1
|
Featherby SJ, Faulkner EC, Maraveyas A, Ettelaie C. Identification of the Interacting Domains Between Tissue Factor and β1-Integrin and the Signalling Properties of the Two Fibronectin-like Domains of Tissue Factor. Cancers (Basel) 2025; 17:644. [PMID: 40002240 PMCID: PMC11853675 DOI: 10.3390/cancers17040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Interactions between tissue factor (TF) and β1-integrin induce cell signals, but the molecular mechanisms are not completely understood. The extracellular domain of TF and EGF4-βTD domains of β1-integrin were hypothesised to be the most likely domains involved in the interaction. Additionally, the interaction may induce a conformational change in β1-integrin, which results in changes in signalling. METHODS Peptide constructs corresponding to the upper (residues 1-110; UED), lower (residues 106-219; LED) or combined extracellular domain (residues 1-219; TED) of TF were produced, as well as peptides corresponding to EGF4-βTD or EGF4 domains of β1-integrin. These constructs were expressed in TF-rich MDA-MB-231 cells and TF-deficient primary endothelial cells. The association of the peptides with endogenous-TF or β1-integrin was assessed by a proximity ligation assay and co-immunoprecipitation. Additionally, the influence of the constructs on β1-integrin conformation and the outcome on ERK1/2 activation, cyclin D expression and cell proliferation was analysed. RESULTS In MDA-MB-231 cells, all TF-constructs were associated with β1-integrin whilst LED was co-immunopurified with β1-integrin. EGF4-βTD was associated with and co-immunopurified with endogenous TF. Additionally, the expression of UED or EGF4-βTD reduced ERK phosphorylation and cyclin D expression and suppressed proliferation. In endothelial cells, the expression of UED, and to a lesser extent, LED, reduced the proportion of β1-integrin in the active conformation and induced ERK1/2 phosphorylation but did not induce cyclin D expression or proliferation. CONCLUSIONS Collectively, these data indicate the extracellular domains of TF function together, with the lower domain forming a robust interaction with the βTD of β1-integrin and the upper domain inducing cell signalling by regulating β1-integrin conformation.
Collapse
Affiliation(s)
- Sophie J. Featherby
- Centre for Biomedicine, Hull-York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (E.C.F.); (C.E.)
| | - Eamon C. Faulkner
- Centre for Biomedicine, Hull-York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (E.C.F.); (C.E.)
| | - Anthony Maraveyas
- Clinical Sciences, Hull-York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Camille Ettelaie
- Centre for Biomedicine, Hull-York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (E.C.F.); (C.E.)
| |
Collapse
|
2
|
Yin W, Mai W, Hu W, Li Y, Cui D, Sun J, Li J, Zhan Y, Chang Y. Molecular response to CO 2-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106951. [PMID: 39826434 DOI: 10.1016/j.marenvres.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In order to explore the impact of CO2-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pHNBS = 7.98) or in three laboratory-controlled OA conditions (ΔpHNBS = -0.3, -0.4, -0.5 units) based on the projections of the Intergovernmental Panel on Climate Change (IPCC) for 2100. Four-armed larval specimens were collected, and comparative transcriptome analysis was then performed. The results showed that 58 differentially expressed genes (DEGs) were identified in OA-treated groups as compared to the control. Moreover, more transition and transversion SNPs were observed in OA-treated groups than those in the control indicating a potential occurrence of adaption to OA in H. pulcherrimus larvae. Six candidate DEGs shared among OA-treated groups were identified as potential biomarkers correlated with low pH tolerance, mainly enriched in nine pathways associated with Notch signaling, dorso-ventral axis formation, oxidative phosphorylation, lysine degradation, valine, leucine and isoleucine degradation, lysosome, cell adhesion molecules, glutathione metabolism and PPAR signaling pathway. These results will not only enrich our knowledge of the impacts of OA on sea urchin larvae from the aspect of gene expression, provide a better understanding on larval forms coping with OA, but also offer more clues and biomarkers for developing protection or management strategies for sea urchins under near-future OA conditions.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jiaxiang Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
3
|
Lastraioli E, Iorio J, Piazza F, Capitani C, Santillo M, Duranti C, Bianchi S, Meattini I, Fraser SP, Djamgoz MBA, Becchetti A, Arcangeli A. Clinical relevance of macromolecular complexes involving integrins, potassium and sodium ion channels and the sodium/proton antiporter in human breast cancer. Cancer Cell Int 2025; 25:24. [PMID: 39865220 PMCID: PMC11765915 DOI: 10.1186/s12935-025-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K+ channel, the neonatal form of the Na+ channel NaV 1.5 (nNaV1.5) and the Na+/H+ antiporter NHE1 (NHE1/hERG1/β1/nNaV1.5 complex) has been recently described to be expressed and regulate relevant cancer related behaviors in Breast Cancer (BCa) cells. METHODS We analyzed the expression and impact on outcome of the genes encoding the four proteins forming the NHE1/hERG1/β1/nNaV1.5 complex (SLC9A1, KCNH2, ITGB1 and SCN5A) in public datasets. The corresponding proteins were also evaluated by immunohistochemistry and their expression was correlated with clinic-pathological and molecular characteristics and patients' survival. RESULTS The expression of KCNH2 and SCN5A was significantly correlated in primary BCa as occurs in the heart, although with a broader distribution, forming a functional network which also included ITGB1 and SLC9A1. The co-expression proteins emerged from the immunohistochemistry analysis. Interestingly, hERG1, nNav1.5 and the hERG1/β1 integrin complex associated with several clinical features, including molecular subtype and hormone receptor status. Moreover, hERG1 and the combination of hERG1 and nNav1.5 had impact on prognosis, contributing to identifying a group of patients with worse prognosis. CONCLUSIONS hERG1 and nNav1.5 channels along with β1 integrins and the NHE1 antiporter are co-expressed in BCa both at gene and protein levels, assembling into a macromolecular complex. The NHE1/hERG1/β1/nNaV1.5 complex can be considered a novel biomarker and potential target for therapy for BCa patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy.
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Piazza
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- Department of Physics, University of Florence and Florence Section of INFN, Florence, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Santillo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| | - Simonetta Bianchi
- Department of Health Sciences, Division of Pathological Anatomy, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Mersin 10, Haspolat, TRNC, Turkey
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| |
Collapse
|
4
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2025; 32:43-59. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Che Y, Lu X, Wang X, Liu Z, Guan L, Li X, Du Z, Ren H, Wang J, Zhou Z, Lv L. Does rAj-Tspin, a novel peptide from A. japonicus, exert antihepatocellular carcinoma effects via the ITGB1/ZYX/FAK/AKT signaling pathway? Cancer Cell Int 2024; 24:290. [PMID: 39143566 PMCID: PMC11325833 DOI: 10.1186/s12935-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
rAj-Tspin, a soluble recombinant peptide from Apostichopus japonicus, can inhibit the integrin β1 (ITGB1)/FAK/AKT signaling pathway in hepatocellular carcinoma (HCC) via cell epithelial-mesenchymal transition (EMT) and apoptosis. Zyxin (ZYX) is a focal adhesion protein that is considered a novel mediator of EMT and apoptosis. However, the inhibitory mechanisms of rAj-Tspin in HCC and whether it is related to ZYX are unclear. We examined the antitumor effect of rAj-Tspin on the Huh7 human HCC cell line and on a nude mouse model generated via subcutaneous injection or orthotopic intrahepatic transplantation of Huh7 cells. Our results revealed that rAj-Tspin strikingly reduced the viability and promoted the apoptosis of Huh7 cells and inhibited HCC tumor growth in nude mice. rAj-Tspin inhibited ITGB1 and ZYX protein expression in vivo and in vitro in a dose-dependent manner. Mechanistically, the FAK/AKT signaling pathway and the proliferation and invasion of HCC cells were suppressed upon ITGB1 and ZYX knockdown. Moreover, the effect of ITGB1 overexpression on the growth of HCC cells was inhibited by rAj-Tspin. In contrast, the promoting effect of ITGB1 overexpression could be inhibited by ZYX knockdown. ZYX knockdown had no effect on ITGB1 expression. These findings suggest that ZYX is required for the indispensable role of ITGB1 in rAj-Tspin-alleviated HCC and provide an important therapeutic target for HCC. In summary, the anti-HCC effect of rAj-Tspin potentially involves the regulation of the ITGB1/ZYX/FAK/AKT pathway, which in turn impacts EMT and apoptosis.
Collapse
Affiliation(s)
- Ying Che
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaolong Lu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xueting Wang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhien Liu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Liyang Guan
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xin Li
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zaixing Du
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Hang Ren
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian, 116081, Liaoning, China.
| | - Zunchun Zhou
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
6
|
Lv T, Liu H, Mao L, Song Y, Liao L, Zhong K, Shuai B, Luo Y, Guo T, Huang W, Zhang S. Cancer-associated fibroblast-derived extracellular vesicles promote lymph node metastases in oral cavity squamous cell carcinoma by encapsulating ITGB1 and BMI1. BMC Cancer 2024; 24:113. [PMID: 38254031 PMCID: PMC10804601 DOI: 10.1186/s12885-024-11855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have been revealed to facilitate the development of oral squamous cavity cell carcinoma (OCSCC), while its supporting role in lymph node metastases is under continuous investigation. This study aimed to examine the function of cancer-associated fibroblasts (CAF)-derived EVs (CAF-EVs) during lymph node metastasis in OCSCC and the mechanisms. METHODS CAF were isolated from OCSCC tissues of patients, and CAF-EVs were extracted and identified. EdU, colony formation, wound healing, and Transwell assays were performed. The OCSCC cells before and after CAF-EVs treatment were injected into mice to probe the effects of CAF-EVs on tumor growth and lymph node metastasis, respectively. The effect of CAF-EVs treatment on transcriptome changes in OCSCC cells was analyzed. Clinical data of patients with OCSCC were analyzed to determine the prognostic significance of the selected genes. Finally, loss-of-function assays were conducted to corroborate the involvement of polycomb complex protein BMI-1 (BMI1) and integrin beta1 (ITGB1). RESULTS CAF-EVs promoted the malignant behavior of OCSCC cells and accelerated tumor growth and lymph node metastasis in mice. CAF-EVs significantly increased the expression of BMI1 and ITGB1, and the expression of BMI1 and ITGB1 was negatively correlated with the overall survival and relapse-free survival of OCSCC patients. Knockdown of BMI1 or ITGB1 in OCSCC cells abated the promoting effects of CAF-EVs in vitro and in vivo. CONCLUSION CAF-EVs elicited the metastasis-promoting properties in OCSCC by elevating BMI1 and ITGB1, suggesting that BMI1 and ITGB1 could be potential biomarkers and therapeutic targets for OCSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Hongjing Liu
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Ling Mao
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yanrong Song
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Lili Liao
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Kun Zhong
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Binbin Shuai
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yingkun Luo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Tingting Guo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Wentao Huang
- School of Savaid Stomatology, Hangzhou Medical College, 311399, Hangzhou, Zhejiang, P.R. China.
| | - Shenyingjie Zhang
- Medical Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
7
|
Abhange K, Kitata RB, Zhang J, Wang YT, Gaffrey MJ, Liu T, Gunchick V, Khaykin V, Sahai V, Cuneo KC, Parikh ND, Shi T, Lubman DM. In-Depth Proteome Profiling of Small Extracellular Vesicles Isolated from Cancer Cell Lines and Patient Serum. J Proteome Res 2024; 23:386-396. [PMID: 38113368 PMCID: PMC10947532 DOI: 10.1021/acs.jproteome.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.
Collapse
Affiliation(s)
- Komal Abhange
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Valerie Khaykin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Qi R, Hou J, Yang Y, Yang Z, Wu L, Qiao T, Wang X, Song D. Integrin beta1 mediates the effect of telocytes on mesenchymal stem cell proliferation and migration in the treatment of acute lung injury. J Cell Mol Med 2023; 27:3980-3994. [PMID: 37855260 PMCID: PMC10746951 DOI: 10.1111/jcmm.17976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/β inhibitor, of which IL-1β, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.
Collapse
Affiliation(s)
- Ruixue Qi
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Ying Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Zhicheng Yang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Lihong Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
| | - Xiangdong Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan HospitalFudan University Shanghai Medical SchoolShanghaiChina
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Institute of Clinical ScienceFudan University Shanghai Medical SchoolShanghaiChina
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
10
|
Zhou H, Jian Y, Shao Q, Guo F, Zhang M, Wan F, Yang L, Liu Y, Yang L, Li Y, Yang P, Li Z, Li S, Ding W. Development of Sustainable Insecticide Candidates for Protecting Pollinators: Insight into the Bioactivities, Selective Mechanism of Action and QSAR of Natural Coumarin Derivatives against Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18359-18374. [PMID: 37965968 DOI: 10.1021/acs.jafc.3c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Plants employ abundant toxic secondary metabolites to withstand insect attack, while pollinators can tolerate some natural defensive compounds. Coumarins, as promising green alternatives to chemical insecticides, possess wide application prospects in the crop protection field. Herein, the bioactivities of 30 natural coumarin derivatives against Aphis gossypii were assessed and revealed that 6-methylcoumarin exhibited potent aphicidal activity against aphids but displayed no toxicity to honeybees. Additionally, using biochemical, bioinformatic, and molecular assays, we confirmed that the action mode of 6-methylcoumarin against aphids was by inhibiting acetylcholinesterase (AChE). Meanwhile, functional assays revealed that the difference in action site, which located in Lys585 in aphid AChE (equivalent to Val548 in honeybee AChE), was the principal reason for 6-methylcoumarin being toxic to aphids but safe to pollinators. This action site was further validated by mutagenesis data, which uncovered how 6-methylcoumarin was unique selective to the aphid over honeybee or mammalian AChE. Furthermore, a 2D-QSAR model was established, revealing that the central structural feature was H3m, which offers guidance for the future design of more potent coumarin compounds. This work provides a sustainable strategy to take advantage of coumarin analogues for pest management while protecting nontarget pollinators.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Li Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
11
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
12
|
Park SJ, Min HJ, Yoon C, Kim SH, Kim JH, Lee SY. Integrin β1 regulates the perineural invasion and radioresistance of oral squamous carcinoma cells by modulating cancer cell stemness. Cell Signal 2023; 110:110808. [PMID: 37481218 DOI: 10.1016/j.cellsig.2023.110808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Perineural invasion and radioresistance are the main determinants of treatment outcomes in oral squamous cell carcinoma (OSCC), but the exact mechanism is still unknown. We conducted an in vitro experiment to evaluate the role of integrin β1 (ITGB1) in the perineural invasion, radioresistance, and tumor aggressiveness of OSCC. Two OSCC cell lines (SCC25, SCC15) and radiation-induced radioresistant OSCC cell lines were used in this study. The expression of ITGB1 was compared between control radiosensitive and radioresistant OSCC cell lines. ITGB1 was inhibited by small hairpin RNA, and then the adhesion to neuronal cells, responsiveness to radiation, and aggressiveness of both OSCC cell lines were evaluated. Expression of ITGB1 and adhesion to neuronal cells were increased in radioresistant OSCC compared with control radiosensitive OSCC, and increased ITGB1 expression was more prominent in cancer stem cell-like cells. When the expression of ITGB1 was inhibited, the adhesion to neuronal cells, resistance to radiation, and invasion and migration of radioresistant OSCC were significantly reduced. Moreover, the expression of cancer stem cell markers and size of spheroid formations were also significantly attenuated by inhibiting ITGB1. These findings suggest that ITGB1 may be a significant contributor to perineural invasion and the maintenance of radioresistance in OSCC cells, and is associated with cancer stem cell-like cells. Furthermore, our results suggest a possible relationship between perineural invasion and radioresistance of OSCC. More detailed research is warranted to evaluate the role of ITGB1 as a novel emerging therapeutic target for radioresistant OSCC.
Collapse
Affiliation(s)
- Sung Joon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea.
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Changhwan Yoon
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Seong Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Jin Hyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Sei Young Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| |
Collapse
|
13
|
Zhang L, Gao Y, Li Y, Li X, Gong H. Propofol-mediated circ_0000735 downregulation restrains tumor growth by decreasing integrin-β1 expression in non-small cell lung cancer. Open Med (Wars) 2023; 18:20220539. [PMID: 36760719 PMCID: PMC9896166 DOI: 10.1515/med-2022-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023] Open
Abstract
Propofol, an intravenous anesthetic agent, exerts an anti-tumor peculiarity in multifarious tumors. Circular RNA hsa_circ_0000735 (circ_0000735) is involved in non-small cell lung cancer (NSCLC) progression. The purpose of this study is to investigate whether propofol can curb NSCLC progression via regulating circ_0000735 expression. Cell viability, proliferation, apoptosis, and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, flow cytometry, and transwell assays. Evaluation of protein levels was performed using western blotting or immunohistochemistry. Detection of circ_0000735 in tissue samples and cells was carried out using a real-time quantitative polymerase chain reaction. The molecular mechanisms associated with circ_0000735 were predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. The relationship between propofol and circ_0000735 in vivo was verified by xenograft models. The results showed that circ_0000735 was overexpressed in NSCLC samples and cells. Propofol treatment overtly decreased circ_0000735 expression in NSCLC cells and repressed NSCLC cell viability, proliferation, invasion, and facilitated NSCLC cell apoptosis, but these effects mediated by propofol were counteracted by circ_0000735 overexpression. Circ_0000735 functioned as a miR-153-3p sponge and regulated integrin-β1 (ITGB1) expression via adsorbing miR-153-3p. ITGB1 overexpression reversed circ_0000735 silencing-mediated effects on NSCLC cell viability, proliferation, invasion, and apoptosis. In conclusion, propofol restrained NSCLC growth by downregulating circ_0000735, which functioned as a miR-153-3p sponge and regulated ITGB1 expression via adsorbing miR-153-3p. This study provides evidence to support that propofol curbs NSCLC progression by regulating circRNA expression.
Collapse
Affiliation(s)
- Lihui Zhang
- Department of Anesthesiology, Hulunbeier Municipal People’s Hospital (Hulunbuir Hospital Affiliated to Suzhou University Hulunbuir), Inner Mongolia, China
| | - Yunli Gao
- Department of Anesthesiology, Maanshan People’s Hospital, Maanshan, Anhui, China
| | - Yue Li
- Department of Anesthesiology, Hulunbeier Municipal People’s Hospital (Hulunbuir Hospital Affiliated to Suzhou University Hulunbuir), Inner Mongolia, China
| | - Xinying Li
- Department of Anesthesiology, Hulunbeier Municipal People’s Hospital (Hulunbuir Hospital Affiliated to Suzhou University Hulunbuir), Inner Mongolia, China
| | - Haixia Gong
- Department of Anesthesiology, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizhengjie Street, Donghu District, Nanchang, Jiangxi Province, 330006China
| |
Collapse
|
14
|
Rana PS, Wang W, Markovic V, Szpendyk J, Chan ER, Sossey-Alaoui K. The WAVE2/miR-29/Integrin-β1 Oncogenic Signaling Axis Promotes Tumor Growth and Metastasis in Triple-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:160-174. [PMID: 36968231 PMCID: PMC10035451 DOI: 10.1158/2767-9764.crc-22-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-β1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-β1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wei Wang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | | | | | | | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- MetroHealth Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| |
Collapse
|
15
|
Fei Y, Xu J, Ge L, Chen L, Yu H, Pan L, Chen P. Establishment and validation of individualized clinical prognostic markers for LUAD patients based on autophagy-related genes. Aging (Albany NY) 2022; 14:7328-7347. [PMID: 36178365 PMCID: PMC9550247 DOI: 10.18632/aging.204097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022]
Abstract
There is considerable heterogeneity in the genomic drivers of lung adenocarcinoma, which has a dismal prognosis. Bioinformatics analysis was performed on lung adenocarcinoma (LUAD) datasets to establish a multi-autophagy gene model to predict patient prognosis. LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database as a training set to construct a LUAD prognostic model. According to the risk score, a Kaplan-Meier cumulative curve was plotted to evaluate the prognostic value. Furthermore, a nomogram was established to predict the three-year and five-year survival of patients with LUAD based on their prognostic characteristics. Two genes (ITGB1 and EIF2AK3) were identified in the autophagy-related prognostic model, and the multivariate Cox proportional risk model showed that risk score was an independent predictor of prognosis in LUAD patients (HR=3.3, 95%CI= 2.3 to 4.6, P< 0.0001). The Kaplan-Meier cumulative curve showed that low-risk patients had significantly better overall (P<0.0001). The validation dataset GSE68465 further confirmed the nomogram’s robust ability to assess the prognosis of LUAD patients. A prognosis model of autophagy-related genes based on a LUAD dataset was constructed and exhibited diagnostic value in the prognosis of LUAD patients. Moreover, real-time qPCR confirmed the expression patterns of EIF2AK3 and ITGB1 in LUAD cell lines. Two key autophagy-related genes have been suggested as prognostic markers for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Junyi Xu
- Information Center, The First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Liping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Xuhui, Shanghai, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People’s Hospital of Wenling, Taizhou, Zhejiang, China
| | - Huan Yu
- Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peifeng Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Tsaur I, Thomas A, Monecke M, Zugelder M, Rutz J, Grein T, Maxeiner S, Xie H, Chun FKH, Rothweiler F, Cinatl J, Michaelis M, Haferkamp A, Blaheta RA. Amygdalin Exerts Antitumor Activity in Taxane-Resistant Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14133111. [PMID: 35804883 PMCID: PMC9265127 DOI: 10.3390/cancers14133111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin β1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin β1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin’s value as an antitumor drug.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medicine Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (I.T.); (A.H.); (R.A.B.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medicine Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (I.T.); (A.H.); (R.A.B.)
- Correspondence: ; Tel.: +49-6131-172312; Fax: +49-6131-173827
| | - Michelle Monecke
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Marion Zugelder
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Jochen Rutz
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Timothy Grein
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Hui Xie
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (M.M.); (M.Z.); (J.R.); (T.G.); (S.M.); (H.X.); (F.K.-H.C.)
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.)
- Petra Joh-Forschungshaus, 60528 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany; (F.R.)
- Petra Joh-Forschungshaus, 60528 Frankfurt am Main, Germany
| | - Martin Michaelis
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medicine Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (I.T.); (A.H.); (R.A.B.)
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medicine Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (I.T.); (A.H.); (R.A.B.)
| |
Collapse
|
18
|
Iwatate Y, Yokota H, Hoshino I, Ishige F, Kuwayama N, Itami M, Mori Y, Chiba S, Arimitsu H, Yanagibashi H, Takayama W, Uno T, Lin J, Nakamura Y, Tatsumi Y, Shimozato O, Nagase H. Transcriptomic analysis reveals high ITGB1 expression as a predictor for poor prognosis of pancreatic cancer. PLoS One 2022; 17:e0268630. [PMID: 35648752 PMCID: PMC9159604 DOI: 10.1371/journal.pone.0268630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Transcriptomic analysis of cancer samples helps identify the mechanism and molecular markers of cancer. However, transcriptomic analyses of pancreatic cancer from the Japanese population are lacking. Hence, in this study, we performed RNA sequencing of fresh and frozen pancreatic cancer tissues from 12 Japanese patients to identify genes critical for the clinical pathology of pancreatic cancer among the Japanese population. Additionally, we performed immunostaining of 107 pancreatic cancer samples to verify the results of RNA sequencing. Bioinformatics analysis of RNA sequencing data identified ITGB1 (Integrin beta 1) as an important gene for pancreatic cancer metastasis, progression, and prognosis. ITGB1 expression was verified using immunostaining. The results of RNA sequencing and immunostaining showed a significant correlation (r = 0.552, p = 0.118) in ITGB1 expression. Moreover, the ITGB1 high-expression group was associated with a significantly worse prognosis (p = 0.035) and recurrence rate (p = 0.028). We believe that ITGB1 may be used as a drug target for pancreatic cancer in the future.
Collapse
Affiliation(s)
- Yosuke Iwatate
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan
| | - Fumitaka Ishige
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Naoki Kuwayama
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan
| | - Makiko Itami
- Division of Clinical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Yasukuni Mori
- Graduate School of Engineering, Faculty of Engineering, Chiba University, Chiba, Japan
| | - Satoshi Chiba
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Hidehito Arimitsu
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Hiroo Yanagibashi
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Wataru Takayama
- Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jason Lin
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba Cancer Center, Chiba, Japan
| | - Yuki Nakamura
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba Cancer Center, Chiba, Japan
| | - Yasutoshi Tatsumi
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba Cancer Center, Chiba, Japan
| | - Osamu Shimozato
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba Cancer Center, Chiba, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba Cancer Center, Chiba, Japan
| |
Collapse
|
19
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|
20
|
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, Burchill SA. RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021; 44:1065-1085. [PMID: 34403115 PMCID: PMC8516792 DOI: 10.1007/s13402-021-00619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Child
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Prognosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sequence Analysis, RNA/methods
- Transcriptome/genetics
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Mariona Chicon-Bosch
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
21
|
Edgunlu TG, Avci CB, Ozates NP, Bagca BG, Celik SK, Boluk A, Ugur B. In Vitro Effects of Propofol on Cytotoxic, Apoptotic and PI3K-Akt Signaling Pathway Genes on Brain Cancer Cells. Anticancer Agents Med Chem 2021; 22:356-361. [PMID: 34238171 DOI: 10.2174/1871520621666210708094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
AIM It was aimed to determine the cytotoxic and apoptotic effect of propofol on glioma cells. BACKGROUND Propofol [2,6-diisopropylphenol] is a commonly used intravenous anesthetic. Propofol is known to have a mechanism of action on the PI3K-AKT pathway. OBJECTIVE This study aimed to evaluate the effect of propofol on the proliferation and apoptosis of human glioma cells, as well as to investigate changes in expression levels of the PI3K-AKT signaling pathway genes. MATERIALS-METHODS The cytotoxic effect of propofol on the U-87 MG cell line was determined by WST-1 method. Annexin V-FITC and Mitoprobe JC-1 assay were used to measure apoptosis by flow cytometry. Expression levels of genes in the PI3K-AKT signaling pathway were investigated by qRT-PCR. RESULTS We have shown that propofol-induced apoptosis in U-87 MG cells by 17.1-fold compared to untreated control. Furthermore, significant differences were found in the expression levels of the PI3K-AKT signaling pathway genes. CONCLUSION As a result of our study, it was found that propofol caused differences in expression levels of PI3K-AKT signaling pathway genes, and it was suggested that these differences might be related to apoptosis induction.
Collapse
Affiliation(s)
- Tuba Gokdogan Edgunlu
- Muğla Sıtkı Koçman University Faculty of Medicine Department of Medical Biology, Turkey
| | - Cigir Biray Avci
- Ege University Faculty of Medicine Department of Medical Biology, Turkey
| | | | - Bakiye Goker Bagca
- Ege University Faculty of Medicine Department of Medical Biology, Turkey
| | - Sevim Karakas Celik
- Bülent Ecevit University Faculty of Medicine Department of Medical Genetic, Turkey
| | - Aydin Boluk
- Muğla Sıtkı Koçman University Faculty of Medicine, Turkey
| | - Bakiye Ugur
- Muğla Sıtkı Koçman University Faculty of Medicine Department of Anesthesiology and Reanimation, Turkey
| |
Collapse
|
22
|
Integrin α2β1 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. Biomedicines 2021; 9:biomedicines9030289. [PMID: 33809043 PMCID: PMC7999332 DOI: 10.3390/biomedicines9030289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
Currently, the same first-line chemotherapy is administered to almost all patients suffering from primary ovarian cancer. The high recurrence rate emphasizes the need for precise drug treatment in primary ovarian cancer. Being crucial in ovarian cancer progression and chemotherapeutic resistance, integrins became promising therapeutic targets. To evaluate its prognostic and predictive value, in the present study, the expression of integrin α2β1 was analyzed immunohistochemically and correlated with the survival data and other therapy-relevant biomarkers. The significant correlation of a high α2β1-expression with the estrogen receptor alpha (ERα; p = 0.035) and epithelial growth factor receptor (EGFR; p = 0.027) was observed. In addition, high α2β1-expression was significantly associated with a low number of tumor-infiltrating immune cells (CD3 intratumoral, p = 0.017; CD3 stromal, p = 0.035; PD-1 intratumoral, p = 0.002; PD-1 stromal, p = 0.049) and the lack of PD-L1 expression (p = 0.005). In Kaplan–Meier survival analysis, patients with a high expression of integrin α2β1 revealed a significant shorter progression-free survival (PFS, p = 0.035) and platinum-free interval (PFI, p = 0.034). In the multivariate Cox regression analysis, integrin α2β1 was confirmed as an independent prognostic factor for both PFS (p = 0.021) and PFI (p = 0.020). Dual expression of integrin α2β1 and the hepatocyte growth factor receptor (HGFR; PFS/PFI, p = 0.004) and CD44v6 (PFS, p = 0.000; PFI, p = 0.001; overall survival [OS], p = 0.025) impaired survival. Integrin α2β1 was established as a prognostic and predictive marker in primary ovarian cancer with the potential to stratify patients for chemotherapy and immunotherapy, and to design new targeted treatment strategies.
Collapse
|
23
|
Integrin expression in correlation to clinicopathological features and prognosis of prostate cancer: A systematic review and meta-analysis. Urol Oncol 2021; 39:221-232. [PMID: 33558138 DOI: 10.1016/j.urolonc.2020.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND The prompt identification of patients with poor prognosis is essential in order to improve the treatment outcomes in prostate cancer (CaP); as a novel approach, several molecular markers, including integrins, have been discussed as prognostic biomarkers. Our aim was to comprehensively examine aberrant expression of integrins in correlation with clinicopathological features and prognosis in CaP by synthesizing all available evidence, in a systematic review and meta-analysis. METHODS A systematic review and meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. Scientific literature databases (Pubmed, Embase, and Scopus) were systematically searched until May 10, 2020. Random-effects (DerSimonian-Laird) models were used to estimate pooled odds ratios (ORs) for cross-sectional correlations with clinicopathological characteristics and relative risks for longitudinal associations with prognosis. RESULTS Fourteen studies were included with a total number of 3,194 CaP cases examined (13 cross-sectional and four longitudinal cohort study arms). Correlation of low expression of α6 (pooled OR = 0.10, 95% confidence interval [CI]: 0.04-0.28, P < 0.001) and β1 (pooled OR = 0.45; 95% CI: 0.21-1.00, P = 0.049) integrin with high Gleason score was noted. A borderline trend between reduced expression of α6 integrin and an advanced clinical stage of CaP (pooled OR = 0.48; 95% CI: 0.22-1.03, P = 0.06) was observed. No associations with biochemical recurrence and survival were documented. CONCLUSIONS Evidence on the association of low expression of integrins α6 and β1 and more advanced CaP exist, whereas significant results on survival were not documented; further studies are warranted.
Collapse
|
24
|
Bitton A, Zheng Y, Houston JP, Houston KD. Investigating differences between tamoxifen resistant and sensitive breast cancer cells with flow cytometry. Cytometry A 2021; 99:164-169. [PMID: 33508166 PMCID: PMC7986838 DOI: 10.1002/cyto.a.24306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The active metabolite of tamoxifen, 4‐hydroxytamoxifen, functions as an anti‐estrogen in breast cancer cells and thus inhibits proliferation. While tamoxifen continues to be successfully used to treat estrogen‐dependent breast cancer, most patients receiving treatment will develop chemoresistance over time. Two commonly reported biomarkers of tamoxifen resistance are decreased expression of insulin‐like growth factor 1 receptor (IGF‐1R) and increased expression of epidermal growth factor receptor (EGFR). In prior work we have shown that these receptors facilitate chemoresistance and have unique regulatory functions measurable in resistant cell lines compared with nonresistant. Thus, we hypothesized that these receptors and a newly identified biomarker, integrin β1, may be used to search for the presence of resistant breast cancer cells within a population of cells that are sensitive to tamoxifen therapy. We tested this by designing a straightforward cell‐labeling approach to measure differences in the receptor expression of resistant vs. sensitive cells cytometrically. Our results show that separation is possible when observing the expression of IGF‐1R as well as integrin β1. Interestingly, we found no detectable difference in EGFR expression between tamoxifen resistant and ‐sensitive cells when measured with cytometry despite the fact that EGFR is upregulated in resistant cells. Our long‐term goal is to utilize sorting to isolate tamoxifen resistant subpopulations of cells by receptor expression level. Isolating rare resistant cells that reside within a population of drug‐sensitive cells will offer new insights into why chemoresistance occurs.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Jessica P Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
25
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Cheng Y, Sun M, Wang F, Geng X, Wang F. Identification of Hub Genes Related to Alzheimer's Disease and Major Depressive Disorder. Am J Alzheimers Dis Other Demen 2021; 36:15333175211046123. [PMID: 34732058 PMCID: PMC10695082 DOI: 10.1177/15333175211046123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BackgroundAlthough many studies reported a close relationship between depression and Alzheimer's disease (AD), the underlying pathophysiological mechanism remains unclear. The present study aimed to investigate the mechanism of AD and major depressive disorder (MDD). Method: The datasets were downloaded from the Gene Expression Omnibus. After screening differentially expressed genes (DEGs), gene ontology and pathway analysis were performed and protein-protein interaction, TF-target gene, and miRNA-target gene networks were established. Results: 171 DEGs of AD-related datasets and 79 DEGs shared by AD and MDD were detected. Functional analysis revealed that AD and MDD common genes were significantly enriched in circadian entrainment and long-term depression signaling pathways. Five hub genes were identified after construction of networks and validation of hub gene signatures. In conclusion, DYNC1H1, MAPRE3, TTBK2, ITGB1, and WASL may be potential targets for the diagnosis and treatment of AD and MDD.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Meiyue Sun
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Xie J, Guo T, Zhong Z, Wang N, Liang Y, Zeng W, Liu S, Chen Q, Tang X, Wu H, Zhang S, Ma K, Wang B, Ou Y, Gu W, Chen H, Qiu Y, Duan Y. ITGB1 Drives Hepatocellular Carcinoma Progression by Modulating Cell Cycle Process Through PXN/YWHAZ/AKT Pathways. Front Cell Dev Biol 2021; 9:711149. [PMID: 34977001 PMCID: PMC8718767 DOI: 10.3389/fcell.2021.711149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Integrin β1 (ITGB1), which acts as an extracellular matrix (ECM) receptor, has gained increasing attention as a therapeutic target for the treatment of hepatocellular carcinoma (HCC). However, the underpinning mechanism of how ITGB1 drives HCC progression remains elusive. In this study, we first found that ITGB1 expression was significantly higher in HCC tissues than in normal controls by bioinformatics analysis. Furthermore, bioinformatics analysis revealed that paxillin (PXN) and 14-3-3 protein zeta (YWHAZ) are the molecules participating in ITGB1-regulated HCC tumor cell cycle progression. Indeed, immunohistochemistry (IHC) revealed that ITGB1, paxillin, and YWHAZ were strongly upregulated in paired HCC tissue compared with adjacent normal tissues. Notably, the inhibition of ITGB1 expression by small interfering RNA (siRNA) resulted in the downregulated expression of PXN and YWHAZ in primary HCC cells, as assessed by western blot and immunostaining. In addition, ITGB1 knockdown markedly impaired the aggressive behavior of HCC tumor cells and delayed cell cycle progression as determined by cell migration assay, drug-resistance analysis, colony formation assay, quantitative real-time polymerase chain reaction (qRT-PCR), and cell cycle analysis as well as cell viability measurements. More importantly, we proved that xenograft ITGB1high tumors grew more rapidly than ITGB1low tumors. Altogether, our study showed that the ITGB1/PXN/YWHAZ/protein kinase B (AKT) axis enhances HCC progression by accelerating the cell cycle process, which offers a promising approach to halt HCC tumor growth.
Collapse
Affiliation(s)
- Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Weiping Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education of China, South China University of Technology, Guangzhou, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education of China, South China University of Technology, Guangzhou, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| |
Collapse
|
28
|
Zondler L, Herich S, Kotte P, Körner K, Schneider-Hohendorf T, Wiendl H, Schwab N, Zarbock A. MCAM/CD146 Signaling via PLCγ1 Leads to Activation of β 1-Integrins in Memory T-Cells Resulting in Increased Brain Infiltration. Front Immunol 2020; 11:599936. [PMID: 33381120 PMCID: PMC7767877 DOI: 10.3389/fimmu.2020.599936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Petra Kotte
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Katharina Körner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
29
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
30
|
Tang Y, Jiang Y, Qing C, Wang J, Zeng Z. Systematic construction and validation of an epithelial-mesenchymal transition risk model to predict prognosis of lung adenocarcinoma. Aging (Albany NY) 2020; 13:794-812. [PMID: 33340396 PMCID: PMC7835007 DOI: 10.18632/aging.202186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Epithelial–mesenchymal transition (EMT) has been shown to be linked to a poor prognosis, particularly in patients with non-small-cell lung cancer. Nevertheless, little is known regarding the existence of EMT-related gene signatures and their prognostic values in lung adenocarcinoma (LUAD). In the current study, we systematically profiled the mRNA expression data of patients with LUAD in The Cancer Genome Atlas and Gene Expression Omnibus databases using a total of 1,184 EMT-related genes. The prognostic values of the EMT-related genes used to develop risk score models for overall survival were determined using LASSO and Cox regression analyses. A prognostic signature that consisted of nine unique EMT-related genes was generated using a training set. A nomogram, incorporating this EMT-related gene signature and clinical features of patients with LUAD, was constructed for potential clinical use. Calibration plots, decision-making curves, and receiver operating characteristic curve analysis showed that this model had a good ability to predict the survival of patients with LUAD. The EMT-associated gene signature and prognostic nomogram established in this study were reliable in predicting the survival of patients with LUAD. Thus, we first identified a novel EMT-related gene signature and developed a nomogram for predicting the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yanxia Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Cheng Qing
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
31
|
Fiuji H, Nassiri M. Gene expression profiling of chromosome 10 in PTEN-knockout (−/−) human neural and mesenchymal stem cells: A system biology study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant‐Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, Strehaiano M, Alard A, Tomasini R, Rajeeve V, Perraud A, Mathonnet M, Pearce OMT, Martineau Y, Pyronnet S, Bousquet C, Jean C. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med 2020; 12:e12010. [PMID: 33025708 PMCID: PMC7645544 DOI: 10.15252/emmm.202012010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are considered the most abundant type of stromal cells in pancreatic ductal adenocarcinoma (PDAC), playing a critical role in tumour progression and chemoresistance; however, a druggable target on CAFs has not yet been identified. Here we report that focal adhesion kinase (FAK) activity (evaluated based on 397 tyrosine phosphorylation level) in CAFs is highly increased compared to its activity in fibroblasts from healthy pancreas. Fibroblastic FAK activity is an independent prognostic marker for disease-free and overall survival of PDAC patients (cohort of 120 PDAC samples). Genetic inactivation of FAK within fibroblasts (FAK kinase-dead, KD) reduces fibrosis and immunosuppressive cell number within primary tumours and dramatically decreases tumour spread. FAK pharmacologic or genetic inactivation reduces fibroblast migration/invasion, decreases extracellular matrix (ECM) expression and deposition by CAFs, modifies ECM track generation and negatively impacts M2 macrophage polarization and migration. Thus, FAK activity within CAFs appears as an independent PDAC prognostic marker and a druggable driver of tumour cell invasion.
Collapse
Affiliation(s)
- Sonia Zaghdoudi
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Rémi Samain
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphanie Cassant‐Sourdy
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Julia Rochotte
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - David Schlaepfer
- Department of Reproductive Medicine Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Jérome Cros
- Department of PathologyBeaujon HospitalINSERM U1149ClichyFrance
| | - Cindy Neuzillet
- Medical Oncology DepartmentCurie InstituteVersailles Saint‐Quentin UniversitySaint‐CloudFrance
| | - Manon Strehaiano
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Amandine Alard
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | | | - Vinothini Rajeeve
- Centre for Genomics and Computational BiologyBarts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Oliver MT Pearce
- Centre for Tumour MicroenvironmentBarts Cancer InstituteLondonUK
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| |
Collapse
|
33
|
High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking Patients with Lung Adenocarcinoma through Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2071593. [PMID: 33134373 PMCID: PMC7593752 DOI: 10.1155/2020/2071593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
Purpose The molecular mechanism underlying the tumorigenesis and progression of lung adenocarcinoma (LUAD) in nonsmoking patients remains unclear. This study was conducted to select crucial therapeutic and prognostic biomarkers for nonsmoking patients with LUAD. Methods Microarray datasets from the Gene Expression Omnibus (GSE32863 and GSE75037) were analyzed for differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis of DEGs was performed, and protein-protein interaction network was then constructed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. Hub genes were then identified by the rank of degree. Overall survival (OS) analyses of hub genes were performed among nonsmoking patients with LUAD in Kaplan-Meier plotter. The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (THPA) databases were applied to verify hub genes. In addition, we performed Gene Set Enrichment Analysis (GSEA) of hub genes. Results We identified 1283 DEGs, including 743 downregulated and 540 upregulated genes. GO enrichment analyses showed that DEGs were significantly enriched in collagen-containing extracellular matrix and extracellular matrix organization. Moreover, 19 hub genes were identified, and 12 hub genes were closely associated with OS. Although no obvious difference was detected in ITGB1, the downregulation of UBB and upregulation of RAC1 were observed in LUAD tissues of nonsmoking patients. Immunohistochemistry in THPA database confirmed that UBB and ITGB1 were downregulated, while RAC1 was upregulated in LUAD. GSEA suggested that ribosome, B cell receptor signaling pathway, and cell cycle were associated with UBB, RAC1, and ITGB1 expression, respectively. Conclusions Our study provides insights into the underlying molecular mechanisms of the carcinogenesis and progression of LUAD in nonsmoking patients and demonstrated UBB, RAC1, and ITGB1 as therapeutic and prognostic indicators for nonsmoking LUAD. This is the first study to report the crucial role of UBB in nonsmoking LUAD.
Collapse
|
34
|
Zhuang H, Zhou Z, Ma Z, Li Z, Liu C, Huang S, Zhang C, Hou B. Characterization of the prognostic and oncologic values of ITGB superfamily members in pancreatic cancer. J Cell Mol Med 2020; 24:13481-13493. [PMID: 33073486 PMCID: PMC7701563 DOI: 10.1111/jcmm.15990] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Integrin β (ITGB) superfamily members have been reported to play important roles in multiple biological functions in various cancers. However, the prognostic and oncologic values of ITGB superfamily members have not been systematically investigated in pancreatic cancer (PC). In this study, the mRNA expression and biological functions of ITGB superfamily members in PC were evaluated by bioinformatic analysis. Our results demonstrated that ITGB1, ITGB4, ITGB5 and ITGB6 overexpressions were significantly associated with advanced AJCC stage and histologic grade, and worse prognosis in PC. A prognostic signature based on ITGB1, ITGB4, ITGB5 and ITGB6 showed a reliable predictive performance. Furthermore, one CpGs (cg20545410) in promoter region of ITGB1, four (cg18709893, cg15700850, cg20667796 and cg18326022) of ITGB4, two (cg10977398 and cg03518058) of ITGB5 and one (cg23008083) of ITGB6 were negatively associated with their corresponding mRNA expression, and positively associated with prognosis in PC. We also identified TFAP2A as the potential transcription factor for ITGB4, SP1 for ITGB1 and ITGB6, and FHL2 for ITGB5 and ITGB6. ITGB1, ITGB4, ITGB5 and ITGB6 overexpressions were all significantly involved in focal adhesion signalling pathway. ITGB1 and ITGB5 overexpressions also associated with up-regulation of TGF-β and WNT signalling pathway, whereas ITGB4 and ITGB6 overexpressions associated with up-regulation of Notch signalling pathway. Besides, ITGB1, ITGB5 and ITGB6 overexpressions significantly correlated with immunosuppression in PC. In summary, our study investigated the multilevel prognostic and biological values of ITGB superfamily members in PC.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Shantou University of Medical College, Shantou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Fattahi F, Kiani J, Khosravi M, Vafaei S, Mohammadi A, Madjd Z, Najafi M. Enrichment of Up-regulated and Down-regulated Gene Clusters Using Gene Ontology, miRNAs and lncRNAs in Colorectal Cancer. Comb Chem High Throughput Screen 2020; 22:534-545. [PMID: 31654507 DOI: 10.2174/1386207321666191010114149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
AIM AND OBJECTIVE It is interesting to find the gene signatures of cancer stages based on the omics data. The aim of study was to evaluate and to enrich the array data using gene ontology and ncRNA databases in colorectal cancer. METHODS The human colorectal cancer data were obtained from the GEO databank. The downregulated and up-regulated genes were identified after scoring, weighing and merging of the gene data. The clusters with high-score edges were determined from gene networks. The miRNAs related to the gene clusters were identified and enriched. Furthermore, the long non-coding RNA (lncRNA) networks were predicted with a central core for miRNAs. RESULTS Based on cluster enrichment, genes related to peptide receptor activity (1.26E-08), LBD domain binding (3.71E-07), rRNA processing (2.61E-34), chemokine (4.58E-19), peptide receptor (1.16E-19) and ECM organization (3.82E-16) were found. Furthermore, the clusters related to the non-coding RNAs, including hsa-miR-27b-5p, hsa-miR-155-5p, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-30e-5p, hsa-miR-588, hsa-miR-29-3p, LINC01234, LINC01029, LINC00917, LINC00668 and CASC11 were found. CONCLUSION The comprehensive bioinformatics analyses provided the gene networks related to some non-coding RNAs that might help in understanding the molecular mechanisms in CRC.
Collapse
Affiliation(s)
- Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Medicine Biochemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Biochemistry Department, Tarbiat Modares University, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Zacapala-Gómez AE, C Alarcón-Romero LD, Mendoza-Catalán MA, Salmerón-Bárcenas EG, I Zubillaga-Guerrero M, Torres-Rojas FI, Illades-Aguiar B. Integrin subunit β1 and laminin γ1 chain expression: a potential prognostic biomarker in cervical cancer. Biomark Med 2020; 14:1461-1471. [PMID: 32845182 DOI: 10.2217/bmm-2020-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The aim of this study was to analyze the prognostic value of integrin subunit β1 and laminin γ1 chain in patients with cervical cancer (CC). Materials & methods: The study included 96 samples. Cytological diagnosis, human papillomavirus (HPV) genotyping, HPV integration status and integrin subunit β1 and laminin γ1 chain expressions were performed or determined using Papanicolaou smear, INNO-LiPA® Genotyping Extra Kit, in situ hybridization, and immunocytochemistry, respectively. The association between variables was calculated using chi-squared and Fisher's exact test; logistic regression analysis was performed to calculate odds ratios and CI at 95%. Results: Our results show that integrin subunit β1 and laminin γ1 chain expressions increase according to tumor progression. Integrin subunit β1 and laminin γ1 chain expressions are associated with cytological diagnosis (p < 0.001 and p = 0.001, respectively) and laminin γ1 chain expression with the integration status of HPV (p < 0.001). Moderate/high expressions of integrin subunit β1 and laminin γ1 chain were correlated with overall survival and increased risk of CC (6.86 and 3.75, respectively), the odds ratio was 12.91 when the moderate/high expression of integrin subunit β1 and laminin γ1 chain were combined. Conclusion: Our results suggest that integrin subunit β1 and laminin γ1 chain expressions could be a prognostic biomarker in CC.
Collapse
Affiliation(s)
- Ana E Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Luz Del C Alarcón-Romero
- Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eric G Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Zacatenco, México
| | - Ma I Zubillaga-Guerrero
- Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Francisco I Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| |
Collapse
|
37
|
Beta 1 integrin signaling mediates pancreatic ductal adenocarcinoma resistance to MEK inhibition. Sci Rep 2020; 10:11133. [PMID: 32636409 PMCID: PMC7340786 DOI: 10.1038/s41598-020-67814-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, has a dismal 5-year survival rate of 9%. KRAS is the most commonly mutated gene in pancreatic cancer, but clinical agents that directly target mutant KRAS are not available. Several effector pathways are activated downstream of oncogenic Kras, including MAPK signaling. MAPK signaling can be inhibited by targeting MEK1/2; unfortunately, this approach has been largely ineffective in pancreatic cancer. Here, we set out to identify mechanisms of MEK inhibitor resistance in pancreatic cancer. We optimized the culture of pancreatic tumor 3D clusters that utilized Matrigel as a basement membrane mimetic. Pancreatic tumor 3D clusters recapitulated mutant KRAS dependency and recalcitrance to MEK inhibition. Treatment of the clusters with trametinib, a MEK inhibitor, had only a modest effect on these cultures. We observed that cells adjacent to the basement membrane mimetic Matrigel survived MEK inhibition, while the cells in the interior layers underwent apoptosis. Our findings suggested that basement membrane attachment provided survival signals. We thus targeted integrin β1, a mediator of extracellular matrix contact, and found that combined MEK and integrin β1 inhibition bypassed trametinib resistance. Our data support exploring integrin signaling inhibition as a component of combination therapy in pancreatic cancer.
Collapse
|
38
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
39
|
Nicolet BP, Guislain A, van Alphen FPJ, Gomez-Eerland R, Schumacher TNM, van den Biggelaar M, Wolkers MC. CD29 identifies IFN-γ-producing human CD8 + T cells with an increased cytotoxic potential. Proc Natl Acad Sci U S A 2020; 117:6686-6696. [PMID: 32161126 PMCID: PMC7104308 DOI: 10.1073/pnas.1913940117] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytotoxic CD8+ T cells can effectively kill target cells by producing cytokines, chemokines, and granzymes. Expression of these effector molecules is however highly divergent, and tools that identify and preselect CD8+ T cells with a cytotoxic expression profile are lacking. Human CD8+ T cells can be divided into IFN-γ- and IL-2-producing cells. Unbiased transcriptomics and proteomics analysis on cytokine-producing fixed CD8+ T cells revealed that IL-2+ cells produce helper cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+ T cells expressed the surface marker CD29 already prior to stimulation. CD29 also marked T cells with cytotoxic gene expression from different tissues in single-cell RNA-sequencing data. Notably, CD29+ T cells maintained the cytotoxic phenotype during cell culture, suggesting a stable phenotype. Preselecting CD29-expressing MART1 TCR-engineered T cells potentiated the killing of target cells. We therefore propose that CD29 expression can help evaluate and select for potent therapeutic T cell products.
Collapse
Affiliation(s)
- Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Floris P J van Alphen
- Department of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands
- Department of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands;
- Landsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
40
|
Baltes F, Pfeifer V, Silbermann K, Caspers J, Wantoch von Rekowski K, Schlesinger M, Bendas G. β 1-Integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118663. [PMID: 31987794 DOI: 10.1016/j.bbamcr.2020.118663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Molecular interactions of tumor cells with the microenvironment are regarded as onset of chemotherapy resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate a mechanism of CAM-DR in breast cancer cells in vitro. We show that human MCF-7 and MDA-MB-231 breast cancer cells decrease their sensitivity towards cisplatin, doxorubicin, and mitoxantrone cytotoxicity upon binding to collagen type 1 (COL1) or fibronectin (FN). The intracellular concentrations of doxorubicin and mitoxantrone were decreased upon cell cultivation on COL1, while cellular cisplatin levels remained unaffected. Since doxorubicin and mitoxantrone are transporter substrates, this refers to ATP binding cassette (ABC) efflux transporter activities. The activation of the transporters BCRP, P-gp and MRP1 was shown by fluorescence assays to distinguish the individual input of these transporters to resistance in presence of COL1 and related to their expression levels by western blot. An ABC transporter inhibitor was able to re-sensitize COL1-treated cells for doxorubicin and mitoxantrone toxicity. Antibody-blocking of β1-integrin (ITGB1) induced sensitization towards the indicated cytostatic drugs by attenuating the increased ABC efflux activity. This refers to a key role of ITGB1 for matrix binding and subsequent transporter activation. A downregulation of α2β1 integrin following COL1 binding appears as clear indication for the relationship between ITGB1 and ABC transporters in regulating resistance formation, while knockdown of ITGB1 leads to a significant upregulation of all three transporters. Our data provide evidence for a role of CAM-DR in breast cancer via an ITGB1 - transporter axis and offer promising therapeutic targets for cancer sensitization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gerd Bendas
- Department of Pharmacy, University of Bonn, Germany.
| |
Collapse
|
41
|
Identification of CHD4-β1 integrin axis as a prognostic marker in triple-negative breast cancer using next-generation sequencing and bioinformatics. Life Sci 2019; 238:116963. [DOI: 10.1016/j.lfs.2019.116963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/07/2023]
|
42
|
Song X, Xu W, Xu G, Kong S, Ding L, Xiao J, Cao X, Wang F. ACAP4 interacts with CrkII to promote the recycling of integrin β1. Biochem Biophys Res Commun 2019; 516:8-14. [PMID: 31182282 DOI: 10.1016/j.bbrc.2019.05.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
ACAP4, a GTPase-activating protein (GAP) for the ADP-ribosylation factor 6 (ARF6), plays import roles in cell migration, cell polarity, vesicle trafficking and tumorigenesis. Similarly, the ubiquitously expressed adaptor protein CrkII functions in a wide range of cellular activities, including cell proliferation, T cell adhesion and activation, tumorigenesis, and bacterial pathogenesis. Here, we demonstrate that ACAP4 physically interacts with CrkII. Biochemical experiments revealed that ACAP4550-660 and the SH3N domain of CrkII are responsible for the interaction. Functional characterization showed that the interaction is required for the recruitment of ACAP4 to the plasma membrane where ACAP4 functions to regulate the recycling of the signal transducer integrin β1. Thus, we suggest that the CrkII-ACAP4 complex may be involved in regulation of cell adhesion.
Collapse
Affiliation(s)
- Xueyan Song
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guangsheng Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuai Kong
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lu Ding
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
43
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
44
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen CE, Diamandis EP, Michael Siu KW, Marshall JG. The plasma peptides of ovarian cancer. Clin Proteomics 2018; 15:41. [PMID: 30598658 PMCID: PMC6302491 DOI: 10.1186/s12014-018-9215-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. Methods The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. Results Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p < 0.0001) in the ovarian cancer samples such as ZNF91, ZNF254, F13A1, LOC102723511, ZNF253, QSER1, P4HA1, GPC6, LMNB2, PYGB, NBR1, CCNI2, LOC101930455, TRPM5, IGSF1, ITGB1, CHD6, SIRT1, NEFM, SKOR2, SUPT20HL1, PLCE1, CCDC148, CPSF3, MORN3, NMI, XTP11, LOC101927572, SMC5, SEMA6B, LOXL3, SEZ6L2, and DHCR24. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. Analysis of the frequently observed proteins by ANOVA confirmed increases in mean precursor intensity in ZFN91, TRPM5, SIRT1, CHD6, RIMS1, LOC101930455 (XP_005275896), CCDC37 and GIMAP4 between ovarian cancer versus normal female and other diseases or controls by the Tukey–Kramer HSD test. Conclusion Here we show that separation of endogenous peptides with a step gradient of organic/water and differential centrifugation followed by random and independent sampling by LC–ESI–MS/MS with analysis of peptide frequency and intensity by SQL Server and R revealed significant difference in the ex vivo cleavage of peptides between ovarian cancer and other clinical treatments. There was striking agreement between the proteins discovered from cancer plasma versus previous biomarkers discovered in tumors by genetic or biochemical methods. The results indicate that variation in plasma proteins from ovarian cancer may be directly discovered by LC–ESI–MS/MS that will be a powerful tool for clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9215-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | | | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4Keenan Chair in Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Alexander Romaschin
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - John C Marshall
- 5Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- 10Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Ryerson University, Toronto, Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg.,14Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| |
Collapse
|
45
|
Mechanisms of Matrix-Induced Chemoresistance of Breast Cancer Cells-Deciphering Novel Potential Targets for a Cell Sensitization. Cancers (Basel) 2018; 10:cancers10120495. [PMID: 30563275 PMCID: PMC6315379 DOI: 10.3390/cancers10120495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor cell binding to microenvironment components such as collagen type 1 (COL1) attenuates the sensitivity to cytotoxic drugs like cisplatin (CDDP) or mitoxantrone (MX), referred to as cell adhesion mediated drug resistance (CAM-DR). CAM-DR is considered as the onset for resistance mutations, but underlying mechanisms remain elusive. To evaluate CAM-DR as target for sensitization strategies, we analyzed signaling pathways in human estrogen-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells by western blot, proteome profiler array and TOP-flash assay in presence of COL1. β1-Integrins, known to bind COL1, appear as key for mediating COL1-related resistance in both cell lines that primarily follows FAK/PI3K/AKT pathway in MCF-7, and MAPK pathway in MDA-MB-231 cells. Notably, pCREB is highly elevated in both cell lines. Consequently, blocking these pathways sensitizes the cells evidently to CDDP and MX treatment. Wnt signaling is not relevant in this context. A β1-integrin knockdown of MCF-7 cells (MCF-7-β1-kd) reveals a signaling shift from FAK/PI3K/AKT to MAPK pathway, thus CREB emerges as a promising primary target for sensitization in MDA-MB-231, and secondary target in MCF-7 cells. Concluding, we provide evidence for importance of CAM-DR in breast cancer cells and identify intracellular signaling pathways as targets to sensitize cells for cytotoxicity treatment regimes.
Collapse
|
46
|
Novel anti-inflammatory target of geniposide: Inhibiting Itgβ1/Ras-Erk1/2 signal pathway via the miRNA-124a in rheumatoid arthritis synovial fibroblasts. Int Immunopharmacol 2018; 65:284-294. [DOI: 10.1016/j.intimp.2018.09.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023]
|
47
|
Zhou X, Shan Z, Yang H, Xu J, Li W, Guo F. RelB plays an oncogenic role and conveys chemo-resistance to DLD-1 colon cancer cells. Cancer Cell Int 2018; 18:181. [PMID: 30473630 PMCID: PMC6234565 DOI: 10.1186/s12935-018-0677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background Nuclear transcription factor kappa B (NF-κB) subunits exhibit crucial roles in tumorigenesis and chemo-sensitivity. Recent studies suggest that RelB, the key subunit of the alternative NF-κB pathway, plays a critical role in the progression of diverse human malignancies. However, the significance of RelB in colorectal cancer (CRC) remains unclear. Here, we systematically explored the functions of the alternative NF-κB subunit RelB in colon cancer cells and its underlying mechanism. Methods Stably transfected RelB-shRNA DLD-1 cells were established using Lipofectamine 2000. NF-κB DNA-binding capability was quantified using an ELISA-based NF-κB activity assay. Cell growth was monitored by an x-Celligence system. Cell proliferation was analyzed by a CCK-8 and a Brdu proliferation assay. Response to 5-FU was assessed by an x-Celligence system. Cell apoptosis and cell cycle was detected using flow cytometry analyses. Cell migration and invasion abilities were detected by an x-Celligence system, Transwell inserts, and wound-healing assays. RelB expression and its clinical significance were analyzed using the CRC tissue microarray. The expression of NF-κB signaling subunits, AKT/mTOR signaling molecules, cell cycle related proteins, MMP2, MMP9, and Integrin β-1 were measured by Western blotting analyses. Results The RelB-silencing inhibited cell growth of DLD-1 cells. The RelB-silencing exerted the anti-proliferative by downregulation of AKT/mTOR signaling. The RelB-silencing caused G0–G1 cell cycle arrested likely due to decreasing the expression of Cyclin D1 and CDK4, concomitant with increased expression of p27Kip1. The RelB-silencing enhanced cytotoxic effect of 5-FU and induced cell accumulation in S-phase. The RelB-silencing impaired the migration and invasion potential of DLD-1 cells, which was related to downregulation of MMP2, MMP9, and Integrin β-1. Importantly, the RelB expression was correlated with depth of tumor invasion, lymph node metastasis, metastasis stage, and pTNM stage. High-RelB expression was significantly correlated with poor overall survival in CRC patients. Conclusion Our studies here provided evidence that RelB plays an oncogenic role and conveys chemo-resistance to 5-FU. RelB can be considered as an independent indicator of prognosis in CRC.
Collapse
Affiliation(s)
- Xiaojun Zhou
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Zhili Shan
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hengying Yang
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jingjing Xu
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjing Li
- 3Department of Clinical Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215006 China
| | - Feng Guo
- 4Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|