1
|
Wood JPM, Chidlow G, Wall GM, Casson RJ. N-acetylcysteine amide and di- N-acetylcysteine amide protect retinal cells in culture via an antioxidant action. Exp Eye Res 2024; 248:110074. [PMID: 39251120 DOI: 10.1016/j.exer.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.
Collapse
Affiliation(s)
- John P M Wood
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia.
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| | | | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia; South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Port Road, SA 5000, Australia
| |
Collapse
|
2
|
Semenova Y, Bjørklund G. Antioxidants and neurodegenerative eye disease. Crit Rev Food Sci Nutr 2024; 64:9672-9690. [PMID: 37312562 DOI: 10.1080/10408398.2023.2215865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative ocular disorders mostly develop with aging and present great complications in the quality of life. Glaucoma and age-related macular degeneration (ARMD) rank as the third and fourth leading causes of blindness and low vision. Oxidative stress is one factor in the pathogenesis of neurodegenerative eye disease. In addition, ocular ischemia and neuroinflammation play an important role. It can be hypothesized that the influence of antioxidants through diet or oral supplementation can counteract the harmful effects of reactive oxygen species accumulated secondary to oxidative stress, ischemia, and inflammation. A range of studies has been published over the past decades focusing on the possible adjuvant effect of antioxidants in ARMD, while there were fewer reports on the potential role of antioxidants in glaucoma. Although certain reports demonstrated positive results, others were discouraging. As there is a controversy between the studies favoring and disfavoring supplementation with different types of antioxidants, it is important to revise the existing evidence on the role of antioxidants in neurodegenerative ocular disorders with a special focus on glaucoma and ARMD.
Collapse
Affiliation(s)
- Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
3
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
5
|
Lumi X, Confalonieri F, Ravnik-Glavač M, Goričar K, Blagus T, Dolžan V, Petrovski G, Hawlina M, Glavač D. Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes (Basel) 2023; 14:genes14040804. [PMID: 37107562 PMCID: PMC10137369 DOI: 10.3390/genes14040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the association between certain genetic variations and the risk of developing proliferative vitreoretinopathy (PVR) after surgery. The study was conducted on 192 patients with primary rhegmatogenous retinal detachment (RRD) who underwent 3-port pars plana vitrectomy (PPV). The distribution of single nucleotide polymorphisms (SNPs) located in genes involved in inflammation and oxidative stress associated with PVR pathways were analyzed among patients with and without postoperative PVR grade C1 or higher. A total of 7 defined SNPs of 5 genes were selected for genotyping: rs4880 (SOD2); rs1001179 (CAT); rs1050450 (GPX1); rs1143623, rs16944, rs1071676 (IL1B); rs2910164 (MIR146A) using competitive allele-specific polymerase chain reaction. The association of SNPs with PVR risk was evaluated using logistic regression. Furthermore, the possible association of SNPs with postoperative clinical parameters was evaluated using non-parametric tests. The difference between two genotype frequencies between patients with or without PVR grade C1 or higher was found to be statistically significant: SOD2 rs4880 and IL1B rs1071676. Carriers of at least one polymorphic IL1B rs1071676 GG allele appeared to have better postoperative best-corrected visual acuity only in patients without PVR (p = 0.070). Our study suggests that certain genetic variations may play a role in the development of PVR after surgery. These findings may have important implications for identifying patients at higher risk for PVR and developing new treatments.
Collapse
Affiliation(s)
- Xhevat Lumi
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (X.L.); (M.H.)
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Filippo Confalonieri
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Ophthalmology, School of Medicine, University of Split, University Hospital Centre, 21 000 Split, Croatia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (X.L.); (M.H.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
7
|
Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells. Genes Genomics 2023; 45:271-284. [PMID: 36018494 DOI: 10.1007/s13258-022-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.
Collapse
|
8
|
Badia A, Duarri A, Salas A, Rosell J, Ramis J, Gusta MF, Casals E, Zapata MA, Puntes V, García-Arumí J. Repeated Topical Administration of 3 nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS NANO 2023; 17:910-926. [PMID: 36596252 DOI: 10.1021/acsnano.2c05447] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increased oxidative stress in the retina and retinal pigment epithelium is implicated in age-related macular degeneration (AMD). Antioxidant cerium oxide nanoparticles (CeO2NPs) have been used to treat degenerative retinal pathologies in animal models, although their delivery route is not ideal for chronic patient treatment. In this work, we prepared a formulation for ocular topical delivery that contains small (3 nm), nonaggregated biocompatible CeO2NPs. In vitro results indicate the biocompatible and protective character of the CeO2NPs, reducing oxidative stress in ARPE19 cells and inhibiting neovascularization related to pathological angiogenesis in both HUVEC and in in vitro models of neovascular growth. In the in vivo experiments, we observed the capacity of CeO2NPs to reach the retina after topical delivery and a subsequent reversion of the altered retinal transcriptome of the retinal degenerative mouse model DKOrd8 toward that of healthy control mice, together with signs of decreased inflammation and arrest of degeneration. Furthermore, CeO2NP eye drops' treatment reduced laser-induced choroidal neovascular lesions in mice by lowering VEGF and increasing PEDF levels. These results indicate that CeO2NP eye drops are a beneficial antioxidant and neuroprotective treatment for both dry and wet forms of AMD disease.
Collapse
Affiliation(s)
- Anna Badia
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Jordi Rosell
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Joana Ramis
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Muriel Freixanet Gusta
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Miguel A Zapata
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| | - Victor Puntes
- Pharmacokinetic Nanoparticles Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Instiut Català de Nanociència I Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, 08010,Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Josep García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, 08035, Spain
| |
Collapse
|
9
|
Hong SH, Park C, Hwangbo H, Bang E, Kim SO, Shim JH, Park SH, Lee H, Leem SH, Kim GY, Choi YH. Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Martínez-Gil N, Maneu V, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Sánchez-Castillo C, Campello L, Lax P, Pinilla I, Cuenca N. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Front Neuroanat 2022; 16:984052. [PMID: 36225228 PMCID: PMC9548552 DOI: 10.3389/fnana.2022.984052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, Spain
- Isabel Pinilla,
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- *Correspondence: Nicolás Cuenca,
| |
Collapse
|
11
|
Antioxidant and anti-apoptotic effects of tocotrienol-rich fraction against streptozotocin-induced diabetic retinopathy in rats. Biomed Pharmacother 2022; 153:113533. [DOI: 10.1016/j.biopha.2022.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
12
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X. Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 2022; 203:115168. [PMID: 35835206 DOI: 10.1016/j.bcp.2022.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Pathological deterioration of mitochondrial function is increasingly linked with multiple degenerative illnesses as a mediator of a wide range of neurologic and age-related chronic diseases, including those of genetic origin. Several of these diseases are rare, typically defined in the United States as an illness affecting fewer than 200,000 people in the U.S. population, or about one in 1600 individuals. Vision impairment due to mitochondrial dysfunction in the eye is a prominent feature evident in numerous primary mitochondrial diseases and is common to the pathophysiology of many of the familiar ophthalmic disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma and retinopathy of prematurity - a collection of syndromes, diseases and disorders with significant unmet medical needs. Focusing on metabolic mitochondrial pathway mechanisms, including the possible roles of cuproptosis and ferroptosis in retinal mitochondrial dysfunction, we shed light on the potential of α-lipoyl-L-carnitine in treating eye diseases. α-Lipoyl-L-carnitine is a bioavailable mitochondria-targeting lipoic acid prodrug that has shown potential in protecting against retinal degeneration and photoreceptor cell loss in ophthalmic indications.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
13
|
Oxidative Stress as a Main Contributor of Retinal Degenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11061190. [PMID: 35740087 PMCID: PMC9229683 DOI: 10.3390/antiox11061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
|
14
|
Park C, Noh JS, Jung Y, Leem SH, Hyun JW, Chang YC, Kwon TK, Kim GY, Lee H, Choi YH. Fisetin Attenuated Oxidative Stress-Induced Cellular Damage in ARPE-19 Human Retinal Pigment Epithelial Cells Through Nrf2-Mediated Activation of Heme Oxygenase-1. Front Pharmacol 2022; 13:927898. [PMID: 35784747 PMCID: PMC9243462 DOI: 10.3389/fphar.2022.927898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Fisetin is a kind of bioactive flavonol, widely present in various fruits such as strawberries and apples, and is known to act as a potent free radical scavenger. However, the mechanism of action related to the antioxidant activity of this compound in human retinal pigment epithelial (RPE) cells is not precisely known. In this study, we aimed to investigate whether fisetin could attenuate oxidative stress-induced cytotoxicity on human RPE ARPE-19 cells. To mimic oxidative stress, ARPE-19 cells were treated with hydrogen peroxide (H2O2), and fisetin significantly inhibited H2O2-induced loss of cell viability and increase of intracellular reactive oxygen species (ROS) production. Fisetin also markedly attenuated DNA damage and apoptosis in H2O2-treated ARPE-19 cells. Moreover, mitochondrial dysfunction in H2O2-treated cells was alleviated in the presence of fisetin as indicated by preservation of mitochondrial membrane potential, increase of Bcl-2/Bax expression ratio, and suppression of cytochrome c release into the cytoplasm. In addition, fisetin enhanced phosphorylation and nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2), which was associated with increased expression and activity of heme oxygenase-1 (HO-1). However, the HO-1 inhibitor, zinc protoporphyrin, significantly reversed the protective effect of fisetin against H2O2-mediated ARPE-19 cell injury. Therefore, our results suggest that Nrf2-mediated activation of antioxidant enzyme HO-1 may play an important role in the ROS scavenging activity of fisetin in RPE cells, contributing to the amelioration of oxidative stress-induced ocular disorders.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan, South Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, South Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, South Korea
- Department of Health Sciences, Dong-A University, Busan, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| | - Yung Hyun Choi
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan, South Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, South Korea
- *Correspondence: Hyesook Lee, ; Yung Hyun Choi,
| |
Collapse
|
15
|
Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: Pathophysiology and therapeutic interventions. Pharmacol Res 2022; 182:106292. [PMID: 35691540 DOI: 10.1016/j.phrs.2022.106292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes mellitus (DM). It is a worldwide growing epidemic disease considered to be the leading cause of vision-loss and blindness in people with DM. Redox reactions occurring at the extra- and intracellular levels are essential for the maintenance of cellular homeostasis. Dysregulation of redox homeostasis are implicated in the onset and development of DR. Thioredoxin1 (TRX1) and Thioredoxin2 (TRX2) are cytoplasmic and mitochondrially localized antioxidant proteins ubiquitously expressed in various cells and control cellular reactive oxygen species (ROS) by reducing the disulfides into thiol groups. Thioredoxin-interacting protein (TXNIP) binds to TRX system and inhibits the active reduced form of TRX through disulfide exchange reaction. Recent studies indicate the association of TRX/TXNIP with redox signal transduction pathways including activation of Nod-like receptor pyrin domain containing protein-3 (NLRP3) inflammasome, apoptosis, autophagy/mitophagy, epigenetic modifications in a redox-dependent manner. Thus, it is important to gain a more in-depth understanding about the cellular and molecular mechanisms that links redoxisome and ER/Mitochondrial dysfunction to drive the progression of DR. The purpose of this review is to provide a mechanistic understanding of the complex molecular mechanisms and pathophysiological roles associated with redoxisome, the TRX/TXNIP redox signaling complex under oxidative stress in the development of DR. Also, the molecular targets of FDA approved drugs and clinical trials in addition to effective antioxidant strategies for the treatment of diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
16
|
Vincent M, Simon L, Brabet P, Legrand P, Dorandeu C, Him JLK, Durand T, Crauste C, Begu S. Formulation and Evaluation of SNEDDS Loaded with Original Lipophenol for the Oral Route to Prevent Dry AMD and Stragardt’s Disease. Pharmaceutics 2022; 14:pharmaceutics14051029. [PMID: 35631617 PMCID: PMC9147958 DOI: 10.3390/pharmaceutics14051029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Dry age-related macular degeneration (Dry AMD) and Stargardt’s disease (STGD1) are common eye diseases, characterized by oxidative and carbonyl stress (COS)-inducing photoreceptor degeneration and vision loss. Previous studies have demonstrated the protective effect of photoreceptors after the intravenous administration of a new lipophenol drug, phloroglucinol-isopropyl-DHA (IP-DHA). In this study, we developed an oral formulation of IP-DHA (BCS Class IV) relying on a self-nanoemulsifying drug delivery system (SNEDDS). SNEDDS, composed of Phosal® 53 MCT, Labrasol®, and Transcutol HP® at a ratio of 25/60/15 (w/w/w), led to a homogeneous nanoemulsion (NE) with a mean size of 53.5 ± 4.5 nm. The loading of IP-DHA in SNEDDS (SNEDDS-IP-DHA) was successful, with a percentage of IP-DHA of 99.7% in nanoemulsions. The in vivo study of the therapeutic potency of SNEDDS-IP-DHA after oral administration on mice demonstrated photoreceptor protection after the induction of retinal degeneration with acute light stress (73–80%) or chronic light stress (52–69%). Thus, SNEDDS formulation proved to increase the solubility of IP-DHA, improving its stability in intestinal media and allowing its passage through the intestinal barrier after oral force-fed administration, while maintaining its biological activity. Therefore, SNEDDS-IP-DHA is a promising future preventive treatment for dry AMD and STGD1.
Collapse
Affiliation(s)
- Maxime Vincent
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Laurianne Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, 34000 Montpellier, France
- Correspondence: (P.B.); (C.C.); (S.B.)
| | - Philippe Legrand
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Christophe Dorandeu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
| | - Josephine Lai Kee Him
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, 34000 Montpellier, France;
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France;
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France;
- Correspondence: (P.B.); (C.C.); (S.B.)
| | - Sylvie Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (M.V.); (L.S.); (P.L.); (C.D.)
- Correspondence: (P.B.); (C.C.); (S.B.)
| |
Collapse
|
17
|
Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021; 9:biomedicines9091177. [PMID: 34572363 PMCID: PMC8472009 DOI: 10.3390/biomedicines9091177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Light-induced retinal damage (LD) is characterized by the accumulation of reactive oxygen species leading to oxidative stress and photoreceptor cell death. The use of natural antioxidants has emerged as promising approach for the prevention of LD. Among them, lutein and cyanidin-3-glucoside (C3G) have been shown to be particularly effective due to their antioxidant and anti-inflammatory activity. However, less is known about the possible efficacy of combining them in a multicomponent mixture. In a rat model of LD, Western blot analysis, immunohistochemistry and electroretinography were used to demonstrate that lutein and C3G in combination or in a multicomponent mixture can prevent oxidative stress, inflammation, gliotic and apoptotic responses thus protecting photoreceptor cells from death with higher efficacy than each component alone. Combined efficacy on dysfunctional electroretinogram was also demonstrated by ameliorated rod and cone photoreceptor responses. These findings suggest the rationale to formulate multicomponent blends which may optimize the partnering compounds bioactivity and bioavailability.
Collapse
|
18
|
Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in Drosophila melanogaster Fed with High-Sugar Diet. Antioxidants (Basel) 2021; 10:antiox10081197. [PMID: 34439445 PMCID: PMC8388935 DOI: 10.3390/antiox10081197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.
Collapse
|