1
|
Sahebnasagh R, Deli H, Shadboorestan A, Vakili-Ghartavol Z, Salehi N, Komeili-Movahhed T, Azizi Z, Ghahremani MH. Identification of key lncRNAs associated with oxaliplatin resistance in colorectal cancer cells and isolated exosomes: From In-Silico prediction to In-Vitro validation. PLoS One 2024; 19:e0311680. [PMID: 39401197 PMCID: PMC11472961 DOI: 10.1371/journal.pone.0311680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
One of the critical challenges in managing colorectal cancer (CRC) is the development of oxaliplatin (OXP) resistance. Long non-coding RNAs (lncRNAs) have a crucial role in CRC progression and chemotherapy resistance, with exosomal lncRNAs emerging as potential biomarkers. This study aimed to predict key lncRNAs involved in OXP-resistance using in-silico methods and validate them using RT-qPCR methods in CRC cells and their isolated exosomes. Two public datasets, GSE42387 and GSE119481, were downloaded from the GEO database to identify differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) associated with OXP-resistance in the HCT116 cell line. The analysis of GSE42387 revealed 210 DEGs, and GSE119481 identified 73 DEmiRNAs. A protein-protein interaction (PPI) network analysis of the DEGs identified 133 interconnected genes, from which the top ten genes with the highest degree scores were selected. By intersecting predicted miRNAs targeting these genes with the DEmiRNAs, 38 common miRNAs were found. Subsequently, 224 lncRNAs targeting these common miRNAs were predicted. LncRNA-miRNA-mRNA network were constructed and the top five lncRNAs with the highest degree scores were identified. Analysis using the Kaplan-Meier plotter database revealed that the key lncRNAs NEAT1, OIP5-AS1, and MALAT1 are significantly associated with the overall survival of CRC patients. To validate these lncRNAs, OXP-resistant HCT116 sub-cell line (HCT116/OXR) was developed by exposing parental HCT116 cells to gradually increasing concentrations of OXP. Exosomes derived from both HCT116 and HCT116/OXR cells were isolated and characterized utilizing dynamic light scattering (DLS), transmission electron microscopy (TEM), and Western blotting. RT-qPCR confirmed elevated levels of NEAT1, OIP5-AS1, and MALAT1 in HCT116/OXR cells and their exosomes compared to parental HCT116 cells and their exosomes. This study concludes that NEAT1, OIP5-AS1, and MALAT1 are associated with the OXP-resistance in CRC. The high levels of these lncRNAs in exosomes of resistant cells suggest their involvement in intercellular communication and resistance propagation. This positioning makes them promising biomarkers for OXP-resistance in CRC.
Collapse
Affiliation(s)
- Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Deli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeynab Vakili-Ghartavol
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Salehi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hawkes G, Beaumont RN, Li Z, Mandla R, Li X, Albert CM, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Boerwinkle E, Brody JA, Carson AP, Chami N, Chen YDI, Chung MK, Curran JE, Darbar D, Ellinor PT, Fornage M, Gordeuk VR, Guo X, He J, Hwu CM, Kalyani RR, Kaplan R, Kardia SLR, Kooperberg C, Loos RJF, Lubitz SA, Minster RL, Naseri T, Viali S, Mitchell BD, Murabito JM, Palmer ND, Psaty BM, Redline S, Shoemaker MB, Silverman EK, Telen MJ, Weiss ST, Yanek LR, Zhou H, Liu CT, North KE, Justice AE, Locke JM, Owens N, Murray A, Patel K, Frayling TM, Wright CF, Wood AR, Lin X, Manning A, Weedon MN. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat Commun 2024; 15:8549. [PMID: 39362880 PMCID: PMC11450065 DOI: 10.1038/s41467-024-52579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The role of rare non-coding variation in complex human phenotypes is still largely unknown. To elucidate the impact of rare variants in regulatory elements, we performed a whole-genome sequencing association analysis for height using 333,100 individuals from three datasets: UK Biobank (N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of non-coding variants in regulatory regions based on proximal-regulatory, intergenic-regulatory and deep-intronic annotation. We observed 29 independent variants associated with height at P < 6 × 10 - 10 after conditioning on previously reported variants, with effect sizes ranging from -7cm to +4.7 cm. We also identified and replicated non-coding aggregate-based associations proximal to HMGA1 containing variants associated with a 5 cm taller height and of highly-conserved variants in MIR497HG on chromosome 17. We have developed an approach for identifying non-coding rare variants in regulatory regions with large effects from whole-genome sequencing data associated with complex traits.
Collapse
Affiliation(s)
- Gareth Hawkes
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Robin N Beaumont
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ravi Mandla
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Xihao Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donna K Arnett
- Provost Office, University of South Carolina, Columbia, SC, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Kathleen C Barnes
- Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland, OH, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Myrian Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor R Gordeuk
- Department of Medicine, School of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, Brown University, Providence, Rhode Island, US
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Dept of Chronic Disease Epidemiology, Yale University, New Haven, Connecticut, US
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joanne M Murabito
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-, Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Population Health Sciences, Geisinger, Danville, PA, USA
| | - Jonathan M Locke
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Nick Owens
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Anna Murray
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kashyap Patel
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | | | | | - Andrew R Wood
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Alisa Manning
- Department of Medicine, Harvard Medical School, Broad Institute, Boston, Massachusetts, USA
| | - Michael N Weedon
- Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Fonseca TS, Martins RM, Rolo AP, Palmeira CM. SNHG1: Redefining the Landscape of Hepatocellular Carcinoma through Long Noncoding RNAs. Biomedicines 2024; 12:1696. [PMID: 39200161 PMCID: PMC11351223 DOI: 10.3390/biomedicines12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used in the management of HCC, has limited sensitivity and specificity, making early detection and effective management more difficult. Thus, new management approaches in diagnosis and prognosis are needed to improve the outcome and survival of HCC patients. SNHG1 is a long noncoding RNA mainly expressed in the cell and cytoplasm of cells and is consistently upregulated in tissues and cell lines of HCC, where it acts as an important regulator of various processes: modulation of p53 activity, sponging of microRNAs with consequent upregulation of their target mRNAs, regulation of fatty acid, iron and glucose metabolism, and interaction with immune cells. The deregulation of these processes results in abnormal cell division, angiogenesis, and apoptosis, thus promoting various aspects of tumorigenesis, including proliferation, invasion, and migration of cells. Clinically, a higher expression of SNHG1 predicts poorer clinical outcomes by significantly correlating with bigger, less differentiated, and more aggressive tumors, more advanced disease stages, and lower overall survival in HCC patients. This article comprehensively summarizes the current understanding of the multifaceted roles of SNHG1 in the pathogenesis of HCC, while also highlighting its clinicopathological correlations, therefore concluding that it has potential as a biomarker in HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Tiago S. Fonseca
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rui Miguel Martins
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Department of Surgery, Portuguese Oncology Institute, 3000-075 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
4
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
5
|
Thirunavukkarasu S, Banerjee S, Tantray I, Ojha R. Non-coding RNA and reprogrammed mitochondrial metabolism in genitourinary cancer. Front Genet 2024; 15:1364389. [PMID: 38544804 PMCID: PMC10965626 DOI: 10.3389/fgene.2024.1364389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) have been recently shown to contribute to tumorigenesis by mediating changes in metabolism. ncRNAs act as key molecules in metabolic pathways regulation. The dysregulation of ncRNAs during cancer progression contributes to altered metabolic phenotypes leading to reprogrammed metabolism. Since ncRNAs affect different tumor processes by regulating mitochondrial dynamics and metabolism, in the future ncRNAs can be exploited in disease detection, diagnosis, treatment, and resistance. The purpose of this review is to highlight the role of ncRNAs in mitochondrial metabolic reprogramming and to relate their therapeutic potential in the management of genitourinary cancer.
Collapse
Affiliation(s)
- Sandiya Thirunavukkarasu
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shouryarudra Banerjee
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishaq Tantray
- InventX Scientia, Kashmir, India
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Wu S, Wu Y, Deng S, Lei X, Yang X. The Impact of miR-122 on Cancer. Curr Pharm Biotechnol 2024; 25:1489-1499. [PMID: 38258767 DOI: 10.2174/0113892010272106231109065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 01/24/2024]
Abstract
MiRNAs are confirmed to be a kind of short and eminently conserved noncoding RNAs, which regulate gene expression at the post-transcriptional level via binding to the 3'- untranslated region (3'-UTR) of targeting multiple target messenger RNAs. Recently, growing evidence stresses the point that they play a crucial role in a variety of pathological processes, including human cancers. Dysregulated miRNAs act as oncogenes or tumor suppressor genes in many cancer types. Among them, we noticed that miR-122 has been widely reported to significantly influence carcinogenicity in a variety of tumors by regulating target genes and signaling pathways. Here, we focused on the expression of miR-122 in regulatory mechanisms and tumor biological processes. We also discussed the effects of miR-122 dysregulation in various types of human malignancies and the potential to develop new molecular miR-122-targeted therapies. The present review suggests that miR-122 may be a potentially useful cancer diagnosis and treatment biomarker. More clinical diagnoses need to be further launched in the future. A promising direction to improve the outcomes for cancer patients will likely combine miR-122 with other traditional tumor biomarkers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
8
|
Ibrahim BA, Hegazy AA, Gobran MA, Zaitoun MA, Elmigdadi F, El-Gindy GA, Alashkar EM, Omar WE. Expression of microRNAs ‘let-7d and miR-195’ and Apoptotic Genes ‘BCL2 and Caspase-3’ as Potential Biomarkers of Female Breast Carcinogenesis. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:2299-2313. [DOI: 10.13005/bpj/2806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2024]
Abstract
Objective: Breast cancer (BC) is the most common cause of cancer-related death among women worldwide. Let-7d and microRNA-195 (miR-195) are members of microRNAs that are known tumor suppressors and are involved in the regulation of apoptosis, invasion, and other cellular functions. However, the roles of these microRNAs in BC progression remain controversial. This study aimed to explore the correlation between the expression of let-7d and miR-195 and apoptosis-related genes (ARGs) “B-cell lymphoma 2 (BCL2) and caspase-3 (CASP3)” as potential biomarkers of breast carcinogenesis. Methods: It was a retrospective case-control study in which expression of let-7d, miR-195, CASP3, and BCL2 was assessed using quantitative real-time PCR (qRT-PCR); and immunohistochemical (IHC) staining was used to determine expression of BCL2 and CASP3 in BC tissue versus normal breast tissue (NT) samples. Results: The expression of let-7d and miR-195 was significantly reduced within BC tissues compared to NT (P: < 0.0001); and there was a statically positive correlation between them (r=0.314, P: 0.005). They have also been correlated to biomarkers’ expression of genes related to apoptosis. There was a statistically significant positive association between CASP3, and both let-7d, and miR-195 relative gene expression (r=0.713, P: <0.0001 and r=0.236, P: 0.03, respectively). In contrast, there was a statistically significant negative association between the relative gene expression of BCL2, with let-7d, and miR-195 (r=-0.221, P: 0.04 and r=-0.311, P: 0.005, respectively). Conclusion: Let-7d and miR-195 have been suggested to be involved in BC through modulation of the ARGs including BCL2 and CASP3. The qRT-PCR and IHC studies demonstrated that decreased expression of let-7d and miR-195 prohibits apoptosis via downregulating CASP3 and increasing BCL2 expressions promoting BC progression. These results also hypothesize that let-7d and miR-195 along with apoptotic biomarkers (BCL2 and CASP3) can be used in the future to introduce novel, non-invasive molecular biomarkers for BC into clinical practice.
Collapse
Affiliation(s)
- Basma A. Ibrahim
- 1Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig City 44519, Egypt
| | - Abdelmonem Awad Hegazy
- 2Basic Medical and Dental Sciences Department, Faculty of Dentistry, Zarqa University, Zarqa City 13110, Jordan
| | - Mai Ahmed Gobran
- 4Pathology Department, Faculty of Medicine, Zagazig University, Zagazig City 44519, Egypt
| | | | - Fayig Elmigdadi
- 2Basic Medical and Dental Sciences Department, Faculty of Dentistry, Zarqa University, Zarqa City 13110, Jordan
| | - Gehane A. El-Gindy
- 6Clinical Pharmacology Department, Faculty of Medicine, Mutah University, Alkarak 61710, Jordan
| | - Elsayed M. Alashkar
- 8Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11765, Egypt
| | - Walaa E. Omar
- 1Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig City 44519, Egypt
| |
Collapse
|
9
|
Aleshcheva G, Baumeier C, Harms D, Bock C, Escher F, Schultheiss H. MicroRNAs as novel biomarkers and potential therapeutic options for inflammatory cardiomyopathy. ESC Heart Fail 2023; 10:3410-3418. [PMID: 37679968 PMCID: PMC10682862 DOI: 10.1002/ehf2.14523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Inflammation of the heart is a complex biological and pathophysiological response of the immune system to a variety of injuries leading to tissue damage and heart failure. MicroRNAs (miRNAs) emerge as pivotal players in the development of numerous diseases, suggesting their potential utility as biomarkers for inflammation and as viable candidates for therapeutic interventions. The primary aim of this investigation was to pinpoint and assess particular miRNAs in individuals afflicted by virus-negative inflammatory dilated cardiomyopathy (DCMi). METHODS AND RESULTS The study involved the analysis of 152 serum samples sourced from patients diagnosed with unexplained heart failure through endomyocardial biopsy. Among these samples, 38 belonged to DCMi patients, 24 to DCM patients, 44 to patients displaying inflammation alongside diverse viral infections, and 46 to patients solely affected by viral infections without concurrent inflammation. Additionally, serum samples from 10 healthy donors were included. The expression levels of 754 distinct miRNAs were evaluated using TaqMan OpenArray. MiR-1, miR-23, miR-142-5p, miR-155, miR-193, and miR-195 exhibited exclusive down-regulation solely in DCMi patients (P < 0.005). These miRNAs enabled effective differentiation between individuals with inflammation unlinked to viruses (DCMi) and all other participant groups (P < 0.005), boasting a specificity surpassing 86%. CONCLUSIONS The identification of specific miRNAs offers a novel diagnostic perspective for recognizing intramyocardial inflammation within virus-negative DCMi patients. Furthermore, these miRNAs hold promise as potential candidates for tailored therapeutic strategies in the context of virus-negative DCMi.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Christian Baumeier
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Dominik Harms
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - C.‐Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious DiseasesRobert Koch InstituteBerlinGermany
| | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
- Department of Cardiology, Campus VirchowCharité – University Hospital BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | | |
Collapse
|
10
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
11
|
Yang R, Liu X, Hu J, Xu H, Song J, Zhou H, Li M, Huang Y, Zhang L, Fan Q. Robust nontarget DNA-triggered catalytic hairpin assembly amplification strategy for the improved sensing of microRNA in complex biological matrices. Analyst 2023; 148:5856-5863. [PMID: 37885382 DOI: 10.1039/d3an01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A simple but robust fluorescence strategy based on a nontarget DNA-triggered catalytic hairpin assembly (CHA) was constructed to probe microRNA-21 (miR-21). A short ssDNA rather than degradable target miRNA was employed as an initiator. Two molecular beacons needed to assist the CHA process were simplified to avoid unfavorable nonspecific interactions. In the presence of the target, the initiator was released from a partially duplex and triggered the cyclic CHA reaction, resulting in a significantly amplified optical readout. A wide linear range from 0.1 pM to 1000 pM for the sensing of miR-21 in buffer was achieved with a low detection limit of 0.76 pM. Fortunately, this strategy demonstrated an obviously improved performance for miR-21 detection in diluted serum. The fluorescence signals were enhanced remarkably and the sensitivity was further improved to 0.12 pM in 10% serum. The stability for miR-21 quantification and the capability for the analysis of single nucleotide polymorphisms (SNPs) were also improved greatly. More importantly, the biosensor could be applied to image miR-21 in different living tumor cells with high resolution, illustrating its promising potential for the assay of miRNAs in various complex situations for early-stage disease diagnosis and biological studies in cells.
Collapse
Affiliation(s)
- Ruining Yang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
| | - Jixiang Song
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Huiyu Zhou
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Meixing Li
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lei Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
12
|
Davey MG, Abbas R, Kerin EP, Casey MC, McGuire A, Waldron RM, Heneghan HM, Newell J, McDermott AM, Keane MM, Lowery AJ, Miller N, Kerin MJ. Circulating microRNAs can predict chemotherapy-induced toxicities in patients being treated for primary breast cancer. Breast Cancer Res Treat 2023; 202:73-81. [PMID: 37540289 PMCID: PMC10504160 DOI: 10.1007/s10549-023-07033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE Prescribing NAC for breast cancer is a pragmatic treatment strategy for several reasons; however, certain patients suffer chemotherapy-induced toxicities. Unfortunately, identifying patients at risk of toxicity often proves challenging. MiRNAs are small non-coding RNA molecules which modulate genetic expression. The aim of this study was to determine whether circulating miRNAs are sensitive biomarkers that can identify the patients likely to suffer treatment-related toxicities to neoadjuvant chemotherapy (NAC) for primary breast cancer. METHODS This secondary exploratory from the prospective, multicentre translational research trial (CTRIAL ICORG10/11-NCT01722851) recruited 101 patients treated with NAC for breast cancer, from eight treatment sites across Ireland. A predetermined five miRNAs panel was quantified using RQ-PCR from patient bloods at diagnosis. MiRNA expression was correlated with chemotherapy-induced toxicities. Regression analyses was performed using SPSS v26.0. RESULTS One hundred and one patients with median age of 55 years were recruited (range: 25-76). The mean tumour size was 36 mm and 60.4% had nodal involvement (n = 61) Overall, 33.7% of patients developed peripheral neuropathies (n = 34), 28.7% developed neutropenia (n = 29), and 5.9% developed anaemia (n = 6). Reduced miR-195 predicted patients likely to develop neutropenia (P = 0.048), while increased miR-10b predicted those likely to develop anaemia (P = 0.049). Increased miR-145 predicted those experiencing nausea and vomiting (P = 0.019), while decreased miR-21 predicted the development of mucositis (P = 0.008). CONCLUSION This is the first study which illustrates the value of measuring circulatory miRNA to predict patient-specific toxicities to NAC. These results support the ideology that circulatory miRNAs are biomarkers with utility in predicting chemotherapy toxicity as well as treatment response.
Collapse
Affiliation(s)
- Matthew G Davey
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland.
- Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin, D02 YN77, Ireland.
| | - Ray Abbas
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Eoin P Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Maire Caitlin Casey
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Andrew McGuire
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Ronan M Waldron
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Helen M Heneghan
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - John Newell
- School of Mathematics, Statistics and Applied Mathematics, University of Galway, Galway, H91 TK33, Ireland
| | - Ailbhe M McDermott
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Maccon M Keane
- Department of Medical Oncology, Galway University Hospital, Galway, H71 YR71, Ireland
| | - Aoife J Lowery
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Nicola Miller
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, Galway, H91 YR71, Ireland
- Cancer Trials Ireland, Innovation House, Old Finglas Road, Dublin, D11 KXN4, Ireland
| |
Collapse
|
13
|
Singh P. MicroRNA based combinatorial therapy against TKIs resistant CML by inactivating the PI3K/Akt/mTOR pathway: a review. Med Oncol 2023; 40:300. [PMID: 37713129 DOI: 10.1007/s12032-023-02161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Chronic myeloid leukemia (CML) is characterized by presence of Philadelphia chromosome, which harbors BCR-ABL oncogene responsible for encoding BCR-ABL oncoprotein. This oncoprotein interferes with cellular signaling pathways, resulting in tumor progression. Among these pathways, PI3K/Akt/mTOR pathway is significantly upregulated in CML. Tyrosine kinase inhibitors (TKIs) are current standard therapy for CML, and they have shown remarkable efficacy. However, emergence of TKIs drug resistance has necessitated investigation of novel therapeutic approaches. Components of PI3K/Akt/mTOR pathway have emerged as attractive targets in this context, as this pathway is known to be activated in TKIs-resistant CML cells/patients. Inhibiting this pathway may provide a complementary approach to improving TKIs' efficacy and treatment outcomes. Given previous research indicating that miRNAs play an inhibitory role in cancer, current study used computational tools to identify miRNAs that specifically target pathway's core components. A comprehensive analysis was performed, resulting in identification of 111 miRNAs that potentially target PI3K/Akt/mTOR pathway. From this extensive list, 7 miRNAs was selected for further investigation based on their consistent downregulation across leukemia subtypes. Except for hsa-miR-199a-3p, remaining six miRNAs have been extensively studied in acute myeloid leukemia (AML). Given high similarity between AML and CML, it is believed that six miRNAs which are not studied in context of CML may also be advantageous for curing chemoresistance in CML. Building upon this knowledge, it is reasonable to speculate that a combination therapy approach involving use of miRNAs alongside TKIs may offer improved therapy for TKIs-resistant CML compared to TKIs monotherapy alone.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, 151401, Bathinda, India.
| |
Collapse
|
14
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
15
|
Moratalla-Navarro F, Díez-Villanueva A, Garcia-Serrano A, Closa A, Cordero D, Solé X, Guinó E, Sanz-Pamplona R, Sanjuan X, Santos C, Biondo S, Salazar R, Moreno V. Identification of a Twelve-microRNA Signature with Prognostic Value in Stage II Microsatellite Stable Colon Cancer. Cancers (Basel) 2023; 15:3301. [PMID: 37444411 DOI: 10.3390/cancers15133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
We aimed to identify and validate a set of miRNAs that could serve as a prognostic signature useful to determine the recurrence risk for patients with COAD. Small RNAs from tumors of 100 stage II, untreated, MSS colon cancer patients were sequenced for the discovery step. For this purpose, we built an miRNA score using an elastic net Cox regression model based on the disease-free survival status. Patients were grouped into high or low recurrence risk categories based on the median value of the score. We then validated these results in an independent sample of stage II microsatellite stable tumor tissues, with a hazard ratio of 3.24, (CI95% = 1.05-10.0) and a 10-year area under the receiver operating characteristic curve of 0.67. Functional analysis of the miRNAs present in the signature identified key pathways in cancer progression. In conclusion, the proposed signature of 12 miRNAs can contribute to improving the prediction of disease relapse in patients with stage II MSS colorectal cancer, and might be useful in deciding which patients may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), 08907 Barcelona, Spain
| | - Anna Díez-Villanueva
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Ainhoa Garcia-Serrano
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| | - Adrià Closa
- Department of Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - David Cordero
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Xavier Solé
- Molecular Biology CORE, Center for Biomedical Diagnostics, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- Translational Genomic and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Elisabet Guinó
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Lozano Blesa University Hospital, Aragon Health Research Institute (IISA), Aragon I+D Foundation (ARAID), Government of Aragon, 50009 Zaragoza, Spain
| | - Xavier Sanjuan
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Pathology, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Cristina Santos
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Oncology Service, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Consortium for Biomedical Research in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Sebastiano Biondo
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), 08907 Barcelona, Spain
- Department of General and Digestive Surgery, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Ramón Salazar
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), 08907 Barcelona, Spain
- Oncology Service, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Consortium for Biomedical Research in Oncology (CIBERONC), 28029 Madrid, Spain
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona (UB), 08907 Barcelona, Spain
| |
Collapse
|
16
|
Zanon MF, Scapulatempo-Neto C, Gama RR, Marques MMC, Reis RM, Evangelista AF. Identification of MicroRNA Expression Profiles Related to the Aggressiveness of Salivary Gland Adenoid Cystic Carcinomas. Genes (Basel) 2023; 14:1220. [PMID: 37372400 DOI: 10.3390/genes14061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has been reported as the second most common carcinoma of the salivary glands. Few studies have associated miRNA expression with ACC aggressiveness. In this study, we evaluated the miRNA profile of formalin-fixed, paraffin-embedded (FFPE) samples of salivary gland ACC patients using the NanoString platform. We studied the miRNA expression levels associated with the solid growth pattern, the more aggressive histologic feature of ACCs, compared with the tubular and cribriform growth patterns. Moreover, the perineural invasion status, a common clinicopathological feature of the disease that is frequently associated with the clinical progression of ACC, was investigated. The miRNAs showing significant differences between the study groups were selected for target prediction and functional enrichment, which included associations with the disease according to dedicated databases. We observed decreased expression of miR-181d, miR-23b, miR-455, miR-154-5p, and miR-409 in the solid growth pattern compared with tubular and cribriform growth patterns. In contrast, miR-29c, miR-140, miR-195, miR-24, miR-143, and miR-21 were overexpressed in patients with perineural invasion. Several target genes of the miRNAs identified have been associated with molecular processes involved in cell proliferation, apoptosis, and tumor progression. Together, these findings allowed the characterization of miRNAs potentially associated with aggressiveness in salivary gland adenoid cystic carcinoma. Our results highlight important new miRNA expression profiles involved in ACC carcinogenesis that could be associated with the aggressive behavior of this tumor type.
Collapse
Affiliation(s)
- Maicon Fernando Zanon
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Ricardo Ribeiro Gama
- Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro 21040-361, Brazil
| |
Collapse
|
17
|
Ye Q, Raese R, Luo D, Cao S, Wan YW, Qian Y, Guo NL. MicroRNA, mRNA, and Proteomics Biomarkers and Therapeutic Targets for Improving Lung Cancer Treatment Outcomes. Cancers (Basel) 2023; 15:cancers15082294. [PMID: 37190222 DOI: 10.3390/cancers15082294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rebecca Raese
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Dajie Luo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Shu Cao
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ying-Wooi Wan
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
18
|
Zhou Y, Wang G, Cai J, Du Y, Li H, Duan L, Zhao G, Huang Y. Exosomal transfer of miR-195-5p restrains lung adenocarcinoma progression. Exp Cell Res 2023; 424:113485. [PMID: 36657657 DOI: 10.1016/j.yexcr.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Exosome is an important way for tumor cells to communicate with other cells and plays an important role in tumor progression. Previous studies revealed that miR-195-5p acts as a tumor suppressor in lung cancer. However, the role and molecular mechanism of exosomal transferred miR-195-5p in lung adenocarcinoma (LAC) remains unknown. Here, we found that miR-195-5p expression in circulating exosomes of LAC patients was lower than that of healthy controls. Meanwhile, the expression of exosomal miR-195-5p from normal bronchial epithelial cell line BEAS-2B cells was significantly higher than that of lung cancer cell lines. The exosome labeling assay confirmed that BEAS-2B cells-derived exosomes could be captured by lung cancer cells. Furthermore, exosomal miR-195-5p derived from BEAS-2B cells remarkably inhibited the proliferation, migration, invasion of lung cancer cells, and tumor growth in vivo. In addition, exosomal miR-195-5p from BEAS-2B cells also suppressed the tube-forming ability of vascular endothelial cells. Moreover, we verified that miR-195-5p decreased apelin (APLN) expression to inactivate the Wnt signaling pathway, thereby inhibiting tumor invasiveness and angiogenesis. In conclusion, our research shows that exosomal miR-195-5p from normal bronchial epithelial cells hinders the progression of LAC, suggesting that regulation of exosomal miR-195-5p provides a novel strategy for LAC treatment.
Collapse
Affiliation(s)
- Yongchun Zhou
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Gaowei Wang
- Medical Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Jingjing Cai
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Yaqian Du
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Hongsheng Li
- Molecular Diagnostic Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Lincan Duan
- Department of Thoracic Surgery II, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, China.
| |
Collapse
|
19
|
Identification of Dysregulated microRNAs in Glioblastoma Stem-like Cells. Brain Sci 2023; 13:brainsci13020350. [PMID: 36831894 PMCID: PMC9953941 DOI: 10.3390/brainsci13020350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite multimodal therapy, median survival is poor at 12-15 months. At the molecular level, radio-/chemoresistance and resulting tumor progression are attributed to a small fraction of tumor cells, termed glioblastoma stem-like cells (GSCs). These CD133-expressing, self-renewing cells display the properties of multi-lineage differentiation, resulting in the heterogenous composition of GBM. MicroRNAs (miRNAs) as regulators of gene expression at the post-transcriptional level can alter many pathways pivotal to cancer stem cell fate. This study explored changes in the miRNA expression profiles in patient-derived GSCs altered on differentiation into glial fiber acid protein (GFAP)-expressing, astrocytic tumor cells using a polymerase chain reaction (PCR) array. Initially, 22 miRNAs showed higher expression in GSCs and 9 miRNAs in differentiated cells. The two most downregulated miRNAs in differentiated GSCs were miR-17-5p and miR-425-5p, whilst the most upregulated miRNAs were miR-223-3p and let-7-5p. Among those, miR-425-5p showed the highest consistency in an upregulation in all three GSCs. By transfection of a 425-5p miRNA mimic, we demonstrated downregulation of the GFAP protein in differentiated patient-derived GBM cells, providing potential evidence for direct regulation of miRNAs in the GSC/GBM cell transition.
Collapse
|
20
|
Lipid Handling Protein Gene Expression in Colorectal Cancer: CD36 and Targeting miRNAs. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122127. [PMID: 36556492 PMCID: PMC9786157 DOI: 10.3390/life12122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The reprogramming of lipid metabolism has been highlighted in colorectal cancer (CRC) studies, suggesting a critical role for the scavenger receptor CD36 and fatty acid synthase (FASN) in this malignancy. In this study, we analyzed the gene expression levels of CD36, FASN, the cell surface glypican 4 (GPC4), and the two transporters SLC27A3 and SLC27A4 in 39 paired tumoral and peritumoral tissues from patients with CRC compared with 18 normal colonic mucosae. Moreover, the levels of seven miRNAs targeting CD36 and most of the analyzed genes were evaluated. We found a significant impairment of the expression of all the analyzed genes except GPC4 as well as the differential expression of miR-16-5p, miR-26b-5p, miR-107, miR-195-5p, and miR-27a-3p in the colonic mucosa of CRC patients. Interestingly, CD36 and miR-27a-3p were downregulated and upregulated, respectively, in tumoral tissues compared to peritumoral and control tissues, with a significant negative correlation in the group of patients developing lymph node metastasis. Our results sustain the relationship between CRC and fatty acid metabolism and emphasize the importance of related miRNAs in developing new therapeutic strategies.
Collapse
|
21
|
Zhang M, Yu L, Sun Y, Hao L, Bai J, Yuan X, Wu R, Hong M, Liu P, Duan X, Wang C. Comprehensive Analysis of FASN in Tumor Immune Infiltration and Prognostic Value for Immunotherapy and Promoter DNA Methylation. Int J Mol Sci 2022; 23:15603. [PMID: 36555243 PMCID: PMC9779179 DOI: 10.3390/ijms232415603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Fatty acid synthase (FASN) promotes tumor progression in multiple cancers. In this study, we comprehensively examined the expression, prognostic significance, and promoter methylation of FASN, and its correlation with immune cell infiltration in pan-cancer. Our results demonstrated that elevated FASN expression was significantly associated with an unfavorable prognosis in many cancer types. Furthermore, FASN promoter DNA methylation can be used as a tumor prognosis marker. Importantly, high levels of FASN were significantly negatively correlated with tumor immune infiltration in 35 different cancers. Additionally, FASN was significantly associated with tumor mutational burden (TMB) and microsatellite instability (MSI) in multiple malignancies, suggesting that it may be essential for tumor immunity. We also investigated the effects of FASN expression on immunotherapy efficacy and prognosis. In up to 15 tumors, it was significantly negatively correlated with immunotherapy-related genes, such as PD-1, PD-L1, and CTLA-4. Moreover, we found that tumors with high FASN expression may be more sensitive to immunotherapy and have a good prognosis with PD-L1 treatment. Finally, we confirmed the tumor-suppressive effect of mir-195-5p through FASN. Altogether, our results suggested that FASN may serve as a novel prognostic indicator and immunotherapeutic target in various malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
22
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Ma Y, Li J, Zhao Y, Hu B, Liu Y, Liu C. Nanobubble-mediated co-delivery of Ce6 and miR-195 for synergized sonodynamic and checkpoint blockade combination therapy with elicitation of robust immune response in hepatocellular carcinoma. Eur J Pharm Biopharm 2022; 181:36-48. [PMID: 36307001 DOI: 10.1016/j.ejpb.2022.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) is the tiny and highly conserved noncoding RNAs, regulate gene expression at the post-transcriptional level by binding to the 3'-UTR of target mRNAs. Several studies found that miR-195 plays an unavoidable role in the regulation of cell proliferation, cycle and apoptosis in hepatocellular carcinoma (HCC). Here, we constructed miR-195 and Chlorine e6 (Ce6) co-loading NBs (nanobubbles), making use of NBs as carriers to deliver miR-195 and Ce6 to mouse tumor models. Our results showed that the binding between PD-1 and PD-L1 was blocked by upregulating miR-195 expression. The analysis of CTL (Cytotoxic T Cell) immune activity in the treatment group was higher than the control group. Simultaneously, Ce6 was used as sonosensitizer to induce SDT (sonodynamic therapy) and trigger ICD (immunogenic cell death) of tumor cell via generation of ROS. Recent studies have found that ICD may further enhance anti-tumor immunity against PD-L1. Results indicated that combination treatment effectively stimulated infiltration of T cell and the activation of natural killer (NK) cells as well as the maturation of dendritic cells (DCs), and the combination treatment group exibited the highest CTL killing activity. These results indicate that a stronger antitumor immunity was triggered via combination of SDT-induced tumor cell ICD and immune checkpoint blockade of PD-1/PD-L1 mediated by upregulation of miR-195. In conclusion, we have successfully constructed an efficient delivery system with great potential to provide a new strategy for synergistic immunotherapy.
Collapse
Affiliation(s)
- Yao Ma
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China
| | - Jinlin Li
- Department of Ultrasound Imaging, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bing Hu
- Department of Ultrasound Imaging, Affiliated Renhe Hospital of China Three Gorges University, Yichang 443000, China
| | - Yun Liu
- Department of Ultrasound Imaging, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443008, China.
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
24
|
Farshbaf A, Mohajertehran F, Sahebkar A, Garmei Y, Sabbagh P, Mohtasham N. The role of altered microRNA expression in premalignant and malignant head and neck lesions with epithelial origin. Health Sci Rep 2022; 5:e921. [PMID: 36381409 PMCID: PMC9637951 DOI: 10.1002/hsr2.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Aims The premalignant lesions of the oral cavity carry a risk of transformation to malignancy. Hence, early diagnosis followed by timely intervention remarkably affects the prognosis of patients. During tumorigenesis, particular microRNAs (miRNAs) show altered expressions and because of their post transcriptionally regulatory role could provide favorable diagnostic, therapeutic, or prognostic values in head and neck cancers. Methods In this review, we have demonstrated diagnostic, prognostic, and potential therapeutic roles of some miRNAs associated with oral premalignant and malignant lesions based on previous validate studies. Results It is previously documented that dysregulation of miRNAs contributes to cancer development and progression. MiRNAs could be tumor suppressors that normally suppress cell proliferation, differentiation, and apoptosis or play as oncogenes that improved tumorigenesis process. Altered expression of miRNAs has also been reported in premalignant oral epithelial lesions such as leukoplakia, oral submucous fibrosis, oral lichen planus and some malignant carcinoma like oral squamous cell, verrucous, spindle cell, Merkel cell carcinoma and basal cell. Conclusion Some of miRNAs could be new therapeutic candidates in miRNA-based target gene therapy. Although more investigations are required to identify the most favorable miRNA candidate, altered expression of some miRNAs could be used as biomarkers in premalignant lesions and oral cancers with high sensitivity and specificity.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yasaman Garmei
- Department of Biology, Faculty of ScienceSistan and Balouchestan UniversityZahedanIran
| | - Parisa Sabbagh
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
25
|
Petkova V, Marinova D, Kyurkchiyan S, Stancheva G, Mekov E, Kachakova-Yordanova D, Slavova Y, Kostadinov D, Mitev V, Kaneva R. MiRNA expression profiling in adenocarcinoma and squamous cell lung carcinoma reveals both common and specific deregulated microRNAs. Medicine (Baltimore) 2022; 101:e30027. [PMID: 35984198 PMCID: PMC9388044 DOI: 10.1097/md.0000000000030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
The current study investigated the expression signatures of miRNAs in lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (LUSC). miRNA profiling was performed using microarray in 12 LUAD and 12 LUSC samples and adjacent normal tissues. In LUAD, 107 miRNAs were significantly deregulated, whereas 235 miRNAs were deregulated in LUSC. Twenty-six miRNAs were common between the 2 cancer subtypes and 8 were prioritized for validation, in addition to 6 subtype-specific miRNAs. The RT-qPCR validation samples included 50 LUAD, 50 LUSC, and adjacent normal tissues. Eight miRNAs were validated in LUAD: 3 upregulated - miR-7-5p, miR-375-5p, miR-6785-3p, and 5 downregulated - miR-101-3p, miR-139-5p, miR-140-3p, miR-144-3p, miR-195-5p. Ten miRNAs were validated in the LUSC group: 3 upregulated - miR-7-5p, miR-21-3p, miR-650, and 7 downregulated - miR-95-5p, miR-140-3p, miR-144-3p, miR-195-5p, miR-375, miR-744-3p, and miR-4689-3p. Reactome pathway analysis revealed that the target genes of the deregulated miRNAs in LUAD were significantly enriched in cell cycle, membrane trafficking, gene expression processes, and EGFR signaling, while in LUSC, they were enriched in the immune system, transcriptional regulation by TP53, and FGFR signaling. This study identified distinct miRNA profiles in LUSC and LUAD, which are common and specific miRNAs that could be further investigated as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dora Marinova
- Department of Health Care, UMHAT “Medika”, University of Ruse, Ruse, Bulgaria
| | - Silva Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Evgeni Mekov
- Department of Occupational Diseases, UMHAT “Sveti Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | - Darina Kachakova-Yordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Yanina Slavova
- Department of Public Health and Social Activities, UMHAT “Medika”, University of Ruse, Ruse, Bulgaria
| | - Dimitar Kostadinov
- Department of Pulmonary Diseases, MHATPD “Sveta Sofia”, Medical University of Sofia, Sofia, Bulgaria
| | - Vanyo Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
26
|
UVB irradiation differential regulate miRNAs expression in skin photoaging. An Bras Dermatol 2022; 97:458-466. [PMID: 35660030 PMCID: PMC9263642 DOI: 10.1016/j.abd.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background UVB irradiation can cause acute damage such as sunburn, or photoaging and melanoma, all of which are major health threats. Objective This study was designed to investigate the mechanism of skin photoaging induced by UVB radiation in mice through the analysis of the differential expression of miRNAs. Methods A UVB irradiation photoaging model was constructed. HE and Masson special stains were used to examine the modifications in the epidermis and dermis of mice. The miRNA expression profiles of the mouse skin model exposed to UVB radiation and the normal skin of mice were analyzed using miRNA-sequence analysis. GO and Pathway analysis were employed for the prediction of miRNA targets. Results A total of 23 miRNAs were evaluated for significantly different expressions in comparison to normal skin. Among them, 7 miRNAs were up-regulated and 16 were down-regulated in the skin with photoaging of mice exposed to UVB irradiation. The differential expression of miRNA is related to a variety of signal transduction pathways, among which mmu-miR-195a-5p and mitogen-activated protein kinase (MAPK) signal pathways are crucial. There was a significant differential expression of miRNA in the skin of normal mice in comparison with the skin with photoaging induced by UVB irradiation. Study limitations Due to time and energy constraints, the specific protein level verification, MAPK pathway exploration, and miR-195a-5p downstream molecular mechanism need to be further studied in the future. Conclusions UVB-induced skin photoaging can be diagnosed and treated using miRNA.
Collapse
|
27
|
Davey MG, Feeney G, Annuk H, Paganga M, Holian E, Lowery AJ, Kerin MJ, Miller N. MicroRNA Expression Profiling Predicts Nodal Status and Disease Recurrence in Patients Treated with Curative Intent for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14092109. [PMID: 35565239 PMCID: PMC9106021 DOI: 10.3390/cancers14092109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Approximately one-third of colorectal cancer (CRC) patients will suffer recurrence. MiRNAs are small non-coding RNAs that play important roles in gene expression. We aimed to correlate miRNA expression with aggressive clinicopathological characteristics and survival outcomes in CRC. Methods: Tumour samples were extracted from 74 CRC patients. MiRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Descriptive statistics and Cox regression analyses were performed to correlate miRNA targets with clinicopathological and outcome data. Results: Aberrant miR-21 and miR-135b expression correlate with increased nodal stage (p = 0.039, p = 0.022). Using univariable Cox regression analyses, reduced miR-135b (β-coefficient −1.126, hazard ratio 0.324, standard error (SE) 0.4698, p = 0.017) and increased miR-195 (β-coefficient 1.442, hazard ratio 4.229, SE 0.446, p = 0.001) predicted time to disease recurrence. Survival regression trees analysis illustrated a relative cut-off of ≤0.488 for miR-195 and a relative cut-off of >−0.218 for miR-135b; both were associated with improved disease recurrence (p < 0.001, p = 0.015). Using multivariable analysis with all targets as predictors, miR-195 (β-coefficient 3.187, SE 1.419, p = 0.025) was the sole significant independent predictor of recurrence. Conclusion: MiR-195 has strong value in predicting time to recurrence in CRC patients. Additionally, miR-21 and miR-135b predict the degree nodal burden. Future studies may include these findings to personalize therapeutic and surgical decision making.
Collapse
Affiliation(s)
- Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
- Correspondence:
| | - Gerard Feeney
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Heidi Annuk
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Maxwell Paganga
- School of Mathematical and Statistical Sciences, National University of Ireland, H91 H3CY Galway, Ireland; (M.P.); (E.H.)
| | - Emma Holian
- School of Mathematical and Statistical Sciences, National University of Ireland, H91 H3CY Galway, Ireland; (M.P.); (E.H.)
| | - Aoife J. Lowery
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Nicola Miller
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| |
Collapse
|
28
|
Wang X, Tang S, Ye S, Cheng Z, Xu J, Li BW, Chen Z. Ultrasensitive quantitation of circulating miR-195-5p with triple strand displacement amplification cascade. Talanta 2022; 242:123300. [PMID: 35180536 DOI: 10.1016/j.talanta.2022.123300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023]
Abstract
Circulating miR-195-5p has been proposed as a promising peripheral biomarker for the diagnosis, prognosis and severity assessment of various diseases. However, the demand for its sensitive and convenient quantification has not been met yet. Herein, we proposed a one-pot isothermal approach, in which the target signal acquisition, amplification and conversion (fluorescence read-out) system was integrated by a triple strand displacement amplification (SDA) cascade. Using this triple SDA strategy, miR-195-5p can be at least detected at 1 aM, and the linear dynamic range (from 100 aM to 1 pM) is wide enough to meet the detection needs of clinical miRNA level. A proof-of-principle study, using this novel methodology to directly analyze the spiking serum samples with different levels of miR-195-5p, demonstrated the potential of circulating miR-195-5p detection for clinical point-of-care assay. This one-pot isothermal triple SDA approach, we believe, will be a simple and feasible tool for ultrasensitive quantification of circulating miR-195-5p, and may promote the wide application of this potential biomarker in non-invasive clinical diagnosis.
Collapse
Affiliation(s)
- Xuzhi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuzhi Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Ye
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhou Cheng
- Breast Cancer Institute, Department of Breast Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Bo-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Moosavy SH, Koochakkhani S, Barazesh M, Mohammadi S, Ahmadi K, Inchehsablagh BR, Kavousipour S, Eftekhar E, Mokaram P. In silico Analysis of Single Nucleotide Polymorphisms Associated with MicroRNA
Regulating 5-fluorouracil Resistance in Colorectal Cancer. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210930161618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the broad influence and reversible nature of microRNA (miRNA) on the
expression and regulation of target genes, researchers suggest that miRNAs and single nucleotide polymorphisms
(SNPs) in miRNA genes interfere with 5-fluorouracil (5-FU) drug resistance in colorectal
cancer chemotherapy.
Methods:
Computational assessment and cataloging of miRNA gene polymorphisms that target mRNA
transcripts directly or indirectly through regulation of 5-FU chemoresistance in CRC were screened out
by applying various universally accessible datasets such as miRNA SNP3.0 software.
Results:
1255 SNPs in 85 miRNAs affecting 5-FU resistance (retrieved from literature) were detected.
Computational analysis showed that 167 from 1255 SNPs alter microRNA expression levels leading to
inadequate response to 5-FU resistance in CRC. Among these 167 SNPs, 39 were located in the seed
region of 25/85 miRNA and were more critical than other SNPs. Has-miR-320a-5p with 4 SNP in seed
region was miRNA with the most number of SNPs. On the other hand, it has been identified that proteoglycan
in cancer, adherents junction, ECM-receptor interaction, Hippo signaling pathway, TGF-beta signaling
cascade, biosynthesis of fatty acid, and fatty acid metabolism were the most important pathways
targeted by these 85 predicted miRNAs.
Conclusion:
Our data suggest 39 SNPs in the seed region of 25 miRNAs as catalog in miRNA genes that
control the 5-FU resistance in CRC. These data also identify the most important pathways regulated by
miRNA.
Collapse
Affiliation(s)
- Seyed Hamid Moosavy
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad,
Iran
| | - Khadijeh Ahmadi
- Infection and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical
Science, Bandar Abbas, Iran
| | - Behnaz Rahnama Inchehsablagh
- Department of Physiology and Student Research Committee, Hormozgan University of
Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar
Abbas 7919915519, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
30
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
32
|
Weng Y, Xiang J, Le W, Mao Y. Role of MicroRNA-101 on Proliferation and Migration of Prostate Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: MicroRNA-101 is a tumor inhibitor that stimulates tumor progression by reducing or inhibiting the expression of certain oncogenes. Some studies presented that cox-2 is target of MicroRNA 101 in prostate cancer process. Methods: MicroRNA-101 expression was detected
by RT-PCR in PC3 cell lines. A and to determine cell proliferation we used MTT assays. Cell would heal and Flow cytometry assays were also used to detect cellular migratory ability and apoptosis, respectively. To assess cox-2 protein expression, Immunohistochemistry was used and data analyzed
by data analysis by SPSS 20. Results: PC3 cells treated by MicroRNA-101 mimics displayed a 24% elevation in growth rate compared with blank (P < 0.01) at 48 h, and a 12% increase (P < 0.01) at 72 h. On the other hand, at 48 and 72 h after the MicroRNA-101 inhibitor
transfection, proliferation of PC3 cell was decreased significantly. The early apoptosis rate in transfected PC3 cells with MicroRNA-101 mimic (74.4%) and inhibitor (22.8%) were significantly different at 72 h after transfection (P < 0.05), MicroRNA-101 mimics inhibited cell migration,
adhesion, and spread was wider relative to the group of control and inhibitor for the PC3 cells. Expression of Cox-2 in transfected PC3 with the MicroRNA-101 inhibitor was higher than the mimic and control groups significantly (P < 0.01). Conclusion: MicroRNA-101 by Cox-2
can play key roles in the prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Yiming Weng
- Department of Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jun Xiang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| |
Collapse
|
33
|
Singh R, Som A. Common miRNAs, candidate genes and their interaction network across four subtypes of epithelial ovarian cancer. Bioinformation 2021; 17:748-759. [PMID: 35540695 PMCID: PMC9049094 DOI: 10.6026/97320630017748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is categorized into four major histological subtypes such as clear cell carcinoma (CCC), endometrioid carcinoma (EC), mucinous carcinoma (MC), and serous carcinoma (SC). Heterogeneity of the EOC leads to different clinical outcomes of the disease, although all the subtypes are originated from the same layer of tissue. Therefore, it is of interest to identify the common candidate genes, miRNA and their interaction network in four the subtypes of EOC. A comparative gene expression analysis identified 248 common differentially expressed genes (DEGs) in the four subtypes of EOC. Identified common DEGs were found to be enriched in cancer specific pathways. A protein-protein interaction (PPI) network of the common DEGs were constructed, and subsequent module and survival analyses identified seven key candidate genes (CCNB1, CENPM, CEP55, RACGAP1, TPX2, UBE2C, and ZWINT). We also documented 10 key candidate miRNAs (hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-34a-5p, hsa-mir-103a-3p, hsa-mir-107, hsa-mir-124-3p, hsa-mir-129-2-3p, hsa-mir-147a, hsa-mir-205-5p, and hsa-mir-195-5p) linked to the candidate genes. These derived data find application in the understanding of EOC.
Collapse
Affiliation(s)
- Rinki Singh
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
34
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Tokumaru Y, Oshi M, Patel A, Katsuta E, Yan L, Angarita FA, Dasgupta S, Nagahashi M, Matsuhashi N, Futamura M, Yoshida K, Takabe K. Low expression of miR-195 is associated with cell proliferation, glycolysis and poor survival in estrogen receptor (ER)-positive but not in triple negative breast cancer. Am J Cancer Res 2021; 11:3320-3334. [PMID: 34249465 PMCID: PMC8263660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/04/2021] [Indexed: 06/13/2023] Open
Abstract
MiR-195 is a tumor suppressive microRNA in breast cancer. Its clinical relevance remains debatable as it has only been studied via in vitro experiments or small cohort studies. We analyzed a total of 2,038 patients in the TCGA and METABRIC cohorts to assess whether low miR-195 expressing tumors are associated with aggressive cancer characteristics and poor prognostic outcomes. The median cutoff of miR-195 expression was used to split the groups into miR-195 high and low groups. Low miR-19 expressing tumors demonstrated high cell proliferating features by enriching the gene sets associated with cell proliferation, MKI67 expression and pathological grade. One-third of the top target miR-195 genes were related to cell proliferation. Low miR-195 expressing tumors were associated with both pro-cancerous and anti-cancerous immune cells. Low miR-195 expressing tumors were associated with enhanced glycolysis and poor survival in ER-positive tumors, but not other subtypes of breast cancer. In conclusion, low expression of miR-195 in ER-positive breast cancer was associated with enhanced cancer cell proliferation, glycolysis, and worse overall survival.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Ankit Patel
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Fernando A Angarita
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Masayuki Nagahashi
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14263, USA
- Department of Breast Oncology and Surgery, Tokyo Medical University6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
| |
Collapse
|
36
|
Alvanegh AG, Ganji SM, Kamel A, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, Ghaleh HEG. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed Pharmacother 2021; 140:111755. [PMID: 34044282 DOI: 10.1016/j.biopha.2021.111755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is known as the second leading cause of cancer death. Finding ways to detect early-stage lung cancer can remarkably increase the survival rate. Biomarkers such as microRNAs can be helpful in cancer diagnosis, predicting its prognosis, and patients' chances of survival. Numerous studies have confirmed the correlation between microRNA expression and the likelihood of patients surviving after treatment. Consequently, it is necessary to study the expression profile of microRNAs during and after treatment. Oncolytic virotherapy and nanotherapy are two neoteric methods that use various vectors to deliver microRNAs into cancer cells. Although these treatments have not yet entered into the clinical trials, much progress has been made in this area. Analyzing the expression profile of microRNAs after applying nanotherapy and oncolytic virotherapy can evaluate the effectiveness of these methods. This review refers to the studies conducted about these two approaches. The advantages and disadvantages of these methods in delivery and affecting microRNA expression patterns are discussed below.
Collapse
Affiliation(s)
- Akbar Ghorbani Alvanegh
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Kamel
- Cellular and Molecular Research Center, Basic health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rafati
- Instructor of Human Genetics, Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | |
Collapse
|
37
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
38
|
Wang H, Sui ZL, Wu XX, Tang P, Zhang HD, Yu ZT. Reversal of Chemotherapy Resistance to Cisplatin in NSCLC by miRNA-195-5p via Targeting the FGF2 Gene. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:497-508. [PMID: 33953601 PMCID: PMC8092352 DOI: 10.2147/pgpm.s302755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Objective To explore the mechanism of miR-195-5p in the pathogenesis non-small cell lung cancer (NSCLC) and cisplatin resistance. Methods The function of miR-195-5p in NSCLC and cisplatin resistance were determined by MTT, scratch assay, transwell assay, and nude mice xenograft experiments. miR-195-5p target gene was identified by dual-luciferase reporter assays and real-time PCR analysis. Results miR-195-5p content was lower in A549/DDP than that in A549 cells, with reduced chemotherapy sensitivity and increased cell invasion and migration ability. The loss-of-function and gain-of-function assays illustrated that miR-195-5p might have increased the chemosensitivity to cisplatin in the A549/DDP cells and decreased cell migration and invasion. FGF2 is a negatively correlated action target of miR-195-5p. miR-195-5p might affect EMT by inhibiting FGF2. Overexpression of FGF2 resulted in enhanced cisplatin resistance in the cells, while miR-195-5p might have reversed this resistance. Conclusion Overall, miR-195-5p might target FGF2 to reduce cisplatin resistance in A549/DDP cells and enhance chemosensitivity.
Collapse
Affiliation(s)
- Hao Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Surgical Oncology, Baotou Cancer Hospital, Baotou, People's Republic of China
| | - Zhi-Lin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Xian-Xian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Hong-Dian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China
| | - Zhen-Tao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin, 300060, People's Republic of China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
39
|
Kazemi T, Huang S, Avci NG, Akay YM, Akay M. Investigating the effects of chronic perinatal alcohol and combined nicotine and alcohol exposure on dopaminergic and non-dopaminergic neurons in the VTA. Sci Rep 2021; 11:8706. [PMID: 33888815 PMCID: PMC8062589 DOI: 10.1038/s41598-021-88221-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The ventral tegmental area (VTA) is the origin of dopaminergic neurons and the dopamine (DA) reward pathway. This pathway has been widely studied in addiction and drug reinforcement studies and is believed to be the central processing component of the reward circuit. In this study, we used a well-established rat model to expose mother dams to alcohol, nicotine-alcohol, and saline perinatally. DA and non-DA neurons collected from the VTA of the rat pups were used to study expression profiles of miRNAs and mRNAs. miRNA pathway interactions, putative miRNA-mRNA target pairs, and downstream modulated biological pathways were analyzed. In the DA neurons, 4607 genes were differentially upregulated and 4682 were differentially downregulated following nicotine-alcohol exposure. However, in the non-DA neurons, only 543 genes were differentially upregulated and 506 were differentially downregulated. Cell proliferation, differentiation, and survival pathways were enriched after the treatments. Specifically, in the PI3K/AKT signaling pathway, there were 41 miRNAs and 136 mRNAs differentially expressed in the DA neurons while only 16 miRNAs and 20 mRNAs were differentially expressed in the non-DA neurons after the nicotine-alcohol exposure. These results depicted that chronic nicotine and alcohol exposures during pregnancy differentially affect both miRNA and gene expression profiles more in DA than the non-DA neurons in the VTA. Understanding how the expression signatures representing specific neuronal subpopulations become enriched in the VTA after addictive substance administration helps us to identify how neuronal functions may be altered in the brain.
Collapse
Affiliation(s)
- Tina Kazemi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuyan Huang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Naze G Avci
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
40
|
Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 2021; 125:101-111. [PMID: 33772151 DOI: 10.1038/s41416-021-01337-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear. METHODS CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3'UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry. RESULTS CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3'UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation. CONCLUSIONS IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.
Collapse
|
41
|
Howard S, Richardson S, Benyeogor I, Omosun Y, Dye K, Medhavi F, Lundy S, Adebayo O, Igietseme JU, Eko FO. Differential miRNA Profiles Correlate With Disparate Immunity Outcomes Associated With Vaccine Immunization and Chlamydial Infection. Front Immunol 2021; 12:625318. [PMID: 33692799 PMCID: PMC7937703 DOI: 10.3389/fimmu.2021.625318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccine-induced immune responses following immunization with promising Chlamydia vaccines protected experimental animals from Chlamydia-induced upper genital tract pathologies and infertility. In contrast, primary genital infection with live Chlamydia does not protect against these pathologies. We hypothesized that differential miRNA profiles induced in the upper genital tracts (UGT) of mice correlate with the disparate immunity vs. pathologic outcomes associated with vaccine immunization and chlamydial infection. Thus, miRNA expression profiles in the UGT of mice after Chlamydia infection (Live EB) and immunization with dendritic cell (DC)-based vaccine (DC vaccine) or VCG-based vaccine (VCG vaccine) were compared using the NanoString nCounter Mouse miRNA assay. Of the 602 miRNAs differentially expressed (DE) in the UGT of immunized and infected mice, we selected 58 with counts >100 and p-values < 0.05 for further analysis. Interestingly, vaccine immunization and Chlamydia infection induced the expression of distinct miRNA profiles with a higher proportion in vaccine-immunized compared to Chlamydia infected mice; DC vaccine (41), VCG vaccine (23), and Live EB (15). Hierarchical clustering analysis showed notable differences in the uniquely DE miRNAs for each experimental group, with DC vaccine showing the highest number (21 up-regulated, five down-regulated), VCG vaccine (two up-regulated, five down-regulated), and live EB (two up-regulated, four down-regulated). The DC vaccine-immunized group showed the highest number (21 up-regulated and five down-regulated compared to two up-regulated and four down-regulated in the live Chlamydia infected group). Pathway analysis showed that the DE miRNAs target genes that regulate several biological processes and functions associated with immune response and inflammation. These results suggest that the induction of differential miRNA expression plays a significant role in the disparate immunity outcomes associated with Chlamydia infection and vaccination.
Collapse
Affiliation(s)
- Simone Howard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Ifeyinwa Benyeogor
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kamran Dye
- Department of Chemistry, Morehouse College, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Olayinka Adebayo
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
42
|
Guan Y, Guan A, Chen L, Gong A. LINC00461 facilitates HNSCC development and reduces chemosensitivity by impairing miR-195-mediated inhibition of HOXA10. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:74-86. [PMID: 33869744 PMCID: PMC8027536 DOI: 10.1016/j.omto.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Homeobox A10 (HOXA10) has been regarded to serve as an oncogene in head and neck squamous cell carcinoma (HNSCC). This study was intended to explore the interaction among the long intergenic noncoding RNA 00461 (LINC00461), microRNA (miR)-195, and HOXA10, and to investigate its role in epithelial-mesenchymal transition (EMT) and chemoresistance in HNSCC. The effects of LINC00461, miR-195, and HOXA10 on the EMT and chemoresistance of HNSCC cells were analyzed by comprehensive analysis of gain- and loss-of-function techniques. The intimate relationships among LINC00461, miR-195, and HOXA10 were investigated by several procedures such as RNA-binding protein immunoprecipitation, RNA pull-down, and dual-luciferase reporter assays. A xenotransplantation tumor model in nude mice was established for the assessment of the tumorigenic ability of the cells in vivo. Our findings indicated that LINC00461 was highly expressed in HNSCC and its overexpression induced EMT and precipitated the chemoresistance of HNSCC cells to cisplatin. The LINC00461 could bind to miR-195 while miR-195 targeted HOXA10 independently. Moreover, LINC00461 impaired miR-195-mediated inhibition of HOXA10 to induce EMT and increase the chemoresistance in HNSCC. Tumor weight and volume were reduced by lentivirus-mediated elevation of miR-195 by inhibition of HOXA10, which could be annulled by LINC00461 overexpression. LINC00461 downregulates the expression of miR-195 to subsequently upregulate the expression of HOXA10, thereby promoting EMT and enhancing chemoresistance in HNSCC.
Collapse
Affiliation(s)
- Yifang Guan
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Aizhong Guan
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Long Chen
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| | - Aimei Gong
- Department of Stomatology, Linyi People's Hospital, Linyi 276000, Shandong, P.R. China
| |
Collapse
|
43
|
Huang X, Bao C, Lv Q, Zhao J, Hu G, Wu H, Li Z, Yi Z. MicroRNA-195 predicts olanzapine response in drug-free patients with schizophrenia: A prospective cohort study. J Psychopharmacol 2021; 35:23-30. [PMID: 33274684 DOI: 10.1177/0269881120959617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disturbances of microRNA-195 have been implicated in the pathogenesis of schizophrenia. However, microRNA-195 levels in schizophrenia are controversial. AIMS To the best of our knowledge, this is the first study to examine microRNA-195 levels in untreated schizophrenia patients and their relationship to olanzapine response. METHODS We recruited 81 untreated schizophrenia patients and 96 healthy controls. The patients received 2 months olanzapine treatment. MicroRNA-195 levels in peripheral blood mononuclear cells were measured using quantitative real-time polymerase chain reaction testing. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale. RESULTS No significant differences in microRNA-195 levels were found between patients and healthy controls (p > 0.05). Olanzapine significantly reduced microRNA-195 levels after 2 months treatment (p = 0.003). Interestingly, microRNA-195 levels decreased significantly in responders (p = 0.010), but not in non-responders (p > 0.05). Both baseline microRNA-195 levels (p = 0.027, p = 0.030) and the reduction rate of microRNA-195 levels (p = 0.034, p = 0.044) were positively associated with the reduction rate of Positive and Negative Syndrome Scale total score and general psychopathological subscale score. Multiple stepwise regression analysis revealed that baseline microRNA-195 level was an independent contributor to the reduction in Positive and Negative Syndrome Scale total score and the general psychopathological subscale score (p = 0.018, p = 0.030). Finally, logistic regression analysis suggested that baseline microRNA-195 level can serve as a biomarker for response to olanzapine (p = 0.037). CONCLUSIONS Our data indicate that microRNA-195 level may predict symptomatic improvement and olanzapine response in schizophrenia patients, suggesting that microRNA-195 should be considered as a potential therapeutic target for antipsychotics.
Collapse
Affiliation(s)
- Xinxin Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qinyu Lv
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqin Hu
- Department of Psychiatry, Huangpu District Mental Health Center, Shanghai, China
| | - Haisu Wu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
de Sales ACV, da Silva IIFG, Leite MCB, de Lima Coutinho L, de Albuquerque Cavalcante Reis RB, Martins DBG, de Lima Filho JL, Oliveira Souto F. miRNA-195 expression in the tumor tissues of female Brazilian breast cancer patients with operable disease. Clinics (Sao Paulo) 2021; 76:e2142. [PMID: 33503182 PMCID: PMC7798133 DOI: 10.6061/clinics/2021/e2142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/02/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study aimed to assess miRNA-195 expression in the tumor tissues from a cohort of Brazilian female breast cancer patients undergoing neoadjuvant chemotherapy (NAC) and evaluate its correlation with various clinicopathological markers. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the miRNA-195 expression in tumor tissues from a cohort of female breast cancer patients undergoing NAC. This expression was then correlated with the occurrence of several distinct breast cancer molecular subtypes and other clinicopathological variables. RESULTS A total of 55 patients were included in this study, 28 (50.9%) of whom were treated using NAC. Tumor miRNA-195 expression was suppressed in breast cancer patients, regardless of their exposure to systemic treatments, histological grade, size, nodal status, and tumor-node-metastasis (TNM) staging. This was more pronounced in luminal and triple-negative patients, and patient's response to NAC was correlated with an increase in miRNA-195 expression. CONCLUSION miRNA-195 is downregulated in the tumor tissues of Brazilian breast cancer patients regardless of NAC exposure; this reinforces its role as a tumor suppressor and a potential biomarker for chemotherapy response.
Collapse
Affiliation(s)
- Alexandre Cesar Vieira de Sales
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
- Nucleo de Ciencias da Vida (NCV), Centro Academico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, PE, BR
- *Corresponding author. E-mail:
| | | | | | - Leandro de Lima Coutinho
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
| | | | | | - José Luiz de Lima Filho
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
| | - Fabrício Oliveira Souto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, PE, BR
- Nucleo de Ciencias da Vida (NCV), Centro Academico do Agreste (CAA), Universidade Federal de Pernambuco (UFPE), Caruaru, PE, BR
| |
Collapse
|
45
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
46
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|
47
|
Pawliński Ł, Polus A, Tobór E, Sordyl M, Kopka M, Solnica B, Kieć-Wilk B. MiRNA Expression in Patients with Gaucher Disease Treated with Enzyme Replacement Therapy. Life (Basel) 2020; 11:life11010002. [PMID: 33375048 PMCID: PMC7822051 DOI: 10.3390/life11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022] Open
Abstract
Aims: The aim of the work was to establish potential biomarkers or drug targets by analysing changes in miRNA concentration among patients with Gaucher disease (GD) compared to in healthy subjects. Methods: This study was an observational, cross-sectional analysis of 30 adult participants: 10 controls and 20 adults with GD type 1. Patients with GD type 1 were treated with enzyme replacement therapy (ERT) for at least two years. The control group was composed of healthy volunteers, unrelated to the patients, adjusted with age, sex and body mass index (BMI). The miRNA alteration between these groups was examined. After obtaining preliminary results on a group of six GD patients by the high-output method (TaqMan low-density array (TLDA)), potential miRNAs were selected for confirming the results by using the qRT-PCR method. With Diane Tools, we analysed miRNAs of which differential expression is most significant and their potential role in GD pathophysiology. We also determined the essential pathways these miRNAs are involved in. Results: 266 dysregulated miRNAs were found among 753 tested. Seventy-eight miRNAs were downregulated, and 188 were upregulated. Thirty miRNAs were significantly altered; all of them were upregulated. The analysis of pathways regulated by the selected miRNAs showed an effect on bone development, inflammation or regulation of axonal transmission in association with Parkinson’s disease. Conclusions: We revealed few miRNAs, like miR-26-5p, which are highly altered and fit the GD pathophysiological model, might be considered as novel biomarkers of disease progression but need further evaluation.
Collapse
Affiliation(s)
- Łukasz Pawliński
- Clinical Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, 30-688 Kraków, Poland; (Ł.P.); (E.T.); (M.K.)
- European Reference Network for Hereditary Metabolic Disorders (MetabERN), 31-501 Kraków, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.P.); (M.S.); (B.S.)
| | - Ewa Tobór
- Clinical Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, 30-688 Kraków, Poland; (Ł.P.); (E.T.); (M.K.)
| | - Maria Sordyl
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.P.); (M.S.); (B.S.)
| | - Marianna Kopka
- Clinical Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, 30-688 Kraków, Poland; (Ł.P.); (E.T.); (M.K.)
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.P.); (M.S.); (B.S.)
| | - Beata Kieć-Wilk
- Clinical Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, 30-688 Kraków, Poland; (Ł.P.); (E.T.); (M.K.)
- European Reference Network for Hereditary Metabolic Disorders (MetabERN), 31-501 Kraków, Poland
- Department of Metabolic Diseases and Diabetology, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Correspondence:
| |
Collapse
|
48
|
Suppression of long noncoding RNA LINC00324 restricts cell proliferation and invasion of papillary thyroid carcinoma through downregulation of TRIM29 via upregulating microRNA-195-5p. Aging (Albany NY) 2020; 12:26000-26011. [PMID: 33318312 PMCID: PMC7803523 DOI: 10.18632/aging.202219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) are identified as novel regulators of carcinogenesis. To date, the precise functions of lncRNAs in papillary thyroid carcinoma (PTC) remains poorly understood. The purposes of this work were to explore the potential relevance of lncRNA 00324 (LINC00324) in PTC. Levels of LINC00324 were markedly up-regulated in PTC. Silencing of LINC00324 significantly repressed the proliferation and invasion of PTC cells. LINC00324 was documented as a sponge of microRNA-195-5p (miR-195-5p). Decreased levels of miR-195-5p were detected in PTC. The up-regulation of miR-195-5p suppressed PTC cellular proliferation and invasion. Suppression of miR-195-5p partially reversed the LINC00324-knockdown-mediated effects in PTC cells. We identified tripartite motif-containing 29 (TRIM29) as a target gene of miR-195-5p. TRIM29 overexpression partially reversed the LINC00324-knockdown- or miR-195-5p-overexpression-mediated effects in PTC cells. In short, this work demonstrates that LINC00324 knockdown inhibits the proliferation and invasion of PTC cells by decreasing TRIM29 expression via up-regulating miR-195-5p expression.
Collapse
|
49
|
Shared extracellular vesicle miRNA profiles of matched ductal pancreatic adenocarcinoma organoids and blood plasma samples show the power of organoid technology. Cell Mol Life Sci 2020; 78:3005-3020. [PMID: 33237353 PMCID: PMC8004523 DOI: 10.1007/s00018-020-03703-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023]
Abstract
Extracellular vesicles (EV) are considered as a promising diagnostic tool for pancreatic ductal adenocarcinoma (PDAC), a disease with a poor 5-year survival that has not improved in the past years. PDAC patient-derived 3D organoids maintain the intratumoral cellular heterogeneity, characteristic for the tumor in vivo.Thus, they represent an ideal in vitro model system to study human cancers. Here we show that the miRNA cargo of EVs from PDAC organoids largely differs among patients. However, we detected a common set of EV miRNAs that were present in matched organoids and blood plasma samples of individual patients. Importantly, the levels of EV miR-21 and miR-195 were higher in PDAC blood EV preparations than in healthy controls, albeit we found no difference compared to chronic pancreatitis (CP) samples. In addition, here we report that the accumulation of collagen I, a characteristic change in the extracellular matrix (ECM) in both CP and PDAC, largely increases EV release from pancreatic ductal organoids. This provides a possible explanation why both CP and PDAC patient-derived plasma samples have an elevated amount of CD63 + EVs. Collectively, we show that PDAC patient-derived organoids represent a highly relevant model to analyze the cargo of tumor cell-derived EVs. Furthermore, we provide evidence that not only driver mutations, but also changes in the ECM may critically modify EV release from pancreatic ductal cells.
Collapse
|
50
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|