1
|
Hao Y, Li Y, Zang W, Sun Y, Li X, Li L, He Z, Sun B. Self-assembled doxorubicin prodrug riding on the albumin express train enable tumor targeting and bio-activation. J Colloid Interface Sci 2025; 684:97-108. [PMID: 39787811 DOI: 10.1016/j.jcis.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Doxorubicin (DOX) is a vital anthracycline chemotherapeutic drug, yet presenting significant challenges due to its severe cardiotoxicity. While Doxil enhances the pharmacokinetics and reduces the cardiotoxicity of DOX solution (DOX sol), it shows limitations of low drug loading capacity and inadequate cellular uptake. To overcome these issues, this study developed a novel disulfide bond-linked DOX-maleimide prodrug (DSSM). DSSM could self-assemble into nanoparticles (NPs) with a high drug loading capacity (58.89 %, w/w). DSSM could rapidly bind to endogenous albumin through the maleimide group. Compared to DOX sol, DSSM had increased area under the curve (AUC) by approximately 60-fold, and similarly, quadrupled tumor accumulation after 4 h of administration, achieving efficient tumor targeting. With only 5 % DSPE-mPEG2K, the cellular uptake of DSSM NPs was better than Doxil. Furthermore, the high reduction sensitivity of the disulfide bond enabled bio-activation of DSSM at the tumor site, while maintaining stability in normal cells. Compared with DOX sol and Doxil, DSSM NPs significantly improved safety and demonstrated better anti-tumor effect at tolerated doses. Our findings present a promising strategy for achieving effective tumor targeting and bio-activation, addressing key limitations of current DOX nanoformulations.
Collapse
Affiliation(s)
- Yanzhong Hao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wenfeng Zang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Dijkstra M, Schueffl H, Adamova B, Baumfried O, Kastner A, Berger W, Keppler BK, Heffeter P, Kowol CR. Exploring the Structure-Activity Relationships of Albumin-Targeted Picoplatin-Based Platinum(IV) Prodrugs. Inorg Chem 2025; 64:2554-2566. [PMID: 39878587 DOI: 10.1021/acs.inorgchem.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval. Interestingly, the anticancer potential of prodrugs based on picoplatin is widely underexplored, and even less so the respective tumor-targeting approaches. We synthesized two new "hybrid" picoplatin(II) derivatives with an oxalate or cyclobutane dicarboxylate leaving group and their corresponding platinum(IV) prodrugs with an albumin-targeting maleimide moiety or a succinimide as reference. Picoplatin(II) and its derivatives indeed reacted much slower with GSH compared to the respective analogs cisplatin, carboplatin, or oxaliplatin. While PicoCarbo(IV) and PicoOxali(IV) were reduced slowly in the presence of ascorbic acid, picoplatin(IV) was extremely unstable. All three prodrugs were widely inactive in the MTT assays. The platinum(IV)-maleimide complexes rapidly bound to albumin with stable conjugates for >25 h. Albumin-binding resulted in elevated platinum plasma levels, prolonged blood circulation, and enhanced tumor accumulation of the prodrugs in mice bearing CT26 tumors. However, only maleimide-functionalized PicoCarbo(IV) and picoplatin(II) significantly inhibited tumor growth. One possible explanation is that for albumin-binding platinum(IV) prodrugs, the bulky 2-picoline moiety prevents sufficient activation/reduction to unlock their full anticancer potential.
Collapse
Affiliation(s)
- Martijn Dijkstra
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Barbora Adamova
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Oliver Baumfried
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Bernhard K Keppler
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| | - Christian R Kowol
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria
| |
Collapse
|
3
|
Ito C, Taguchi K, Yamada T, Hanaya K, Enoki Y, Sugai T, Komatsu T, Matsumoto K. Dual delivery of carbon monoxide and doxorubicin using haemoglobin-albumin cluster: proof of concept for well-tolerated cancer therapy. J Mater Chem B 2024; 12:5600-5608. [PMID: 38738920 DOI: 10.1039/d4tb00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A serious concern of doxorubicin (DOX) therapy is that it causes severe adverse effects, particularly cardiotoxicity. Carbon monoxide (CO) possesses powerful cytoprotective effects against drug-induced organ injury and is expected to ameliorate DOX-induced cardiotoxicity. In this study, a dual carrier of DOX and CO (CO-HemoAct-DOX) was fabricated based on a haemoglobin-albumin cluster (HemoAct), which is a protein cluster with a haemoglobin core structure wrapped by serum albumin. CO-HemoAct-DOX was synthesised by binding CO to a haemoglobin core and covalently conjugating (6-maleimidocaproyl)hydrazone derivative of DOX to an albumin shell. The average DOX/cluster ratio was about 2.6. In the in vitro cytotoxicity assay against cancer cells, the anti-tumour activity of CO-HemoAct-DOX was 10-fold lower than that of DOX in a 2D-cultured model, whereas CO-HemoAct-DOX suppressed the growth of tumour spheroids to the same extent as DOX in the 3D-cultured model. In colon-26 tumour-bearing mice, CO-HemoAct-DOX achieved DOX delivery to the tumour site and alleviated tumour growth more effectively than DOX. Furthermore, CO-HemoAct attenuated DOX-induced cardiomyocyte atrophy in H9c2 cells and elevated the levels of cardiac biomarkers in mice exposed to DOX. These results suggest that the dual delivery of CO and DOX using HemoAct is a promising strategy as an anti-tumour agent to realise well-tolerated cancer therapy with minimal cardiotoxicity.
Collapse
Affiliation(s)
- Chihiro Ito
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
4
|
Bargakshatriya R, Pramanik SK. Stimuli-Responsive Prodrug Chemistries for Cancer Therapy. Chembiochem 2023; 24:e202300155. [PMID: 37341379 DOI: 10.1002/cbic.202300155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules' bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
Collapse
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Péraudeau E, Renoux B, Emambux S, Poinot P, Châtre R, Thoreau F, Riss Yaw B, Tougeron D, Clarhaut J, Papot S. Combination of Targeted Therapies for Colorectal Cancer Treatment. Mol Pharm 2023; 20:4537-4545. [PMID: 37579031 DOI: 10.1021/acs.molpharmaceut.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (Bev), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (MMAE), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of FOLFOX and Bev currently used to treat patients with this pathology. The increased anticancer efficacy is due to either a synergistic or an additive effect between Bev and MMAE selectively released from the glucuronide prodrug in the tumor microenvironment. Since numerous drug delivery systems such as antibody-drug conjugates employ MMAE as a cytotoxic payload, this finding may be of great interest for improving their therapeutic index by combining them with Bev, particularly for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Elodie Péraudeau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Brigitte Renoux
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Sheik Emambux
- CHU de Poitiers, 86021 Poitiers, France
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France
| | - Pauline Poinot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Rémi Châtre
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Fabien Thoreau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Benjamin Riss Yaw
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - David Tougeron
- CHU de Poitiers, 86021 Poitiers, France
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, 86021 Poitiers, France
| | - Jonathan Clarhaut
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Papot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| |
Collapse
|
6
|
Dempke WCM, Zielinski R, Winkler C, Silberman S, Reuther S, Priebe W. Anthracycline-induced cardiotoxicity – are we about to clear this hurdle? Eur J Cancer 2023; 185:94-104. [PMID: 36966697 DOI: 10.1016/j.ejca.2023.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Anthracyclines have contributed significantly to remarkable improvements in overall survival and are regarded as the most effective cytostatic drug for cancer treatment in various malignancies. However, anthracyclines are a significant cause of acute and chronic cardiotoxicity in cancer patients, and long-term cardiotoxicity can lead to death in about one-third of patients. Several molecular pathways have been implicated in the development of anthracycline-induced cardiotoxicity, although the underlying mechanisms of some molecular pathways are not fully elucidated. It is now generally believed that anthracycline-induced reactive oxygen species (resulting from intracellular metabolism of anthracyclines) and drug-induced inhibition of topoisomerase II beta are the key mechanisms responsible for the cardiotoxicity. To prevent cardiotoxicity, several strategies are being followed: (i) angiotensin-converting enzyme inhibitors, sartans, beta-blockers, aldosterone antagonists, and statins; (ii) iron chelators; and (iii) by development of new anthracycline derivatives with little or no cardiotoxicity. This review will discuss clinically evaluated doxorubicin analogues that were developed as potentially non-cardiotoxic anticancer agents and include recent development of a novel liposomal anthracycline (L-Annamycin) for the treatment of soft-tissue sarcoma metastatic to the lung and acute myelogenous leukaemia.
Collapse
Affiliation(s)
- Wolfram C M Dempke
- University Medical School, LMU Munich, Munich, Germany; Moleculin Inc, Houston, TX, USA
| | - Rafal Zielinski
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA
| | - Christina Winkler
- Haemato-Oncology Saalfeld, Department of Cardio-Oncology, Saalfeld, Germany
| | | | | | - Waldemar Priebe
- The University of Texas, MD Anderson Cancer Center Houston, TX, USA.
| |
Collapse
|
7
|
Stansfeld A, Radia U, Goggin C, Mahalingam P, Benson C, Napolitano A, Jones RL, Rosen SD, Karavasilis V. Pharmacological strategies to reduce anthracycline-associated cardiotoxicity in cancer patients. Expert Opin Pharmacother 2022; 23:1641-1650. [DOI: 10.1080/14656566.2022.2124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Anna Stansfeld
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Utsav Radia
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Caitriona Goggin
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Preethika Mahalingam
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Charlotte Benson
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Andrea Napolitano
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Robin L Jones
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Stuart D Rosen
- Cardiology, London North West University Healthcare NHS Trust and Royal Brompton Hospitals, UK
| | | |
Collapse
|
8
|
Li ZT, Yu SB, Liu Y, Tian J, Zhang DW. Supramolecular Organic Frameworks: Exploring Water-Soluble, Regular Nanopores for Biomedical Applications. Acc Chem Res 2022; 55:2316-2325. [PMID: 35916446 DOI: 10.1021/acs.accounts.2c00335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In past decades, regular porous architectures have received a great amount of attention because of their versatile functions and applications derived from their efficient adsorption of various guests. However, most reported porous architectures exist only in the solid state. Therefore, their applications as biomaterials may face several challenges, such as phase separation, slow degradation, and long-term accumulation in the body. This Account summarizes our efforts with respect to the development and biomedical applications of water-soluble 3D diamondoid supramolecular organic frameworks (dSOFs), a family of supramolecular polymers that possess intrinsic regular nanoscale porosity.dSOFs have been constructed from tetratopic components and cucurbit[8]uril (CB[8]) through hydrophobically driven encapsulation by CB[8] for intermolecular dimers formed by peripheral aromatic subunits of the tetratopic components in water. All dSOFs exhibit porosity regularity or periodicity in aqueous solution, which is confirmed by solution-phase synchrotron SAXS and XRD experiments. Dynamic light scattering (DLS) reveals that their sizes range from 50 to 150 nm, depending on the concentrations of the components. As nonequilibrium supramolecular architectures, dSOFs can maintain their nanoscale sizes at micromolar concentrations for dozens of hours. Their diamondoid pores have aperture sizes ranging from 2.1 to 3.6 nm, whereas their water solubility and porosity regularity allow them to rapidly include discrete guests driven by ion-pair electrostatic attraction, hydrophobicity, or a combination of the two interactions. The guests may be small molecule or large macromolecular drugs, photodynamic agents (PDAs), or DNA.The rapid inclusion of bioactive guests into dSOFs has led to two important biofunctions. The first is to function as antidotes through including residual drugs. For heparins, the inclusion results in full neutralization of their anticoagulant activity. For clinically used porphyrin PDAs, the inclusion can alleviate their long-term posttreatment phototoxicity but does not reduce their photodynamic efficacy. The second is to function as in situ loading carriers for the intracellular delivery of antitumor drugs or DNA. Their nanoscale sizes bring out their ability to overcome the multidrug resistance of tumor cells, which leads to a remarkable enhancement of the bioactivity of the included drugs. By conjugating aldoxorubicin to tetrahedral components, albumin-mimicking prodrugs have also been constructed, which conspicuously improves the efficacy of aldoxorubicin toward multi-drug-resistant tumors through the delivery of the frameworks. As new supramolecular drugs and carriers, dSOFs are generally biocompatible. Thus, further efforts might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
9
|
Plumet C, Châtre R, Djago F, Péraudeau E, Blancart-Remaury Q, Clarhaut J, Geffroy C, Said Mohamed A, Opalinski I, Renoux B, Poinot P, Papot S. A β-Cyclodextrin-Albumin Conjugate for Enhancing Therapeutic Efficacy of Cytotoxic Drugs. Bioconjug Chem 2022; 33:1138-1144. [PMID: 35613473 DOI: 10.1021/acs.bioconjchem.2c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing the selectivity of anticancer drugs currently used in the clinic is of great interest in order to propose more efficient chemotherapies with fewer side effects for patients. In this context, we developed a β-cyclodextrin trimer that binds to circulating albumin to form the corresponding bioconjugate in the bloodstream. This latter can then entrap doxorubicin following its i.v. administration via the formation of a host-guest inclusion complex and deliver the drug in tumors. In this study, we demonstrate that the β-cyclodextrin trimer improves the therapeutic efficacy of doxorubicin for the treatment of a subcutaneous murine Lewis lung carcinoma (LLC) implanted in C57BL/6 mice. This outcome is associated with an increased deposition of doxorubicin in malignant tissues when used in combination with the β-cyclodextrin trimer compared to the administration of the drug alone.
Collapse
Affiliation(s)
- Chad Plumet
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Rémi Châtre
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Fabiola Djago
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Elodie Péraudeau
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Quentin Blancart-Remaury
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Jonathan Clarhaut
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France.,CHU de Poitiers, 2 rue de la Miléterie, CS 90577, 86021 Poitiers, France
| | - Claude Geffroy
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Achmet Said Mohamed
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Isabelle Opalinski
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Brigitte Renoux
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Pauline Poinot
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France
| | - Sébastien Papot
- University of Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Equipe Labellisée Ligue Contre le Cancer, 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, cedex 9, France.,Seekyo SA, 2 avenue Galilée, BP 30153, 86961 Futuroscope, France
| |
Collapse
|
10
|
Cheng Z, Huang Y, Shao P, Wang L, Zhu S, Yu J, Lu W. Hypoxia-Activated Albumin-Binding Exatecan Prodrug for Cancer Therapy. ACS OMEGA 2022; 7:1082-1089. [PMID: 35036771 PMCID: PMC8757358 DOI: 10.1021/acsomega.1c05671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
As an effective drug delivery strategy for traditional antitumor drugs, the stimulus-responsive albumin-based prodrugs are getting more and more attention. These prodrugs only release drugs in specific tumor microenvironments, which can prevent premature release of the drug in the circulation. Tumor hypoxia is a fundamental feature of the solid tumor microenvironment. As a hypoxia-activated linker, the 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole can be a trigger for albumin-based prodrugs. In this study, we report the synthesis and biological evaluation of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan. After intravenous administration, the maleimide on the side chain can rapidly bind to endogenous albumin, enabling the prodrugs to accumulate in tumors, where tumor-associated hypoxia microenvironments trigger the selective release of Exatecan. The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole as a cleavable linker has high plasma stability and does not cause Exatecan release from HSA-azo-Exatecan during circulation in vivo, avoiding systemic side effects caused by Exatecan.
Collapse
|
11
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|
12
|
Cheng Z, Huang Y, Shen Q, Zhao Y, Wang L, Yu J, Lu W. A camptothecin-based, albumin-binding prodrug enhances efficacy and safety in vivo. Eur J Med Chem 2021; 226:113851. [PMID: 34547508 DOI: 10.1016/j.ejmech.2021.113851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
The albumin-based drug delivery system is an effective drug delivery strategy for traditional chemotherapeutic drugs that can improve their antitumour efficacies and reduce systemic toxicities. The camptothecin derivative CPTS0001 has excellent antitumour activity in vitro, but it shows toxicity and side effects in vivo. In this study, we report the synthesis and biological evaluation of the β-glucuronidase-reactive albumin-binding prodrug Mal-glu-CPTS0001 based on quaternary ammonium. After intravenous administration, the compound covalently binds to plasma albumin through Michael addition, enabling it to accumulate in tumours, where tumour-associated β-glucuronidase triggers the selective release of CPTS0001. This prodrug significantly reduced the toxicity of the parent drug, and the maximum tolerated dose was increased by 2.5 times. At the same time, this prodrug enhanced the selectivity in vivo and improved the preferential accumulation of prodrug in tumours. Notably, this prodrug exhibited excellent in vivo antitumour effects in a murine breast cancer xenograft model without visible pathological toxicity.
Collapse
Affiliation(s)
- Zhiyang Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Ying Huang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yangrong Zhao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Lei Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| | - Jiahui Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Wei Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|
13
|
Kobayashi M, Kojima K, Murayama K, Amano Y, Koyama T, Ogama N, Takeshita T, Fukuhara T, Tanaka N. MK-6, a novel not-α IL-2, elicits a potent antitumor activity by improving the effector to regulatory T cell balance. Cancer Sci 2021; 112:4478-4489. [PMID: 34545658 PMCID: PMC8586658 DOI: 10.1111/cas.15127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
IL-2 is a pleiotropic cytokine that regulates immune cell homeostasis. Its immunomodulatory function has been used clinically as an active immunotherapy agent for metastatic cancers. However, severe adverse effects, including the vascular leak syndrome and the preferential stimulation of anti-immunogenic Treg rather than effector T cells, have been obstacles. We newly designed a mutein IL-2, Mutakine-6 (MK-6), with reduced IL-2Rα-binding capability. MK-6 induced comparable cell growth potential toward IL-2Rβγ-positive T cells but was far less efficient in in vitro Treg proliferation and STAT5 activation. Unlike IL-2, in vivo administration of MK-6 produced minimal adverse effects. Using CT26 and B16F10-syngeneic tumor models, we found MK-6 was highly efficacious on tumor regression. Serum albumin conjugation to MK-6 prolonged in vivo half-life and accumulated in CT26 tumors, showing enhanced antitumor effect. Tumor-infiltrating leukocytes analysis revealed that albumin-fused MK-6 increased the ratio of effector CD8+ T cells to CD4+ Treg cells. These results demonstrated that MK-6 is an efficient immunomodulator potentially used for improved immunotherapy with decreased adverse effects and attenuated Treg stimulation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Respiratory Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Katsuhiko Kojima
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yuji Amano
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Koyama
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoko Ogama
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Toshikazu Takeshita
- Department of Microbiology and Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuro Fukuhara
- Division of Respiratory Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Respiratory Medicine, Miyagi Cancer Center Hospital, Natori, Japan
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori, Japan.,Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Rudnik-Jansen I, Howard KA. FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. J Control Release 2021; 337:248-257. [PMID: 34245786 DOI: 10.1016/j.jconrel.2021.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023]
Abstract
There is an urgent need to identify new cellular targets to expand the repertoire, potency and safety of cancer therapeutics. Neonatal Fc Receptor (FcRn)-driven cellular recycling plays a predominant role in the prolonged serum half-life of human serum albumin (HSA) and immunoglobulin G (IgG) exploited in long-acting cancer drug designs. FcRn-mediated HSA and IgG uptake in epithelial cells and dendritic cell antigen presentation offers new therapeutic opportunities beyond half-life extension. Altered FcRn expression in solid tumours accounting for HSA catabolism or recycling supports a role for FcRn in tumour metabolism and growth. This review addresses the mechanistic basis for different FcRn expression profiles observed in cancer and exploitation for targeted drug delivery. Furthermore, the review highlights FcRn-mediated immunosurveillance and immune therapy. FcRn offers a potential attractive cancer target but in-depth understanding of role and expression profiles during cancer pathogenesis is required for tailoring targeted drug designs.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
15
|
Sen S, Perrin MW, Sedgwick AC, Lynch VM, Sessler JL, Arambula JF. Covalent and non-covalent albumin binding of Au(i) bis-NHCs via post-synthetic amide modification. Chem Sci 2021; 12:7547-7553. [PMID: 34163845 PMCID: PMC8171490 DOI: 10.1039/d1sc01055g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/24/2021] [Indexed: 12/21/2022] Open
Abstract
Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Mark W Perrin
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| |
Collapse
|
16
|
Wang S, Li B, Zhang H, Chen J, Sun X, Xu J, Ren T, Zhang Y, Ma C, Guo W, Liu K. Improving Bioavailability of Hydrophobic Prodrugs through Supramolecular Nanocarriers Based on Recombinant Proteins for Osteosarcoma Treatment. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Jiayin Chen
- Department of Pharmacy Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xin Sun
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Jie Xu
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Tingting Ren
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Yuanyuan Zhang
- Department of Pathology Peking University People's Hospital Beijing 100044 China
| | - Chao Ma
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wei Guo
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor Peking University People's Hospital Beijing 100044 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
17
|
Wang S, Li B, Zhang H, Chen J, Sun X, Xu J, Ren T, Zhang Y, Ma C, Guo W, Liu K. Improving Bioavailability of Hydrophobic Prodrugs through Supramolecular Nanocarriers Based on Recombinant Proteins for Osteosarcoma Treatment. Angew Chem Int Ed Engl 2021; 60:11252-11256. [PMID: 33650286 DOI: 10.1002/anie.202101938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Supramolecular nanodrug assembly driven by supramolecular chemistry is becoming a powerful strategy for medication. The potential of engineered proteins as building blocks for nanoformulations is rarely investigated. Here, we developed a new generation of recombinant protein-based nanodrug carriers, which is very efficient for loading and delivering the hydrophobic prodrug aldoxorubicin. Significantly enhanced anti-tumor effects in osteosarcoma (OS) models were observed. The half-life of the nanodrug reached almost two days and the corresponding bioavailability increased by 17-fold. This is significantly superior to other drug counterparts, empowering long-acting OS treatment scenarios. Importantly, off-target side effects of the prodrug, including cardiotoxicity and lung-metastasis, were greatly mitigated with our medication. Thus, our assembly strategy enables the customized design of advanced nanodelivery systems employing broader biomaterial building blocks for cancer therapy.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiayin Chen
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xin Sun
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yuanyuan Zhang
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- Musculoskeletal Tumor Center and Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Targeting Toxins toward Tumors. Molecules 2021; 26:molecules26051292. [PMID: 33673582 PMCID: PMC7956858 DOI: 10.3390/molecules26051292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Many cancer diseases, e.g., prostate cancer and lung cancer, develop very slowly. Common chemotherapeutics like vincristine, vinblastine and taxol target cancer cells in their proliferating states. In slowly developing cancer diseases only a minor part of the malignant cells will be in a proliferative state, and consequently these drugs will exert a concomitant damage on rapidly proliferating benign tissue as well. A number of toxins possess an ability to kill cells in all states independently of whether they are benign or malignant. Such toxins can only be used as chemotherapeutics if they can be targeted selectively against the tumors. Examples of such toxins are mertansine, calicheamicins and thapsigargins, which all kill cells at low micromolar or nanomolar concentrations. Advanced prodrug concepts enabling targeting of these toxins to cancer tissue comprise antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), lectin-directed enzyme-activated prodrug therapy (LEAPT), and antibody-drug conjugated therapy (ADC), which will be discussed in the present review. The review also includes recent examples of protease-targeting chimera (PROTAC) for knockdown of receptors essential for development of tumors. In addition, targeting of toxins relying on tumor-overexpressed enzymes with unique substrate specificity will be mentioned.
Collapse
|
19
|
Srinivasan S, Yee NA, Wu K, Zakharian M, Mahmoodi A, Royzen M, Oneto JMM. SQ3370 Activates Cytotoxic Drug via Click Chemistry at Tumor and Elicits Sustained Responses in Injected & Non-injected Lesions. ADVANCED THERAPEUTICS 2021; 4. [PMID: 33869738 DOI: 10.1002/adtp.202000243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While systemic immuno-oncology therapies have shown remarkable success, only a limited subset of patients benefit from them. Our Click Activated Protodrugs Against Cancer (CAPAC™) Platform is a click chemistry-based approach that activates cancer drugs at a specific tumor with minimal systemic toxicity. CAPAC Platform is agnostic to tumor characteristics that can vary across patients and hence applicable to several types of tumors. We describe the benefits of SQ3370 (lead candidate of CAPAC) to achieve systemic anti-tumor responses in mice bearing two tumors. SQ3370 consists of a biopolymer, injected in a single lesion, followed by systemic doses of an attenuated protodrug™ of doxorubicin (Dox). SQ3370 was well-tolerated at 5.9-times the maximum dose of conventional Dox, increased survival by 63% and induced a systemic anti-tumor response against injected and non-injected lesions. The sustained anti-tumor response also correlated with immune activation measured at both lesions. SQ3370 could potentially benefit patients with micro-metastatic lesions.
Collapse
Affiliation(s)
- S Srinivasan
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - N A Yee
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - K Wu
- University of Albany, 1400 Washington Ave., LS-1136, Albany, NY 12222
| | - M Zakharian
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - A Mahmoodi
- Shasqi, Inc., 665 3 St., Suite 501, San Francisco, CA 94107
| | - M Royzen
- University of Albany, 1400 Washington Ave., LS-1136, Albany, NY 12222
| | | |
Collapse
|
20
|
Shah JV, Gonda A, Pemmaraju R, Subash A, Bobadilla Mendez C, Berger M, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Moghe PV, Ganapathy V. Shortwave Infrared-Emitting Theranostics for Breast Cancer Therapy Response Monitoring. Front Mol Biosci 2020; 7:569415. [PMID: 33134314 PMCID: PMC7575924 DOI: 10.3389/fmolb.2020.569415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic drug monitoring (TDM) in cancer, while imperative, has been challenging due to inter-patient variability in drug pharmacokinetics. Additionally, most pharmacokinetic monitoring is done by assessments of the drugs in plasma, which is not an accurate gauge for drug concentrations in target tumor tissue. There exists a critical need for therapy monitoring tools that can provide real-time feedback on drug efficacy at target site to enable alteration in treatment regimens early during cancer therapy. Here, we report on theranostic optical imaging probes based on shortwave infrared (SWIR)-emitting rare earth-doped nanoparticles encapsulated with human serum albumin (abbreviated as ReANCs) that have demonstrated superior surveillance capability for detecting micro-lesions at depths of 1 cm in a mouse model of breast cancer metastasis. Most notably, ReANCs previously deployed for detection of multi-organ metastases resolved bone lesions earlier than contrast-enhanced magnetic resonance imaging (MRI). We engineered tumor-targeted ReANCs carrying a therapeutic payload as a potential theranostic for evaluating drug efficacy at the tumor site. In vitro results demonstrated efficacy of ReANCs carrying doxorubicin (Dox), providing sustained release of Dox while maintaining cytotoxic effects comparable to free Dox. Significantly, in a murine model of breast cancer lung metastasis, we demonstrated the ability for therapy monitoring based on measurements of SWIR fluorescence from tumor-targeted ReANCs. These findings correlated with a reduction in lung metastatic burden as quantified via MRI-based volumetric analysis over the course of four weeks. Future studies will address the potential of this novel class of theranostics as a preclinical pharmacological screening tool.
Collapse
Affiliation(s)
- Jay V Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Amber Gonda
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Rahul Pemmaraju
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Aishwarya Subash
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | | | - Marissa Berger
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ, United States
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
21
|
Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:193-218. [PMID: 33485484 DOI: 10.1016/bs.apcsb.2020.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human serum albumin, the primary transport and reservoir protein in the human circulatory system, interacts with numerous endogenous and exogenous ligands of varying structural characteristics. The mode of binding of drugs to albumin is central to understanding their pharmacokinetic profiles and has a major influence on their in vivo efficacy. Altered drug binding to albumin due to drug-drug interactions or abnormal physiology may result in marked changes in the active drug concentration, thus affecting its pharmacokinetic and pharmacodynamic properties. The propensity of drug-drug interaction to be clinically significant as well as possible exploitation of such interactions for therapeutic purposes is reviewed. Being the major organs of albumin metabolism, any impairment in the liver and kidney functions frequently alter the level of serum albumin, which affects the pharmacokinetic profiles of drugs and may have serious clinical implications. The natural function of serum albumin as a drug carrier is facilitated by its interaction with various cellular receptors. These receptors not only promote the uptake of drugs into cells but are also responsible for the extraordinarily long circulatory half-life of albumin. This property in combination with the presence of multiple ligand binding pockets have led to the emergence of serum albumin as an attractive vehicle for novel drug delivery systems. Here, we provide an overview of various albumin-based drug delivery strategies, classified according to their methods of drug attachment, and highlight their experimental and clinical successes.
Collapse
|
22
|
|
23
|
Pilati D, Howard KA. Albumin-based drug designs for pharmacokinetic modulation. Expert Opin Drug Metab Toxicol 2020; 16:783-795. [DOI: 10.1080/17425255.2020.1801633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C Denmark
| |
Collapse
|
24
|
In vivo synthesis of triple-loaded albumin conjugate for efficient targeted cancer chemotherapy. J Control Release 2020; 327:19-25. [PMID: 32777236 DOI: 10.1016/j.jconrel.2020.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The development of selective anticancer drugs avoiding side effects met in the course of almost all current treatments is of major interest for cancer patients. Here, we report on a novel β-glucuronidase-responsive drug delivery system allowing the in vivo synthesis of triple-loaded albumin conjugate. Following intravenous administration, the glucuronide prodrug reacts in the blood stream with the cysteine-34 residue of circulating albumin through thio-Michael addition, enabling the bioconjugation of three Monomethylauristatin E (MMAE) molecules to the plasmatic protein. The albumin conjugate then accumulates in malignant tissues where tumor-associated β-glucuronidase triggers the selective release of the whole transported drugs. By operating this way, the trimeric glucuronide prodrug produces remarkable anticancer activity on orthotopic MIA PaCa-2 pancreatic tumors, leading to dramatic reduction or even remission of tumors (3/8 mice).
Collapse
|
25
|
Liu H, Quan Y, Jiang X, Zhao X, Zhou Y, Fu J, Du L, Zhao X, Zhao J, Liang L, Yi D, Huang Y, Ye G. Using Polypeptide Bearing Furan Side Chains as a General Platform to Achieve Highly Effective Preparation of Smart Glycopolypeptide Analogue-Based Nano-Prodrugs for Cancer Treatment. Colloids Surf B Biointerfaces 2020; 194:111165. [PMID: 32521460 DOI: 10.1016/j.colsurfb.2020.111165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Although several synthetic polypeptide-based nano-prodrugs (NPDs) have entered clinical trials for cancer treatment, achieving a highly effective production of the NPDs for clinical translation remains a challenge. Herein, we develop a typical preparation of pH/glutathione (GSH) dual-responsive glycopolypeptide analogue NPDs having a high drug capsulation/loading efficiency of ca. 93% and ca. 27% even based on ring-opening polymerization (ROP) of a novel and general furan-containing N-carboxyanhydride (NCA) monomer, which facilitates the Diels-Alder (D-A) side-chain functionalization by maleimide modified chemotherapy drug without using any reactive additives. High reactivity of the D-A reaction resulting in the high preparation efficiency of the NPDs is confirmed by 1H NMR and density functional theory (DFT) calculations. The self-assembled properties as well as the dual-responsiveness of the NPDs are systemically studied by particle size and zeta potential assay, transmission electron microscopy and drug-delivery dynamics. The cell uptake mechanism, intracellular drug distribution, in vitro/vivo antitumor activity evaluations and the main organ damages of the NPDs are all investigated. Our work can provide a good solution to solve the inefficient fabrication of the smart synthetic polypeptide-based micelles for cancer treatment by following this general and sophisticated platform.
Collapse
Affiliation(s)
- Houhe Liu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yusi Quan
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinlin Jiang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaotian Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zhou
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingran Du
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoya Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lu Liang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Di Yi
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yugang Huang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Ye
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
26
|
Martins-Teixeira MB, Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020; 15:933-948. [PMID: 32314528 DOI: 10.1002/cmdc.202000131] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Anthracyclines are ranked among the most effective chemotherapeutics against cancer. They are glycoside drugs comprising the amino sugar daunosamine linked to a hydroxy anthraquinone aglycone, and act by DNA intercalation, oxidative stress generation and topoisomerase II poisoning. Regardless of their therapeutic value, multidrug resistance and severe cardiotoxicity are important limitations of anthracycline treatment that have prompted the discovery of novel analogues. This review covers the most clinically relevant anthracyclines and their development over decades, since the first discovered natural prototypes to recent semisynthetic and synthetic derivatives. These include registered drugs, drug candidates undergoing clinical trials, and compounds under pre-clinical investigation. The impact of the structural modifications on antitumour activity, toxicity and resistance profile is addressed.
Collapse
Affiliation(s)
- Maristela B Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| |
Collapse
|
27
|
Rana S, Kour S, Sonawane YA, Robb CM, Contreras JI, Kizhake S, Zahid M, Karpf AR, Natarajan A. Symbiotic prodrugs (SymProDs) dual targeting of NFkappaB and CDK. Chem Biol Drug Des 2020; 96:773-784. [PMID: 32237047 DOI: 10.1111/cbdd.13684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The release of an active drug from the prodrug generates a pro-fragment that typically has no biological activity and could result in adverse effects. By combining two drugs, wherein each drug acts as a pro-fragment of the other drug will eliminate the pro-fragment in the prodrug. As they are prodrugs of each other and are symbiotic, we termed these as symbiotic prodrugs (SymProDs). To test this idea, we generated SymProDs using NFκB inhibitors that contain the reactive α-methylene-γ-butyrolactone moiety and CDK inhibitors with solvent exposed secondary nitrogen atoms. We show that secondary amine prodrugs of α-methylene-γ-butyrolactone containing NFκB inhibitors undergo slow release over a 72 hr period. Using an alkyne-tagged secondary amine prodrug of α-methylene-γ-butyrolactone containing NFκB inhibitor, we demonstrate target engagement. The NFκB-CDK SymProDs were ~20- to 200-fold less active against the corresponding CDK inhibitors in in vitro CDK kinase assays. Growth inhibition studies in a panel of ovarian cancer cell lines revealed potency trends of the SymProDs mirrored those of the single treatments suggesting their dissociation in cells. In conclusion, our results suggest that SymProDs offer a productive path forward for advancing compounds with reactive functionality and can be used as dual targeting agents.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Smit Kour
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caroline M Robb
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
28
|
Najjar A, Najjar A, Karaman R. Newly Developed Prodrugs and Prodrugs in Development; an Insight of the Recent Years. Molecules 2020; 25:E884. [PMID: 32079289 PMCID: PMC7070911 DOI: 10.3390/molecules25040884] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The design and development of prodrugs is the most common and effective strategy to overcome pharmacokinetic and pharmacodynamic drawbacks of active drugs. A respected number of prodrugs have been reached the drugs market throughout history and the recent years have witnessed a significant increase in the use of prodrugs as a replacement of their parent drugs for an efficient treatment of various ailment. METHODS A Scan conducted to find recent approved prodrugs and prodrugs in development. RESULTS Selected prodrugs were reported and categorized in accordance to their target systems. CONCLUSIONS the prodrug approach has shown many successes and still remains a viable and effective approach to deliver new active agents. This conclusion is supported by the recent approved prodrugs and the scan of clinical trials conducted between 2013-2018.
Collapse
Affiliation(s)
- Anas Najjar
- Faculty of Pharmacy, Department of Bioorganic & Pharmaceutical Chemistry, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
| | - Abderrahman Najjar
- Institute of Pathology, Rabin Medical Centre, PetachTikva 49100, Israel;
| | - Rafik Karaman
- Faculty of Pharmacy, Department of Bioorganic & Pharmaceutical Chemistry, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
| |
Collapse
|
29
|
Abstract
Introduction: Prodrugs have been used to improve the selectivity and efficacy of cancer therapy by targeting unique abnormal markers that are overexpressed by cancer cells and are absent in normal tissues. In this context, different strategies have been exploited and new ones are being developed each year. Areas covered: In this review, an integrated view of the potential use of prodrugs in targeted cancer therapy is provided. Passive and active strategies are discussed in light of the advantages of each one and some successful examples are provided, as well as the clinical status of several prodrugs. Among them, antibody-drug conjugates (ADCs) are the most commonly used. However, several drawbacks, including limited prodrug uptake, poor pharmacokinetics, immunogenicity problems, difficulties in selective targeting and gene expression, and optimized bystander effects limit their clinical applications. Expert opinion: Despite the efforts of different companies and research groups, several drawbacks, such as the lack of relevant in vivo models, complexity of the human metabolism, and economic limitations, have hampered the development of new prodrugs for targeted cancer therapy. As a result, we believe that the combination of prodrugs with cancer nanotechnology and other newly developed approaches, such as aptamer-conjugated nanomaterials, are efficient strategies.
Collapse
Affiliation(s)
- Carla Souza
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| | - Diogo Silva Pellosi
- b Department of Chemistry, Laboratory of Hybrid Materials , Federal University of São Paulo - UNIFESP , Diadema , Brazil
| | - Antonio Claudio Tedesco
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| |
Collapse
|