HR and HRV metrics and window sizes. More stringent validity proportion thresholds and averaging over longer time windows (i.e., 30 min and night) improved accuracy. Higher discrepancies were found for HRV measures, with more than half of older participants exceeding 10% Median Absolute Percentage Error. Accurate HRV measures can be obtained from Oura's PPG-derived signals with a stringent validity proportion threshold of around 80% for each 5 min segment and aggregating over time windows of at least 30 min.
Collapse
Affiliation(s)
- Tian Liang
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117549, Singapore
| | - Gizem Yilmaz
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117549, Singapore
| | - Chun-Siong Soon
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117549, Singapore
| |
Collapse
|
4
|
Viswanath VK, Hartogenesis W, Dilchert S, Pandya L, Hecht FM, Mason AE, Wang EJ, Smarr BL. Five million nights: temporal dynamics in human sleep phenotypes. NPJ Digit Med 2024; 7:150. [PMID: 38902390 PMCID: PMC11190239 DOI: 10.1038/s41746-024-01125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
Sleep monitoring has become widespread with the rise of affordable wearable devices. However, converting sleep data into actionable change remains challenging as diverse factors can cause combinations of sleep parameters to differ both between people and within people over time. Researchers have attempted to combine sleep parameters to improve detecting similarities between nights of sleep. The cluster of similar combinations of sleep parameters from a night of sleep defines that night's sleep phenotype. To date, quantitative models of sleep phenotype made from data collected from large populations have used cross-sectional data, which preclude longitudinal analyses that could better quantify differences within individuals over time. In analyses reported here, we used five million nights of wearable sleep data to test (a) whether an individual's sleep phenotype changes over time and (b) whether these changes elucidate new information about acute periods of illness (e.g., flu, fever, COVID-19). We found evidence for 13 sleep phenotypes associated with sleep quality and that individuals transition between these phenotypes over time. Patterns of transitions significantly differ (i) between individuals (with vs. without a chronic health condition; chi-square test; p-value < 1e-100) and (ii) within individuals over time (before vs. during an acute condition; Chi-Square test; p-value < 1e-100). Finally, we found that the patterns of transitions carried more information about chronic and acute health conditions than did phenotype membership alone (longitudinal analyses yielded 2-10× as much information as cross-sectional analyses). These results support the use of temporal dynamics in the future development of longitudinal sleep analyses.
Collapse
Affiliation(s)
- Varun K Viswanath
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California, San Diego, CA, USA.
| | - Wendy Hartogenesis
- Osher Center for Integrative Health, University of California, San Francisco, CA, USA
| | - Stephan Dilchert
- Zicklin School of Business, Baruch College, The City University of New York US, New York, NY, USA
| | - Leena Pandya
- Osher Center for Integrative Health, University of California, San Francisco, CA, USA
| | - Frederick M Hecht
- Osher Center for Integrative Health, University of California, San Francisco, CA, USA
| | - Ashley E Mason
- Osher Center for Integrative Health, University of California, San Francisco, CA, USA
| | - Edward J Wang
- Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
| | - Benjamin L Smarr
- Shu Chien-Gene Lay Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, CA, USA
| |
Collapse
|
5
|
de Zambotti M, Goldstein C, Cook J, Menghini L, Altini M, Cheng P, Robillard R. State of the science and recommendations for using wearable technology in sleep and circadian research. Sleep 2024; 47:zsad325. [PMID: 38149978 DOI: 10.1093/sleep/zsad325] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Wearable sleep-tracking technology is of growing use in the sleep and circadian fields, including for applications across other disciplines, inclusive of a variety of disease states. Patients increasingly present sleep data derived from their wearable devices to their providers and the ever-increasing availability of commercial devices and new-generation research/clinical tools has led to the wide adoption of wearables in research, which has become even more relevant given the discontinuation of the Philips Respironics Actiwatch. Standards for evaluating the performance of wearable sleep-tracking devices have been introduced and the available evidence suggests that consumer-grade devices exceed the performance of traditional actigraphy in assessing sleep as defined by polysomnogram. However, clear limitations exist, for example, the misclassification of wakefulness during the sleep period, problems with sleep tracking outside of the main sleep bout or nighttime period, artifacts, and unclear translation of performance to individuals with certain characteristics or comorbidities. This is of particular relevance when person-specific factors (like skin color or obesity) negatively impact sensor performance with the potential downstream impact of augmenting already existing healthcare disparities. However, wearable sleep-tracking technology holds great promise for our field, given features distinct from traditional actigraphy such as measurement of autonomic parameters, estimation of circadian features, and the potential to integrate other self-reported, objective, and passively recorded health indicators. Scientists face numerous decision points and barriers when incorporating traditional actigraphy, consumer-grade multi-sensor devices, or contemporary research/clinical-grade sleep trackers into their research. Considerations include wearable device capabilities and performance, target population and goals of the study, wearable device outputs and availability of raw and aggregate data, and data extraction, processing, and analysis. Given the difficulties in the implementation and utilization of wearable sleep-tracking technology in real-world research and clinical settings, the following State of the Science review requested by the Sleep Research Society aims to address the following questions. What data can wearable sleep-tracking devices provide? How accurate are these data? What should be taken into account when incorporating wearable sleep-tracking devices into research? These outstanding questions and surrounding considerations motivated this work, outlining practical recommendations for using wearable technology in sleep and circadian research.
Collapse
Affiliation(s)
- Massimiliano de Zambotti
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Lisa Health Inc., Oakland, CA, USA
| | - Cathy Goldstein
- Sleep Disorders Center, Department of Neurology, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Jesse Cook
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Luca Menghini
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Marco Altini
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Cheng
- Sleep Disorders and Research Center, Henry Ford Health, Detroit, MI, USA
| | - Rebecca Robillard
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Canadian Sleep Research Consortium, Canada
| |
Collapse
|
6
|
Xu J, Smaling HJA, Schoones JW, Achterberg WP, van der Steen JT. Noninvasive monitoring technologies to identify discomfort and distressing symptoms in persons with limited communication at the end of life: a scoping review. BMC Palliat Care 2024; 23:78. [PMID: 38515049 PMCID: PMC10956214 DOI: 10.1186/s12904-024-01371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Discomfort and distressing symptoms are common at the end of life, while people in this stage are often no longer able to express themselves. Technologies may aid clinicians in detecting and treating these symptoms to improve end-of-life care. This review provides an overview of noninvasive monitoring technologies that may be applied to persons with limited communication at the end of life to identify discomfort. METHODS A systematic search was performed in nine databases, and experts were consulted. Manuscripts were included if they were written in English, Dutch, German, French, Japanese or Chinese, if the monitoring technology measured discomfort or distressing symptoms, was noninvasive, could be continuously administered for 4 hours and was potentially applicable for bed-ridden people. The screening was performed by two researchers independently. Information about the technology, its clinimetrics (validity, reliability, sensitivity, specificity, responsiveness), acceptability, and feasibility were extracted. RESULTS Of the 3,414 identified manuscripts, 229 met the eligibility criteria. A variety of monitoring technologies were identified, including actigraphy, brain activity monitoring, electrocardiography, electrodermal activity monitoring, surface electromyography, incontinence sensors, multimodal systems, and noncontact monitoring systems. The main indicators of discomfort monitored by these technologies were sleep, level of consciousness, risk of pressure ulcers, urinary incontinence, agitation, and pain. For the end-of-life phase, brain activity monitors could be helpful and acceptable to monitor the level of consciousness during palliative sedation. However, no manuscripts have reported on the clinimetrics, feasibility, and acceptability of the other technologies for the end-of-life phase. CONCLUSIONS Noninvasive monitoring technologies are available to measure common symptoms at the end of life. Future research should evaluate the quality of evidence provided by existing studies and investigate the feasibility, acceptability, and usefulness of these technologies in the end-of-life setting. Guidelines for studies on healthcare technologies should be better implemented and further developed.
Collapse
Affiliation(s)
- Jingyuan Xu
- Department of Public Health and Primary Care, Leiden University Medical Center, Hippocratespad 21, Gebouw 3, Postzone V0-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Hanneke J A Smaling
- Department of Public Health and Primary Care, Leiden University Medical Center, Hippocratespad 21, Gebouw 3, Postzone V0-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- University Network for the Care Sector Zuid-Holland, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilco P Achterberg
- Department of Public Health and Primary Care, Leiden University Medical Center, Hippocratespad 21, Gebouw 3, Postzone V0-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- University Network for the Care Sector Zuid-Holland, Leiden University Medical Center, Leiden, The Netherlands
| | - Jenny T van der Steen
- Department of Public Health and Primary Care, Leiden University Medical Center, Hippocratespad 21, Gebouw 3, Postzone V0-P, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Primary and Community Care, and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Birrer V, Elgendi M, Lambercy O, Menon C. Evaluating reliability in wearable devices for sleep staging. NPJ Digit Med 2024; 7:74. [PMID: 38499793 PMCID: PMC10948771 DOI: 10.1038/s41746-024-01016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 03/20/2024] Open
Abstract
Sleep is crucial for physical and mental health, but traditional sleep quality assessment methods have limitations. This scoping review analyzes 35 articles from the past decade, evaluating 62 wearable setups with varying sensors, algorithms, and features. Our analysis indicates a trend towards combining accelerometer and photoplethysmography (PPG) data for out-of-lab sleep staging. Devices using only accelerometer data are effective for sleep/wake detection but fall short in identifying multiple sleep stages, unlike those incorporating PPG signals. To enhance the reliability of sleep staging wearables, we propose five recommendations: (1) Algorithm validation with equity, diversity, and inclusion considerations, (2) Comparative performance analysis of commercial algorithms across multiple sleep stages, (3) Exploration of feature impacts on algorithm accuracy, (4) Consistent reporting of performance metrics for objective reliability assessment, and (5) Encouragement of open-source classifier and data availability. Implementing these recommendations can improve the accuracy and reliability of sleep staging algorithms in wearables, solidifying their value in research and clinical settings.
Collapse
Affiliation(s)
- Vera Birrer
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
9
|
Ong JL, Golkashani HA, Ghorbani S, Wong KF, Chee NIYN, Willoughby AR, Chee MWL. Selecting a sleep tracker from EEG-based, iteratively improved, low-cost multisensor, and actigraphy-only devices. Sleep Health 2024; 10:9-23. [PMID: 38087674 DOI: 10.1016/j.sleh.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 03/01/2024]
Abstract
AIMS Evaluate the performance of 6 wearable sleep trackers across 4 classes (EEG-based headband, research-grade actigraphy, iteratively improved consumer tracker, low-cost consumer tracker). FOCUS TECHNOLOGY Dreem 3 headband, Actigraph GT9X, Oura Ring Gen3, Fitbit Sense, Xiaomi Mi Band 7, Axtro Fit3. REFERENCE TECHNOLOGY In-lab polysomnography with 3-reader, consensus sleep scoring. SAMPLE Sixty participants (26 males) across 3 age groups (18-30, 31-50, and 51-70years). DESIGN Overnight in a sleep laboratory from habitual sleep time to wake time. CORE ANALYTICS Discrepancy and epoch-by-epoch analyses for sleep/wake (2-stage) and sleep-stage (4-stage; wake/light/deep/rapid eye movement) classification (devices vs. polysomnography). CORE OUTCOMES EEG-based Dreem performed the best (2-stage kappa=0.76, 4-stage kappa=0.76-0.86) with the lowest total sleep time, sleep efficiency, sleep onset latency, and wake after sleep onset discrepancies vs. polysomnography. This was followed by the iteratively improved consumer trackers: Oura (2-stage kappa=0.64, 4-stage kappa=0.55-0.70) and Fitbit (2-stage kappa=0.58, 4-stage kappa=0.45-0.60) which had comparable total sleep time and sleep efficiency discrepancies that outperformed accelerometry-only Actigraph (2-stage kappa=0.47). The low-cost consumer trackers had poorest overall performance (2-stage kappa<0.31, 4-stage kappa<0.33). IMPORTANT ADDITIONAL OUTCOMES Proportional biases were driven by nights with poorer sleep (longer sleep onset latencies and/or wake after sleep onset). CORE CONCLUSION EEG-based Dreem is recommended when evaluating poor quality sleep or when highest accuracy sleep-staging is required. Iteratively improved non-EEG sleep trackers (Oura, Fitbit) balance classification accuracy with well-tolerated, and economic deployment at-scale, and are recommended for studies involving mostly healthy sleepers. The low-cost trackers, can log time in bed but are not recommended for research use.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Hosein Aghayan Golkashani
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shohreh Ghorbani
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kian F Wong
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas I Y N Chee
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian R Willoughby
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Willoughby AR, Alikhani I, Karsikas M, Chua XY, Chee MWL. Country differences in nocturnal sleep variability: Observations from a large-scale, long-term sleep wearable study. Sleep Med 2023; 110:155-165. [PMID: 37595432 DOI: 10.1016/j.sleep.2023.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
STUDY OBJECTIVES Country or regional differences in sleep duration are well-known, but few large-scale studies have specifically evaluated sleep variability, either across the work week, or in terms of differences in weekday and weekend sleep. METHODS Sleep measures, obtained over 50 million night's sleep from ∼220,000 wearable device users in 35 countries, were analysed. Each person contributed an average of ∼242 nights of data. Multiple regression was used to assess the impact country of residence had on sleep duration, timing, efficiency, weekday sleep variability, weekend sleep extension and social jetlag. RESULTS Nocturnal sleep was shorter and had a later onset in Asia than other regions. Despite this, sleep efficiency was lower and weekday sleep variability was higher. Weekend sleep extension was longer in Europe and the USA than in Asia, and was only partially related to weekday sleep duration. There were also cross-country differences in social jetlag although the regional differences were less distinct than for weekend sleep extension. CONCLUSIONS In addition to regional differences in sleep duration, cross-country differences in sleep variability and weekend sleep extension suggest that using the latter as an indicator of sleep debt may need to be reconsidered. In countries exhibiting both short sleep and high weekday sleep variability, a culturally different means of coping with inadequate sleep is likely. Country or region differences in culture, particularly those related to work, merit closer examination as factors influencing the variability in normative sleep patterns around the world.
Collapse
Affiliation(s)
- Adrian R Willoughby
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Iman Alikhani
- Oura Health Oy, Oulu, Elektroniikkatie 10, 90590, Finland
| | - Mari Karsikas
- Oura Health Oy, Oulu, Elektroniikkatie 10, 90590, Finland
| | - Xin Yu Chua
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
11
|
Oz S, Dagay A, Katzav S, Wasserman D, Tauman R, Gerston A, Duncan I, Hanein Y, Mirelman A. Monitoring sleep stages with a soft electrode array: Comparison against vPSG and home-based detection of REM sleep without atonia. J Sleep Res 2023; 32:e13909. [PMID: 37132065 DOI: 10.1111/jsr.13909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
Sleep disorders are symptomatic hallmarks of a variety of medical conditions. Accurately identifying the specific stage in which these disorders occur is particularly important for the correct diagnosis of non-rapid eye movement and rapid eye movement parasomnias. In-lab polysomnography suffers from limited availability and does not reflect habitual sleep conditions, which is especially important in older adults and those with neurodegenerative diseases. We aimed to explore the feasibility and validity of a new wearable system for accurately measuring sleep at home. The system core technology is soft, printed dry electrode arrays and a miniature data acquisition unit with a cloud-based data storage for offline analysis. The positions of the electrodes allow manual scoring following the American Association of Sleep Medicine guidelines. Fifty participants (21 healthy subjects, mean age 56.6 ± 8.4 years; and 29 patients with Parkinson's disease, 65.4 ± 7.6 years) underwent a polysomnography evaluation with parallel recording with the wearable system. Total agreement between the two systems reached Cohen's kappa (k) of 0.688 with agreement in each stage of: wake k = 0.701; N1 = 0.224; N2 = 0.584; N3 = 0.410; and rapid eye movement = 0.723. Moreover, the system reliably detected rapid eye movement sleep without atonia with a sensitivity of 85.7%. Additionally, a comparison between sleep as measured in the sleep lab with data collected from a night at home showed significantly lower wake after sleep onset at home. The results demonstrate that the system is valid, accurate and allows for the exploration of sleep at home. This new system offers an opportunity to help detect sleep disorders on a larger scale than possible today, fostering better care.
Collapse
Affiliation(s)
- Shani Oz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrew Dagay
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Katzav
- The Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Danielle Wasserman
- The Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Riva Tauman
- The Institute for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Iain Duncan
- Sleep Disorders Centre, St Thomas' and Guy's Hospital, GSTT NHS, London, UK
| | - Yael Hanein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- X-trodes, Herzelia, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
The WE SENSE study protocol: A controlled, longitudinal clinical trial on the use of wearable sensors for early detection and tracking of viral respiratory tract infections. Contemp Clin Trials 2023; 128:107103. [PMID: 37147083 PMCID: PMC10049920 DOI: 10.1016/j.cct.2023.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/06/2022] [Accepted: 01/20/2023] [Indexed: 03/31/2023]
Abstract
Background Viral respiratory tract infections (VRTI) are extremely common. Considering the profound social and economic impact of COVID-19, it is imperative to identify novel mechanisms for early detection and prevention of VRTIs, to prevent future pandemics. Wearable biosensor technology may facilitate this. Early asymptomatic detection of VRTIs could reduce stress on the healthcare system by reducing transmission and decreasing the overall number of cases. The aim of the current study is to define a sensitive set of physiological and immunological signature patterns of VRTI through machine learning (ML) to analyze physiological data collected continuously using wearable vital signs sensors. Methods A controlled, prospective longitudinal study with an induced low grade viral challenge, coupled with 12 days of continuous wearable biosensors monitoring surrounding viral induction. We aim to recruit and simulate a low grade VRTI in 60 healthy adults aged 18–59 years via administration of live attenuated influenza vaccine (LAIV). Continuous monitoring with wearable biosensors will include 7 days pre (baseline) and 5 days post LAIV administration, during which vital signs and activity-monitoring biosensors (embedded in a shirt, wristwatch and ring) will continuously monitor physiological and activity parameters. Novel infection detection techniques will be developed based on inflammatory biomarker mapping, PCR testing, and app-based VRTI symptom tracking. Subtle patterns of change will be assessed via ML algorithms developed to analyze large datasets and generate a predictive algorithm. Conclusion This study presents an infrastructure to test wearables for the detection of asymptomatic VRTI using multimodal biosensors, based on immune host response signature. CliniclTrials.govregistration:NCT05290792
Collapse
|
13
|
Associations between objectively measured sleep parameters and cognition in healthy older adults: A meta-analysis. Sleep Med Rev 2023; 67:101734. [PMID: 36577339 DOI: 10.1016/j.smrv.2022.101734] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Multiple studies have examined associations between sleep and cognition in older adults, but a majority of these depend on self-reports on sleep and utilize cognitive tests that assess overall cognitive function. The current meta-analysis involved 72 independent studies and sought to quantify associations between objectively measured sleep parameters and cognitive performance in healthy older adults. Both sleep macrostructure (e.g., sleep duration, continuity, and stages) and microstructure (e.g., slow wave activity and spindle activity) were evaluated. For macrostructure, lower restlessness at night was associated with better memory performance (r = 0.43, p = 0.02), while lower sleep onset latency was associated with better executive functioning (r = 0.28, p = 0.03). Greater relative amount of N2 and REM sleep, but not N3, positively correlated with cognitive performance. The association between microstructure and cognition in older adults was marginally significant. This relationship was moderated by age (z = 0.07, p < 0.01), education (z = 0.26, p = 0.03), and percentage of female participants (z = 0.01, p < 0.01). The current meta-analysis emphasizes the importance of considering objective sleep measures to understand the relationship between sleep and cognition in healthy older adults. These results also form a base from which researchers using wearable sleep technology and measuring behavior through computerized testing tools can evaluate their findings.
Collapse
|
14
|
Seshadri DR, Harlow ER, Thom ML, Emery MS, Phelan DM, Hsu JJ, Düking P, De Mey K, Sheehan J, Geletka B, Flannery R, Calcei JG, Karns M, Salata MJ, Gabbett TJ, Voos JE. Wearable technology in the sports medicine clinic to guide the return-to-play and performance protocols of athletes following a COVID-19 diagnosis. Digit Health 2023; 9:20552076231177498. [PMID: 37434736 PMCID: PMC10331194 DOI: 10.1177/20552076231177498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/06/2023] [Indexed: 07/13/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has enabled the adoption of digital health platforms for self-monitoring and diagnosis. Notably, the pandemic has had profound effects on athletes and their ability to train and compete. Sporting organizations worldwide have reported a significant increase in injuries manifesting from changes in training regimens and match schedules resulting from extended quarantines. While current literature focuses on the use of wearable technology to monitor athlete workloads to guide training, there is a lack of literature suggesting how such technology can mediate the return to sport processes of athletes infected with COVID-19. This paper bridges this gap by providing recommendations to guide team physicians and athletic trainers on the utility of wearable technology for improving the well-being of athletes who may be asymptomatic, symptomatic, or tested negative but have had to quarantine due to a close exposure. We start by describing the physiologic changes that occur in athletes infected with COVID-19 with extended deconditioning from a musculoskeletal, psychological, cardiopulmonary, and thermoregulatory standpoint and review the evidence on how these athletes may safely return to play. We highlight opportunities for wearable technology to aid in the return-to-play process by offering a list of key parameters pertinent to the athlete affected by COVID-19. This paper provides the athletic community with a greater understanding of how wearable technology can be implemented in the rehabilitation process of these athletes and spurs opportunities for further innovations in wearables, digital health, and sports medicine to reduce injury burden in athletes of all ages.
Collapse
Affiliation(s)
- Dhruv R Seshadri
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
| | - Ethan R Harlow
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mitchell L Thom
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael S Emery
- Sports Cardiology Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dermot M Phelan
- Sanger Heart and Vascular Institute, Atrium Health, Charlotte, NC, USA
| | - Jeffrey J Hsu
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peter Düking
- Integrative and Experimental Exercise Science, Department of Sport Science, University of Würzburg, Würzburg, Germany
| | | | | | - Benjamin Geletka
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- University Hospitals Rehabilitation Services and Sports Medicine, Cleveland, OH, USA
| | - Robert Flannery
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jacob G Calcei
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael Karns
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael J Salata
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, Australia
- School of Science, Psychology and Sport, Federation University, Ballarat, Australia
| | - James E Voos
- University Hospitals Sports Medicine Institute, Cleveland, OH, USA
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|