1
|
Pérez-Navarro Y, Salinas-Vera YM, López-Camarillo C, Figueroa-Angulo EE, Alvarez-Sánchez ME. The role of long non-coding RNA NORAD in digestive system tumors. Noncoding RNA Res 2025; 10:55-62. [PMID: 39296642 PMCID: PMC11406672 DOI: 10.1016/j.ncrna.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
Collapse
Affiliation(s)
- Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| | - Yarely M Salinas-Vera
- Centro Nacional de Identificación Humana, Comisión Nacional de Búsqueda, Secretaría de Gobernación, Camino a Santa Teresa No 1679, Jardines del Pedregal, Ciudad de México, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Laboratorio de Oncogenómica y Proteómica del cáncer, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
| | - Elisa Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, CDMX, Mexico
| |
Collapse
|
2
|
Liu SS, Wang JK, Liu MS, Guo DF, Wen Q, Liang YH, Wang T, Zhang KH. ILF2 protein is a promising serum biomarker for early detection of gastric cancer. BMC Cancer 2024; 24:1447. [PMID: 39587551 PMCID: PMC11587746 DOI: 10.1186/s12885-024-13205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Our previous small-sample study indicated that serum levels of interleukin enhancer binding factor 2 (ILF2) may have the potential for gastric cancer (GC) detection. The present study was conducted to further validate the diagnostic value of serum ILF2 protein for GC. METHODS Serum specimens and clinical data were collected from patients with GC (n = 99) or benign gastric disease (BGD) (n = 49) and healthy controls (HC) (n = 51). Serum ILF2 levels were measured using enzyme-linked immunosorbent assay. The diagnostic performance of ILF2 was evaluated using the area under the receiver operating characteristic curve (AUC). The independence and synergy of ILF2 in GC diagnosis were analyzed by modeling with conventional blood indicators. RESULTS The median serum ILF2 level was higher in the GC group (227.8ng/mL) than in the BGD group (72.0ng/mL) and the HC group (56.8ng/mL) (p < 0.001), and no significant difference across GC subgroups. The AUCs of ILF2 were 0.915 (95%CI 0.873-0.957) for GC vs. HC, 0.854 (95%CI 0.793-0.915) for GC vs. BGD, 0.885 (95%CI 0.841-0.929) for GC vs. BGD + HC, and 0.888 (95% CI 0.830-0.945) for TNM I stage GC vs. BGD + HC, outperforming conventional blood indicators (corresponding AUCs ranging from 0.641 to 0.782). ILF2 was independent of and synergistic with conventional blood indicators in GC diagnosis, and a simple diagnostic model based on ILF2 and red blood cell count improved the diagnostic performance, with positive rates of approximately 90% in various subgroups of GC. CONCLUSIONS Serum ILF2 protein is a novel and potential serum biomarker for the detection of GC, especially for early GC.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Jin-Ke Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Ding-Fan Guo
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Qi Wen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Yun-Hui Liang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Ting Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17, Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Su Y, Mei L, Jiang T, Wang Z, Ji Y. Novel role of lncRNAs regulatory network in papillary thyroid cancer. Biochem Biophys Rep 2024; 38:101674. [PMID: 38440062 PMCID: PMC10909982 DOI: 10.1016/j.bbrep.2024.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. The incidence of PTC has increased annually worldwide. Thus, PTC diagnosis and treatment attract more attention. Noncoding RNAs (lncRNAs) play crucial roles in PTC progression and act as prognostic biomarkers. Moreover, microRNAs (miRNAs) and epithelial-mesenchymal transition (EMT)-associated proteins have potential biomarkers for diagnosing and treating PTC. However, the correlation of lncRNAs with miRNAs and EMT-associated proteins needs further clarification. The present review highlights the recent advances of lncRNAs in PTC. We significantly summarized the two molecular regulatory mechanisms in PTC progress, including lncRNAs-miRNAs-protein signaling axes and lncRNAs-EMT pathways. This review will help our understanding of the association between lncRNAs and PTC and may assist us in evaluating the prognosis for PTC patients. Taken together, targeting the lncRNAs regulatory network has promising applications in diagnosing and treating PTC.
Collapse
Affiliation(s)
- Yuanhao Su
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tiantian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong, University, Xi'an, 710004, China
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated, Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
6
|
Gao Y, Wan L, Li M, Wang B, Ma Y. NRF2/HO-1 axis, BIRC5, and TP53 expression in ESCC and its correlation with clinical pathological characteristics and prognosis. Int J Biol Markers 2023; 38:174-184. [PMID: 37312528 DOI: 10.1177/03936155231176571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many types of cancer exhibit high nuclear factor erythroid 2-related factor 2 (NRF2), which is effective in resisting drugs and radiation. However, the role of NRF2 gene expression in predicting the prognosis of esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS The association between NRF2, heme oxygenase-1 (HO-1), baculovirus IAP repeat 5 (BIRC5), P53 gene expression levels and their relationship to immune-infiltrating cells were assessed using the Cancer Genome Atlas dataset, the Human Protein Atlas and the TISDB database. The expression of NRF2, HO-1, BIRC5, and TP53 in 118 ESCC patients was detected by immunohistochemistry, and the relationship between their expression level and clinicopathological parameters and prognosis was analyzed. RESULTS In ESCC, NRF2 overexpression was significantly associated with Han ethnicity, lymph node metastasis, and distant metastasis. HO-1 overexpression was significantly associated with differentiation, advanced clinical staging, lymph node metastasis, nerve invasion, and distant metastasis. BIRC5 overexpression was significantly associated with Han ethnicity and lymph node metastasis. TP53 overexpression was significantly associated with Han ethnicity and T staging. The NRF2/HO-1 axis expression was positively correlated with BIRC5 and TP53. Kaplan-Meier and multivariate Cox regression analysis showed that NRF2, BIRC5, and TP53 genes co-expression was an independent prognostic risk factor. TISIDB dataset analysis showed that immune-infiltrating cells were significantly negatively correlated with NRF2 and BIRC5. CONCLUSION NRF2, BIRC5, and TP53 axis gene expressions are predictors of poor prognosis for ESCC. The overexpression of the NRF2/HO-1/BIRC5 axis may not be related to immune-infiltrating cells.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wan
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
8
|
Li Q, Yin LK. Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol 2023; 14:373-399. [PMID: 37970110 PMCID: PMC10631345 DOI: 10.5306/wjco.v14.i10.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor of the digestive system. Disulfidptosis is a new programmed cell death mechanism, although its specific mechanism in GC is incompletely understood. AIM In this study, we used bioinformatics analysis to explore a disulfidptosis-based predictive model related to GC prognosis and to identify potential therapeutic targets and sensitive drugs for GC. METHODS We extracted GC-related data from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software (version 4.2.1) was used for correlation analysis. RESULTS Through the above analysis, we found that the disulfidptosis related gene may be related to the prognosis of GC. Six genes, namely, PLS3, GRP, APOD, SGCE, COL8A1, and VAMP7, were found to constitute a predictive model for GC prognosis. APOD is a potential therapeutic target for treating GC. Bosutinib and other drugs are sensitive for the treatment of GC. CONCLUSION The results of this study indicate that disulfidptosis is related to the prognosis and treatment of GC, while APOD represents a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, Fushun Hospital of Traditional Chinese Medicine, Zigong 643200, Sichuan Province, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, Fushun People’s Hospital, Zigong 643200, Sichuan Province, China
| |
Collapse
|
9
|
Lin JJ, Luo BH, Su T, Yang Q, Zhang QF, Dai WY, Liu Y, Xiang L. Antitumor activity of miR-188-3p in gastric cancer is achieved by targeting CBL expression and inactivating the AKT/mTOR signaling. World J Gastrointest Oncol 2023; 15:1384-1399. [PMID: 37663941 PMCID: PMC10473938 DOI: 10.4251/wjgo.v15.i8.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Altered miR-188-3p expression has been observed in various human cancers. AIM To investigate the miR-188-3p expression, its roles, and underlying molecular events in gastric cancer. METHODS Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression. Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays. The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay. A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival. A nude mouse tumor cell xenograft assay was used to confirm the in vitro data. RESULTS MiR-188-3p was found to be lower in the plasma of gastric cancer patients, tissues, and cell lines compared to their healthy counterparts. It was associated with overall survival of gastric cancer patients (P < 0.001), tumor differentiation (P < 0.001), lymph node metastasis (P = 0.033), tumor node metastasis stage (I/II vs III/IV, P = 0.024), and American Joint Committee on Cancer stage (I/II vs III/IV, P = 0.03). Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy. CBL was identified as a direct target of miR-188-3p, with its expression antagonizing the effects of miR-188-3p on gastric cancer (GC) cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway. The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer. CONCLUSION The current data provides ex vivo, in vitro, and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC.
Collapse
Affiliation(s)
- Jian-Jiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Bao-Hua Luo
- Department of Urology, Hospital of Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Tao Su
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Qiong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, China
| | - Qin-Fei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Wei-Yu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| |
Collapse
|
10
|
Yin LK, Yuan HY, Liu JJ, Xu XL, Wang W, Bai XY, Wang P. Identification of survival-associated biomarkers based on three datasets by bioinformatics analysis in gastric cancer. World J Clin Cases 2023; 11:4763-4787. [PMID: 37584004 PMCID: PMC10424043 DOI: 10.12998/wjcc.v11.i20.4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/11/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors with poor prognosis in terms of advanced stage. However, the survival-associated biomarkers for GC remains unclear. AIM To investigate the potential biomarkers of the prognosis of patients with GC, so as to provide new methods and strategies for the treatment of GC. METHODS RNA sequencing data from The Cancer Genome Atlas (TCGA) database of STAD tumors, and microarray data from Gene Expression Omnibus (GEO) database (GSE19826, GSE79973 and GSE29998) were obtained. The differentially expressed genes (DEGs) between GC patients and health people were picked out using R software (x64 4.1.3). The intersections were underwent between the above obtained co-expression of differential genes (co-DEGs) and the DEGs of GC from Gene Expression Profiling Interactive Analysis database, and Gene Ontology (GO) analysis, Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), Protein-protein Interaction (PPI) analysis and Kaplan-Meier Plotter survival analysis were performed on these DEGs. Using Immunohistochemistry (IHC) database of Human Protein Atlas (HPA), we verified the candidate Hub genes. RESULTS With DEGs analysis, there were 334 co-DEGs, including 133 up-regulated genes and 201 down-regulated genes. GO enrichment analysis showed that the co-DEGs were involved in biological process, cell composition and molecular function pathways. KEGG enrichment analysis suggested the co-DEGs pathways were mainly enriched in ECM-receptor interaction, protein digestion and absorption pathways, etc. GSEA pathway analysis showed that co-DEGs mainly concentrated in cell cycle progression, mitotic cell cycle and cell cycle pathways, etc. PPI analysis showed 84 nodes and 654 edges for the co-DEGs. The survival analysis illustrated 11 Hub genes with notable significance for prognosis of patients were screened. Furtherly, using IHC database of HPA, we confirmed the above candidate Hub genes, and 10 Hub genes that associated with prognosis of GC were identified, namely BGN, CEP55, COL1A2, COL4A1, FZD2, MAOA, PDGFRB, SPARC, TIMP1 and VCAN. CONCLUSION The 10 Hub genes may be the potential biomarkers for predicting the prognosis of GC, which can provide new strategies and methods for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Long-Kuan Yin
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hua-Yan Yuan
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jian-Jun Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiu-Lian Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiang-Yu Bai
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Pan Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
11
|
Wang K, Chen Z, Qiao X, Zheng J. LncRNA NORAD regulates the mechanism of the miR-532-3p/Nectin-4 axis in pancreatic cancer cell proliferation and angiogenesis. Toxicol Res (Camb) 2023; 12:425-432. [PMID: 37397924 PMCID: PMC10311138 DOI: 10.1093/toxres/tfad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgound Pancreatic cancer (PC) is one of the deadliest cancers worldwide, and cell proliferation and angiogenesis play an important role in its occurrence and development. High levels of lncRNANORAD have been detected in many tumors, including PC, yet the effect and mechanism of lncRNA NORAD on PC cell angiogenesis are unexplored. Methods qRT.PCR was applied to quantify lncRNA NORAD and miR-532-3p expression in PC cells, and a dual luciferase reporter gene was used to verify the targeting effects of NORAD, miR-532-3p and Nectin-4. Then, we regulated NORAD and miR-532-3p expression in PC cells and detected their effects on PC cell proliferation and angiogenesis using cloning experiments and HUVEC tube formation experiments. Results LncRNA NORAD was upregulated and miR-532-3p was downregulated in PC cells compared with normal cells. Knockdown of NORAD inhibited PC cell proliferation and angiogenesis. LncRNA NORAD and miR-532-3p competitively bound to promote the expression of the miR-532-3p target gene Nectin-4, thereby promoting proliferation and angiogenesis of PC cells in vitro. Conclusion LncRNA NORAD promotes the proliferation and angiogenesis of PC cells by regulating the miR-532-3p/Nectin-4 axis, which may be a potential biological target in the diagnosis and treatment of clinical PC.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan Provincial People’s Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| |
Collapse
|
12
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
13
|
Riquelme I, Pérez-Moreno P, Mora-Lagos B, Ili C, Brebi P, Roa JC. Long Non-Coding RNAs (lncRNAs) as Regulators of the PI3K/AKT/mTOR Pathway in Gastric Carcinoma. Int J Mol Sci 2023; 24:ijms24076294. [PMID: 37047267 PMCID: PMC10094576 DOI: 10.3390/ijms24076294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Gastric cancer (GC) represents ~10% of the global cancer-related deaths, increasingly affecting the younger population in active stages of life. The high mortality of GC is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not guide the patient management adequately, thereby new and more reliable biomarkers and therapeutic targets are still needed for this disease. RNA-seq technology has allowed the discovery of new types of RNA transcripts including long non-coding RNAs (lncRNAs), which are able to regulate the gene/protein expression of many signaling pathways (e.g., the PI3K/AKT/mTOR pathway) in cancer cells by diverse molecular mechanisms. In addition, these lncRNAs might also be proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in GC. This review describes important topics about some lncRNAs that have been described as regulators of the PI3K/AKT/mTOR signaling pathway, and hence, their potential oncogenic role in the development of this malignancy.
Collapse
Affiliation(s)
- Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile
- Correspondence: (I.R.); (J.C.R.); Tel.: +56-95923-6933 (I.R.); +56-22354-1061 (J.C.R.)
| | - Pablo Pérez-Moreno
- Millennium Institute on Immunology and Immunotherapy (MIII), Center for Cancer Prevention and Control (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile
| | - Bárbara Mora-Lagos
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Carmen Ili
- Millennium Institute on Immunology and Immunotherapy (MIII), Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy (MIII), Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Juan Carlos Roa
- Millennium Institute on Immunology and Immunotherapy (MIII), Center for Cancer Prevention and Control (CECAN), Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile
- Correspondence: (I.R.); (J.C.R.); Tel.: +56-95923-6933 (I.R.); +56-22354-1061 (J.C.R.)
| |
Collapse
|
14
|
Zhong YL, Wang PQ, Hao DL, Sui F, Zhang FB, Li B. Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review. World J Gastrointest Oncol 2023; 15:36-54. [PMID: 36684050 PMCID: PMC9850768 DOI: 10.4251/wjgo.v15.i1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.
Collapse
Affiliation(s)
- Yi-Lin Zhong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng-Bin Zhang
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
16
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
17
|
Mao W, Wang S, Chen R, He Y, Lu R, Zheng M. lncRNA NORAD promotes lung cancer progression by competitively binding to miR-28-3p with E2F2. Open Med (Wars) 2022; 17:1538-1549. [PMID: 36245705 PMCID: PMC9520332 DOI: 10.1515/med-2022-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Lung cancer (LC) is a prevailing primary tumor in the lung. lncRNA non-coding RNA activated by DNA damage (NORAD) is a popular target in human cancers. This experiment is designed to probe the mechanism of lncRNA in LC progression. NORAD expression in normal lung epithelial cells and LC cells was examined and then silenced to assess its effect on LC cell proliferation, invasion, and migration. Subcellular localization of NORAD was analyzed through online databases and then corroborated by fractionation of nuclear and cytoplasmic RNA assay. The target binding relations between NORAD and miR-28-3p and between miR-28-3p and E2F2 were verified. Eventually, LC cells with NORAD silencing were transfected with miR-28-3p inhibitor or pcDNA3.1-E2F2 to measure LC cell proliferation, invasion, and migration. NORAD was overexpressed in LC cells and NORAD knockout led to suppressed LC cell proliferation, invasion, and migration. Besides, NORAD targeted miR-28-3p and miR-28-3p targeted E2F2 transcription. Inhibiting miR-28-3p or overexpressing E2F2 could both annul the inhibitory role of si-NORAD in LC cell proliferation, invasion, and migration. Generally, our findings demonstrated that NORAD competitively bound to miR-28-3p with E2F2, to promote LC cell progression.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shengfei Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yijun He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Rongguo Lu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| |
Collapse
|
18
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
19
|
Liu T, Zhang ZQ, Xiao X, Li XQ. Bioassay-guided isolation of anti-tumor polyprenylphloroglucinols from Calophyllum polyanthum and primary mechanism. Biomed Pharmacother 2022; 151:113129. [PMID: 35594705 DOI: 10.1016/j.biopha.2022.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Five compounds were isolated from Calophyllum polyanthum leaves (10.09 g) by bioassay-guided fractionation to evaluate their anti-tumor activity. Among these compounds, apetalic acid (1) demonstrated significant inhibitory activity against 8 types of tumor cells (MHCC97H, CNE1, CNE2, B16, LOVO, SW480, A549, 1299), especially against two colon cancer cells (LOVO, SW480). Apetalic acid could inhibit cell proliferation, migration, invasion and induce apoptosis. It could significantly up-regulate the expression levels of apoptosis-related genes (BAX, Caspase-9,) and proteins (BAX, Cleaved-caspase-9, Cleaved-caspase-3) and down-regulated the expression of inhibitor of apoptosis gene (Bcl-2) and proteins (Bcl-2, phosphorylated AKT). Possible mechanism of the antitumor activity of apetalic acid derived from Calophyllum polyanthum supports its use in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tie Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhuang-Qin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Scientific Research Center, Guizhou 563002, People's Republic of China.
| |
Collapse
|
20
|
BMSC-EV-derived lncRNA NORAD Facilitates Migration, Invasion, and Angiogenesis in Osteosarcoma Cells by Regulating CREBBP via Delivery of miR-877-3p. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8825784. [PMID: 35281474 PMCID: PMC8906129 DOI: 10.1155/2022/8825784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can boost osteosarcoma (OS) cell proliferation and invasion, yet the function of extracellular vesicles (EVs) derived from BMSCs on OS is scarcely known. This study is aimed at examining the role of BMSC-EVs in OS cells. BMSCs and BMSC-EVs were isolated and identified. The effect of EVs and EVs-si-NORAD on OS cell proliferation, invasion, migration, and angiogenesis was determined. Expressions of NORAD, miR-877-3p, and CREBBP were detected. The binding relationship among NORAD, miR-877-3p, and CREBBP was verified. The miR-877-3p inhibitor or pc-CREBBP was delivered into OS cells treated with EVs-si-NORAD for in vitro analysis. The nude mouse model of the subcutaneous tumor xenograft was established for in vivo analysis. BMSC-EVs promoted OS cell proliferation, invasion, migration, and angiogenesis. BMSC-EVs carried NORAD into OS cells and upregulated CREBBP by sponging miR-877-3p. miR-877-3p downregulation or CREBBP overexpression partly inverted the inhibitory effect of EVs by silencing NORAD on OS cell proliferation, invasion, migration, and angiogenesis. In vivo experiments validated that BMSC-EV-derived NORAD facilitated tumor growth by upregulating CREBBP via miR-877-3p. To conclude, BMSC-EV-derived NORAD facilitated OS cell proliferation, invasion, migration, and angiogenesis by modulating CREBBP via miR-877-3p, which may offer new insights into OS treatment.
Collapse
|
21
|
Zou L, Shi C, Wang D, Cheng J, Wang Q, Wang L, Yang G. Long non-coding RNA-non-coding RNA activated by DNA damage inhibition suppresses hepatic stellate cell activation via microRNA-495-3p/sphingosine 1-phosphate receptor 3 axis. Bioengineered 2022; 13:6150-6162. [PMID: 35200103 PMCID: PMC8973981 DOI: 10.1080/21655979.2022.2037841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatic fibrosis is a damage repair response caused by multiple factors. A growing body of research suggests that long non-coding RNAs (lncRNAs) are involved in a wide range of biological processes, and thus regulate disease progression, including hepatic fibrosis. In this study, we investigated the mechanisms of the long non-coding RNA-non-coding RNA activated by DNA damage (NORAD) in modulating hepatic fibrosis development. Platelet-derived growth factor-BB (PDGF-BB) was used to activate LX-2 hepatic stellate cells (HSCs). The expression of NORAD and microRNA (miR)-495-3p was determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The effects of PDGF-BB on LX-2 cell viability, migration, invasion, and apoptosis were evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Transwell, flow cytometry, and Western blot assays. The activation of HSCs was further verified by examining the expression of the typical markers, alpha smooth muscle actin (α-SMA) and collagen I (Col1α1), using qRT-PCR and Western blot assays. StarBase and dual-luciferase reporter assays were used to assess the binding relationship between miR-495-3p and NORAD. The NORAD levels remarkably increased, whereas the miR-495-3p levels decreased, in PDGF-BB-treated LX-2 cells. miR-495-3p was a putative downstream target of NORAD. NORAD silencing played an anti-fibrotic role by targeting miR-495-3p; this was accomplished by hindering PDGF-BB-treated LX-2 cell viability, migration, and invasion, decreasing the levels of α-SMA and Col1α1, and promoting apoptosis. miR-495-3p protected against hepatic fibrosis by inhibiting sphingosine 1-phosphate receptor 3 (S1PR3) expression. In summary, NORAD silencing inhibited hepatic fibrosis by suppressing HSC activation via the miR-495-3p/S1PR3 axis.
Collapse
Affiliation(s)
- Lei Zou
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| | - Cuifen Shi
- Department of Gastroenterology, Yancheng Second People's Hospital, Yancheng, China
| | - Dawei Wang
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| | - Juan Cheng
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| | - Qi Wang
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| | - Lei Wang
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| | - Guoya Yang
- Department of Infectious Diseases, Yancheng Second People's Hospital, Yancheng, China
| |
Collapse
|
22
|
Suppression of lncRNA NORAD may affect cell migration and apoptosis in gastric cancer cells. Mol Biol Rep 2022; 49:3289-3296. [PMID: 35083614 DOI: 10.1007/s11033-022-07167-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a major malignancy that threatens people's lives worldwide. Long noncoding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) is known to be a potential oncogene in many cancers and may promote cell migration and metastasis, and decrease apoptosis rate. MATERIAL AND METHODS NORAD expression was measured in 70 pairs of GC tissues and their adjacent normal tissues (ANTs) by quantitative real-time polymerase chain reaction. Si-NORAD gene knockdown study and cellular assays were conducted to assess the correlation between NORAD expression and cell viability, apoptosis, migration, and metastasis. RESULTS NORAD was significantly overexpressed in GC tissues compared to ANTs (P value < 0.0001). The receiver operating characteristic curve indicated the AUC of 0.721 with the sensitivity and specificity of 78.57 and 61.43, respectively (P value < 0.0001). NORAD downregulation leads to decreased cell viability (P value < 0.001) and migration (P value < 0.01), increased apoptosis rate (P value < 0.0001), and increased protein level for PTEN, E-cadherin, and Bax, but decreased protein level for Bcl-2. CONCLUSION Generally, NORAD may serve as a potential diagnostic biomarker in GC.
Collapse
|
23
|
Huang C, Liu J, He L, Wang F, Xiong B, Li Y, Yang X. The long noncoding RNA noncoding RNA activated by DNA damage (NORAD)-microRNA-496-Interleukin-33 axis affects carcinoma-associated fibroblasts-mediated gastric cancer development. Bioengineered 2021; 12:11738-11755. [PMID: 34895039 PMCID: PMC8810175 DOI: 10.1080/21655979.2021.2009412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are one of the crucial parts of in the tumor microenvironment and contribute to tumor progression. Interleukin-33 (IL-33), a tissue-derived nuclear cytokine from the IL-1 family, has been found abnormally expressed in tumor cells and Fibroblast. However, the role and mechanism of IL-33 in the interaction between gastric cancer (GC) cells and CAFs need investigation. Presently, we inquire into the function of lncRNA NORAD-miR-496 axis-mediated IL-33 in modulating the GC-CAFs interaction. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was adopted to gauge the expression of NORAD, miR-496, and IL-33 in GC tissues and cells, and gain- or loss-of-function assays were conducted to investigate the role of them in GC. A GC cell-CAFs co-culture model was established to explore the interaction between CAFs and GCs. As exhibited, NORAD was up-regulated in GC tissues and cells, while miR-496 was remarkably down-regulated. Overexpressing NORAD substantially promoted the proliferation, migration, invasion, and EMT of GC cells and repressed cell death, while overexpressing miR-496 had the opposite effects. Additionally, NORAD enhanced the IL-33 expression and the release of IL-33 from GC cells. The dual-luciferase reporter assay confirmed that miR-496 was a target of NORAD and targeted IL-33. CAFs aggravated the malignant behaviors of GC cells as indicated by both experiments. However, NORAD knockdown in CAFs reversed CAFs-mediated promotive effects on GC cells. In conclusion, NORAD enhanced the promotive effect of CAFs in GC cells by up-regulating IL-33 and targeting miR-496, which provided new insights into the microenvironment of GC cells and CAFs.Abbreviation ANOVA: Analysis of Variance; BCA:Bicinchoninic acid; CAFs: carcinoma-associated fibroblasts; CCK-8: cell counting kit-8; ceRNA: competing endogenous RNA; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's minimal essential medium/Ham's; ECL: enhanced chemiluminiscent; ELISA: Enzyme-Linked Immunosorbent Assay; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; FISH:Fluorescence in situ hybridization; FITC:fluorescein isothiocyanate; FSP:fibroblast-specific protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GC: gastric cancer; IHC: immunohistochemistry; IL: Interleukin; lncRNA: long Noncoding RNA; miR-496: microRNA-496; MMP-14:matrix metalloproteinase-14; MUT:mutant; MYH9: myosin heavy chain 9; NFs: normal fibroblasts; NORAD: Noncoding RNA activated by DNA damage; ORF: open reading frame; PBS: phosphate-buffered saline; PMSF: Phenylmethylsulfonyl fluoride; PVDF: polyvinylidene difluoride; RIPA: Radio-Immunoprecipitation Assay; RT-PCR: Real-time reverse transcription polymerase chain reaction; S100A4:S100 calcium binding protein A4; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; sh-NC: short-hairpin RNA negative control; sh-NORAD: short-hairpin RNA of NORAD; α-SMA: α-smooth muscle actin; TBST: Tris-buffered saline with Tween-20; TGF-β1: Transforming growth factor β1; TUNEL: TdT-mediated dUTP Nick-End Labeling; TWIST1: the twist-related protein 1; VEGF-C: vascular endothelial growth factor C; WT: Wildtype.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
| | - Jiuyang Liu
- Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liang He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fubing Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
| |
Collapse
|
24
|
Yuan Z, Zhang Y, Chen P, Liu S, Xin L, Liu C. Long non-coding RNA HLA complex group 18 promotes gastric cancer progression by targeting microRNA-370-3p expression. J Pharm Pharmacol 2021; 74:250-258. [PMID: 34618022 DOI: 10.1093/jpp/rgab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our research was aimed at investigating the biological character of human leukocyte antigen complex group 18 (HCG18) on gastric cancer (GC) progression and its potential mechanisms. METHODS The expression characteristics and prognostic values of HCG18 in GC were evaluated through the GEPIA database and Kaplan-Meier plotter database. Quantitative real-time PCR and Western blot were used for quantification of messenger RNA expression, microRNA (miRNA) expression and protein expression. Cell proliferation, migration and invasion were detected by cell counting kit-8 assay, 5'-bromo-2'-deoxyuridine assay and Transwell assay, respectively. Dual-luciferase reporter gene assay and RNA immunoprecipitation assay were used for examination of the interactions among HCG18, miR-370-3p and epidermal growth factor receptor (EGFR) 3'UTR. KEY FINDINGS HCG18 expression was up-regulated in GC tissues, and its high expression was closely associated with increased tumour size, advanced TNM stage, poor differentiation of tumour tissues and unfavourable prognosis of patients with GC. Additionally, HCG18 overexpression promoted the proliferation, migration and invasion of GC cells, and its knockdown suppressed the malignant phenotypes of GC cells. Furthermore, HCG18 served as a miRNA sponge to repress miR-370-3p and indirectly up-regulated EGFR expression in GC cells. CONCLUSIONS HCG18 served as a tumour-promoting factor in GC progression by modulating the miR-370-3p/EGFR axis.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yuan Zhang
- Department of Internal Medicine, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Peng Chen
- Department of Emergency, Xinglin Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuhong Liu
- Department of Radiotherapy, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Li Xin
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong, China
| | - Chengxia Liu
- Department of Pathology, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
25
|
Lv C, Wang J, Dai S, Chen Y, Jiang X, Li X. Long non-coding RNA NORAD induces phenotypic regulation of vascular smooth muscle cells through regulating microRNA-136-5p-targeted KDM1A. Cell Cycle 2021; 20:2137-2148. [PMID: 34583619 DOI: 10.1080/15384101.2021.1971351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Effect of long non-coding RNAs (lncRNAs) on intracranial aneurysm (IA) development has been identified, while the role of noncoding RNA activated by DNA damage (NORAD) in IA remains unexplored. We aimed to verify the impact of NORAD on IA through sponging microRNA-136-5p (miR-136-5p). METHODS Ruptured and unruptured IAs were harvested from IA patients, and expression of NORAD, miR-136-5p, and KDM1A was determined. The vascular smooth muscle cells (VSMCs) were cultured and, respectively, transfected with altered NORAD, miR-136-5p, or lysine-specific demethylase 1 (KDM1A) to observe their effect on biological functions, as well as on contraction and synthesis-specific indices of VSMCs. Interactions between NORAD and miR-136-5p, and between miR-136-5p and KDM1A were confirmed. RESULTS NORAD and KDM1A were upregulated while miR-136-5p was downregulated in IA, especially in ruptured IA. NORAD overexpression or miR-136-5p inhibition accelerated proliferation and migration, and decelerated phenotypic switching and apoptosis of VSMCs. The effects of overexpressed NORAD on VSMCs were reserved by miR-136-5p upregulation or KDM1A knockdown. NORAD functioned as a competing endogenous RNA of miR-136-5p and miR-136-5p targeted KDM1A. CONCLUSION NORAD suppressed miR-136-5p, thus upregulating KDM1A to participate in IA formation and rupture by inducing phenotypic regulation of VSMCs.
Collapse
Affiliation(s)
- Chao Lv
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Jun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Shuhui Dai
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Yanwei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Xiaofan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| | - Xia Li
- Department of Neurosurgery, The First Affiliated Hospital of Airforce Medical University, Xi'an Shaanxi, China
| |
Collapse
|
26
|
Chen Z, Xu C, Pan X, Cheng G, Liu M, Li J, Mei Y. lncRNA DSCR8 mediates miR-137/Cdc42 to regulate gastric cancer cell proliferation, invasion, and cell cycle as a competitive endogenous RNA. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:468-482. [PMID: 34553033 PMCID: PMC8430047 DOI: 10.1016/j.omto.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
lncRNA DSCR8 (Down syndrome critical region 8) is involved in progression of many cancers, but its specific role in gastric cancer (GC) is still unclear. Here, qRT-PCR detected upregulated expression of DSCR8 and Cdc42 and downregulated expression of miR-137 in GC. The protein expression level of Cdc42 in GC was upregulated as tested by western blot. Statistical analysis showed that DSCR8 was closely associated with some malignant clinicopathological features (such as tumor size, metastasis, and stage) in GC patients. Fluorescence in situ hybridization showed that DSCR8 was localized in the nucleus and cytoplasm. Dual-luciferase reporter gene, RNA immunoprecipitation, and biotin pull-down assays showed that DSCR8 could bind to miR-137 could bind to Cdc42. In vitro and in vivo assays showed that DSCR8 could promote proliferation, invasion, and the cycle of GC cells and inhibit cell apoptosis. In addition, a rescue experiment showed that DSCR8 regulated progression of GC cells via miR-137. Furthermore, DSCR8 regulated Cdc42 in GC cells by inhibiting miR-137. Taken together, these data indicated that DSCR8 could adsorb miR-137 to reduce its inhibitory effect on Cdc42 expression, thereby promoting the progression of GC cells and regulating the cell cycle. These results provide a novel direction for DSCR8 as a target of GC.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Chaobo Xu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Xiaoming Pan
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Guoxiong Cheng
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Ming Liu
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Jiaxin Li
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| | - Yijun Mei
- Department of Gastrointestinal Surgery, Lishui People's Hospital of Zhejiang Province, 15 Dazhong Street, Liandu District, Lishui City, Zhejiang 323000, China
| |
Collapse
|
27
|
Ghafouri-Fard S, Azimi T, Hussen BM, Abak A, Taheri M, Dilmaghani NA. Non-coding RNA Activated by DNA Damage: Review of Its Roles in the Carcinogenesis. Front Cell Dev Biol 2021; 9:714787. [PMID: 34485302 PMCID: PMC8415109 DOI: 10.3389/fcell.2021.714787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
Long intergenic non-coding RNA 00657 (LINC00657) or "non-coding RNA activated by DNA damage" (NORAD) is an extremely conserved and copious long non-coding RNA (lncRNA). This transcript has pivotal role in the preservation of genome integrity. Several researches have appraised the role of NORAD in the evolution of human cancers with most of them indicating an oncogenic role for this lncRNA. Several miRNAs such as miR-199a-3p, miR-608, miR-155-5p, miR-590-3p, miR-495-3p, miR-608, miR-202-5p, miR-125a-3p, miR-144-3p, miR-202-5p, and miR-30a-5p have been recognized as targets of NORAD in different cancer cell lines. In addition, NORAD has interactions with cancer-related pathways, particularly STAT, TGF-β, Akt/mTOR, and PI3K/AKT pathway. Over-expression of NORAD has been related with poor clinical outcome of patients with diverse types of neoplasms. Collectively, NORAD is a prospective marker and target for combating cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Azimi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Hu W, Zhao Y, Su L, Wu Z, Jiang W, Jiang X, Liu M. Silencing the lncRNA NORAD inhibits EMT of head and neck squamous cell carcinoma stem cells via miR‑26a‑5p. Mol Med Rep 2021; 24:743. [PMID: 34435652 PMCID: PMC8430304 DOI: 10.3892/mmr.2021.12383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells are closely associated with tumor metastasis or recurrence. According to previous literature reports, microRNA (miR)‑26a has an inhibitory effect on head and neck squamous cell carcinoma (HNSCC), and the long non‑coding RNA (lncRNA) non‑coding RNA activated by DNA damage (NORAD) has been found to interact with miR‑26a‑5p. The present study aimed to investigate the regulation and mechanism of NORAD and miR‑26a‑5p in the epithelial‑mesenchymal transition (EMT) of HNSCC stem cells. An ALDEFLUOR stem cell detection kit, a flow cytometer, a self‑renewal ability test and western blotting were used to sort and identify HNSCC stem cells. The ENCORI website and a dual‑luciferase assay were used to assess the relationship between genes. The mRNA and protein expression levels of NORAD, miR‑26a‑5p and EMT‑related genes were detected via reverse transcription‑quantitative PCR and western blotting. Functional experiments (MTT assay, flow cytometry, wound healing assay and Transwell assay) were conducted to analyze the effects of NORAD and miR‑26a‑5p on HNSCC stem cells. The successfully sorted aldehyde dehydrogenase (ALDH)+ cells had a self‑renewal capacity and displayed upregulated expression levels of CD44, Oct‑4 and Nanog. NORAD knockdown, achieved using small interfering (si)RNA, downregulated the expression levels of tumor markers in ALDH+ cells. siNORAD inhibited cell vitality, migration and invasion, as well as promoted apoptosis, increased the expression of epithelial cell markers and decreased the expression of interstitial cell markers in HNSCC stem cells. miR‑26a‑5p was a downstream gene of NORAD, and knockdown of miR‑26a‑5p partially offset the regulatory effect of siNORAD on HNSCC stem cells. Collectively, the present study demonstrated that NORAD knockdown attenuated the migration, invasion and EMT of HNSCC stem cells via miR‑26a‑5p.
Collapse
Affiliation(s)
- Weiming Hu
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Zhao
- Department of Otorhinolaryngology, XIXI Hospital of Hangzhou, Hangzhou, Zhejiang 310012, P.R. China
| | - Lizhong Su
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zuliang Wu
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenjing Jiang
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaoze Jiang
- Department of Otorhinolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ming Liu
- Department of Otorhinolaryngology, Zhejiang Hospital, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
29
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
30
|
Wang L, Yuan X, Lian L, Guo H, Zhang H, Zhang M. Knockdown of lncRNA NORAD inhibits the proliferation, inflammation and fibrosis of human mesangial cells under high-glucose conditions by regulating the miR-485/NRF1 axis. Exp Ther Med 2021; 22:874. [PMID: 34194552 PMCID: PMC8237396 DOI: 10.3892/etm.2021.10306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve major roles in diabetic nephropathy (DN). The present study investigated the regulatory mechanism of lncRNA non-coding RNA activated by DNA damage (NORAD) on DN in vitro. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA NORAD, microRNA-485 (miR-485) and nuclear respiratory factor 1 (NRF1) in the tissues of patients with DN and high-glucose (HG)-induced human mesangial cells (HMCs). The viability of HMCs was determined using an MTT assay. The levels of inflammatory [tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6] and fibrotic [type IV collagen (Col. IV), fibronectin (FN) and plasminogen activator inhibitor 1 (PAI-1)] factors in HMCs were measured by ELISA. The interactions between miR-485 and NORAD/NRF1 were predicted using StarBase and miRDB softwares and confirmed by a dual-luciferase reporter assay. Western blot analysis was utilized to measure NRF1 protein levels. lncRNA NORAD was highly expressed in tissues and HG-induced HMCs. NORAD knockdown suppressed cell viability in HG-induced HMCs. The levels of the inflammatory and fibrotic factors in HG-induced HMCs were inhibited by NORAD knockdown. miR-485 was the direct target of NORAD. NORAD reversed the inhibitory effects of miR-485 on HG-induced HMCs. Furthermore, NRF1 was the target gene of miR-485. Downregulation of miR-485 and upregulation of NRF1 reversed the inhibitory effects of NORAD knockdown on HG-induced HMCs. NORAD knockdown inhibited HG-induced HMC proliferation, inflammation and fibrosis by regulating miR-485/NRF1, providing a possible therapeutic strategy for DN.
Collapse
Affiliation(s)
- Linna Wang
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Xiaoying Yuan
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Lifeng Lian
- Laboratory Department, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Huali Guo
- Blood Purification Center, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Hongxia Zhang
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Minghui Zhang
- Department of Nephrology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
31
|
Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel) 2021; 12:genes12071036. [PMID: 34356052 PMCID: PMC8305186 DOI: 10.3390/genes12071036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC’s ceRNA network.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China;
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
32
|
Shi P, Zhang J, Li X, Li W, Li H, Fu P. Long non-coding RNA NORAD inhibition upregulates microRNA-323a-3p to suppress tumorigenesis and development of breast cancer through the PUM1/eIF2 axis. Cell Cycle 2021; 20:1295-1307. [PMID: 34125645 PMCID: PMC8331030 DOI: 10.1080/15384101.2021.1934627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to competitively bind with microRNAs (miRNAs) to participate in human cancers. We aim to explore the role of non-coding RNA activated by DNA damage (NORAD) binding to miR-323a-3p in breast cancer (BC) with the involvement of pumilio RNA-binding family member 1 (PUM1)/eukaryotic initiation factor 2 (eIF2) axis. Expression of NORAD, miR-323a-3p and PUM1 in tissues and cell lines was detected, and the correlation between NORAD expression and clinicopathological features of BC patients was analyzed. The screened cell line was respectively transfected with altered NORAD or miR-323a-3p to reveal their roles in viability, migration, invasion and apoptosis of BC cells in vitro. The tumor growth in vivo was observed in nude mice. The binding relationships among NORAD, miR-323a-3p and PUM1 were analyzed, and the regulatory role of NORAD and miR-323a-3p in the eIF2 signaling pathway was assessed. NORAD and PUM1 were upregulated and miR-323a-3p was downregulated in BC. High NORAD expression indicated a poor prognosis of BC patients. NORAD inhibition or miR-323a-3p elevation inhibited malignant behaviors of BC cells. The in vivo assay revealed that NORAD inhibition or miR-323a-3p elevation inhibited tumor growth as well. MiR-323a-3p inhibition reversed the role of NORAD knockdown in the biological functions of BC cells while silencing PUM1 reversed the influence of NORAD overexpression on BC cells. NORAD bound with miR-323a-3p and miR-323a-3p targeted PUM1. NORAD and miR-323a-3p functioned through the PUM1/eIF2 axis. NORAD inhibition or miR-323a-3p elevation suppresses the development of BC through the PUM1/eIF2 axis.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaming Zhang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhuan Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Li Y, Lu L, Wu X, Li Q, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Wu Z, Hu W, Cho CH, Li M. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int J Biol Sci 2021; 17:2737-2755. [PMID: 34345204 PMCID: PMC8326121 DOI: 10.7150/ijbs.61410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.
Collapse
Affiliation(s)
- Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province,Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.,Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
34
|
Wang B, Deng Y, Jin J, Wu Y, Shen L. Long Noncoding RNA LIT3527 Knockdown induces Apoptosis and Autophagy through inhibiting mTOR pathway in Gastric Cancer Cells. J Cancer 2021; 12:4901-4911. [PMID: 34234860 PMCID: PMC8247385 DOI: 10.7150/jca.58185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most common cancers and the leading causes of cancer mortality. However, the molecular mechanisms of gastric cancer malignancy remain unclear. Long noncoding RNAs (lncRNAs) have been well documented in controlling cancer progression. Identification of critical lncRNAs in gastric cancer will provide new sights into the regulation mechanism of gastric cancer. Here, we screened differentially expressed lncRNAs in gastric cancer tissues and matched adjacent tissues and found that lncRNA LIT3527, a 486-nucleotide (nt) sense transcript, was frequently upregulated in gastric cancer tissues. Knockdown of LIT3527 dramatically suppressed proliferation and migration of gastric cancer cells through inducing severe cell death but not affecting cell cycle. Mechanistically, we uncovered that depletion of LIT35227 induced significant cell apoptosis and autophagy through inhibiting AKT/ERK/mTOR signaling pathway. Targeting LIT3527 showed a robust inhibition of lung metastasis of gastric cancer cells. Taken together, these results suggest that LIT3527 is essential for gastric cancer cell survival through maintaining mTOR activity, suggesting that it may be clinically valuable as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Boya Wang
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, China
| | - Yujie Deng
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan Wu
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Lirong Shen
- Department of pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| |
Collapse
|
35
|
Li S, Zhu X, Zhang N, Cao R, Zhao L, Li X, Zhang J, Yu J. LncRNA NORAD engages in psoriasis by binding to miR-26a to regulate keratinocyte proliferation. Autoimmunity 2021; 54:129-137. [PMID: 33759666 DOI: 10.1080/08916934.2021.1897976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory skin disease. It was reported that lncRNA Non-coding RNA-activated by DNA damage (NORAD) has potential regulatory effects on skin diseases. Our previous studies found that lncRNA NORAD was highly expressed and its potential target miR-26a was down-regulated in psoriasis model mice. Here, we aimed to investigate the role of NORAD in the development of psoriasis. METHODS IL-22/LPS (interleukin-22/lipopolysaccharide)-stimulated HaCaT (human immortalized keratinocytes) cell model and imiquimod-induced mouse model were established. Keratin 6 (K6), Keratin 16 (K16), Keratin 17 (K17), and Cell division cycle 6 (CDC6) levels were detected by western blot. Cell activity was detected by CCK-8, MTT, and EdU assays. Quantitative real-time PCR was performed to examine the levels of NORAD, miR-26a, CDC6, K6, K16, and K17. Haematoxylin-eosin staining was applied to observe the degree of skin thickening and hyperplasia. Fluorescence in situ hybridization detects the location of NORAD. RNA immunoprecipitation, RNA pull-down, and Luciferase test were performed to detect the interaction between NORAD and miR-26a. RESULTS In IL-22/LPS-stimulated HaCaT cells, NORAD, CDC6, and keratinocyte proliferation-related proteins (K6, K16, and K17) were up-regulated and miR-26a was down-regulated. Cell survival and proliferation were also increased. However, the results were reversed after interference with NORAD. Also, in vitro experiments revealed that NORAD negatively regulated miR-26a. In IL-22/LPS-stimulated HaCaT cells and skin of imiquimod-induced mice, we found that lower NORAD resulted in an increase of miR-26a and a decrease of CDC6, further decreased levels of keratinocyte proliferation-related proteins (K6, K16, and K17).
Collapse
Affiliation(s)
- Shuiqi Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohua Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Zhang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixiang Cao
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhao
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang'an Zhang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbin Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Fu D, Yang S, Lu J, Lian H, Qin K. LncRNA NORAD promotes bone marrow stem cell differentiation and proliferation by targeting miR-26a-5p in steroid-induced osteonecrosis of the femoral head. Stem Cell Res Ther 2021; 12:18. [PMID: 33413642 PMCID: PMC7792292 DOI: 10.1186/s13287-020-02075-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a devastating orthopedic disease, which seriously affects the quality of life of patients. The study aims to investigate the effects of LncRNA NORAD on SONFH. METHODS Human bone marrow-derived mesenchymal stem cells (hBMSCs) were isolated from the proximal femur of patients during routine orthopedic surgery and then cultured with dexamethasone (Dex) and transfected with NORAD overexpression vector, siRNA-NORAD and miR-26a-5p mimics. The mRNA expression of NORAD, miR-26a-5p, OPG, RANK, and RANKL was detected by RT-qPCR. Cell proliferation and apoptosis was measured by CCK-8 assay and flow cytometry, respectively. The protein expression of RUNX2, OPG, RANK, and RANKL was detected by western blot. The dual-luciferase reporter gene assay was performed to confirm the binding between NORAD and miR-26a-5p. RESULTS NORAD expression was downregulated in SONFH tissues, while miR-26a-5p expression was upregulated. Overexpression of NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis in hBMSCs, while knockdown of NORAD led to the opposite results. Moreover, NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis by regulation of miR-26a-5p in hBMSCs. CONCLUSIONS NORAD expression was downregulated in SONFH tissues, while miR-26a-5p expression was upregulated. NORAD improved DEX-induced inhibition of proliferation and differentiation, and promotion of apoptosis by regulation of miR-26a-5p in hBMSCs.
Collapse
Affiliation(s)
- Dapeng Fu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China.
| | - Sheng Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Jianmin Lu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Haoyi Lian
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, People's Republic of China
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| |
Collapse
|
37
|
Chen Z, Che Q, Xie C. NORAD regulates epithelial‑mesenchymal transition of non‑small cell lung cancer cells via miR‑422a. Mol Med Rep 2020; 23:111. [PMID: 33300080 PMCID: PMC7723171 DOI: 10.3892/mmr.2020.11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
The poor prognosis of non‑small cell lung cancer (NSCLC) is related to epithelial‑mesenchymal transition (EMT). Recent studies demonstrated that non‑coding RNA activated by DNA damage (NORAD) displays a carcinogenic effect and targets microRNA (miR)‑422a, which may be involved in tumor cell migration and invasion. The aim of the present study was to investigate the effect of NORAD on NSCLC cell EMT and the underlying mechanism. Reverse transcription‑quantitative PCR and western blotting were performed to detect the expression levels of long non‑coding RNAs, miRNAs and mRNAs. Cell viability, migration and invasion were detected by conducting Cell Counting Kit‑8, wound healing and Transwell assays, respectively. The target of NORAD was predicted using starBase and further confirmed by conducting a dual‑luciferase reporter assay. The results indicated that NORAD expression was significantly increased in lung cancer tissues and cells compared with adjacent healthy tissues and cells. Compared with the control groups, NORAD overexpression promoted SK‑MES‑1 cell viability, migration and invasion, whereas NORAD knockdown resulted in the opposite effects in A549 cells. Moreover, miR‑422a, which was predicted to be a target of NORAD, displayed lower expression levels in lung cancer tissues compared with adjacent healthy tissues. In addition, miR‑422a overexpression partially reversed NORAD overexpression‑induced increases in SK‑MES‑1 cell viability, migration, invasion and EMT. In addition, miR‑422a knockdown partially reversed the effects of NORAD knockdown. The present study suggested that NORAD regulated lung cancer cell EMT by regulating the expression of miR‑422a, providing a potential therapeutic target for the intervention of the development of NSCLC.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Emergency, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Qin Che
- Department of Infectious Diseases, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chunxue Xie
- Department of General Practice, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
38
|
Soghli N, Yousefi T, Abolghasemi M, Qujeq D. NORAD, a critical long non-coding RNA in human cancers. Life Sci 2020; 264:118665. [PMID: 33127516 DOI: 10.1016/j.lfs.2020.118665] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The incidence of cancer is growing worldwide, and it is becoming the most common cause of death. Long non-coding RNAs (lncRNAs) are a group of RNA transcripts with a length larger than 200 nucleotides that cannot encode proteins or peptides. LncRNAs regulate different biological functions by controlling gene expressions at transcriptional, translational, and post-translational levels. Non-coding RNA activated by DNA damage (NORAD) is a highly conserved lncRNA necessary for genome stability. LncRNA NORAD is dysregulated in various types of cancers. This biomarker has been involved in numerous processes associated with carcinogeneses, such as cell proliferation, apoptosis, invasion, and metastasis. In this paper, we reviewed the role of lncRNA NORAD and its biological functions in various human cancers to provide future research insights.
Collapse
Affiliation(s)
- Negin Soghli
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Dental Faculty, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Abolghasemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
39
|
PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262:118513. [PMID: 33011222 DOI: 10.1016/j.lfs.2020.118513] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
PI3K/AKT/mTOR pathway is one of the most important signaling pathways involved in normal cellular processes. Its aberrant activation modulates autophagy, epithelial-mesenchymal transition, apoptosis, chemoresistance, and metastasis in many human cancers. Emerging evidence demonstrates that some infections as well as epigenetic regulatory mechanisms can control PI3K/AKT/mTOR signaling pathway. In this review, we focused on the role of this pathway in gastric cancer development, prognosis, and metastasis, with an emphasis on epigenetic alterations including DNA methylation, histone modifications, and post-transcriptional modulations through non-coding RNAs fluctuations as well as H. pylori and Epstein-Barr virus infections. Finally, we reviewed different molecular targets and therapeutic agents in clinical trials as a potential strategy for gastric cancer treatment through the PI3K/AKT/mTOR pathway.
Collapse
|
40
|
Luo L, Chen C, He H, Cai M, Ling C. Silencing of Long Non-Coding RNA (LncRNA) Non-Coding RNA Activated by DNA Damage (NORAD) Inhibits Proliferation, Invasion, Migration, and Promotes Apoptosis of Glioma Cells via Downregulating the Expression of AKR1B1. Med Sci Monit 2020; 26:e922659. [PMID: 32778640 PMCID: PMC7392058 DOI: 10.12659/msm.922659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background We aimed to investigate the functions of long non-coding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in glioma and identify the potential mechanisms. Material/Methods The expression of NORAD and AKR1B1 in human glioma cell lines were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, cell proliferation, invasion, and migration were tested by Cell Counting Kit-8 (CCK-8), colony formation assay, Transwell, and scratch wound healing assay after NORAD silencing. Meanwhile, western blotting was utilized to measure the expression of migration-related proteins. Apoptosis of glioma cells was detected using flow cytometry and apoptosis-related proteins expression was determined. Moreover, the correlation between NORAD and AKR1B1 was verified by RNA-binding protein immunoprecipitation (RIP assay). After co-transfection with AKR1B1 overexpressed plasmid and NORAD siRNA, cell proliferation, invasion, migration, and apoptosis were examined again. Furthermore, the expression of proteins in extracellular signal-regulated kinase (ERK) signaling was tested using western blotting. Results The results revealed that NORAD and AKR1B1 were highly expressed in glioma cells. NORAD silencing inhibited proliferation, invasion and migration but promoted apoptosis of glioma cells, accompanied by the expression changes of migration- and apoptosis-related proteins. However, after co-transfection with AKR1B1 pcDNA3.1 in NORAD silencing cells, the effects of NORAD silencing on proliferation, invasion, migration, and apoptosis were attenuated. Consistently, the expression of phosphorylated ERK (p-ERK) was decreased after NORAD silencing, which were reversed following AKR1B1 overexpression. Conclusions These findings demonstrated that NORAD silencing suppressed proliferation, invasion, and migration and boosted apoptosis of glioma cells via downregulating the AKR1B1 expression, which may provide a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Lun Luo
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Haiyong He
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
41
|
Zhao L, Liu C, Yan S, Hu G, Xiang K, Xiang H, Yu H. LINC00657 promotes colorectal cancer stem-like cell invasion by functioning as a miR-203a sponge. Biochem Biophys Res Commun 2020; 529:500-506. [PMID: 32703458 DOI: 10.1016/j.bbrc.2020.04.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/12/2020] [Indexed: 02/09/2023]
Abstract
Recently, the role of long non-coding RNAs (lncRNAs) in regulating multiple cancer types has attracted increasing interest because of their involvement in cell metastasis in different cancer types. Previous studies indicated that LINC00657 may work as an oncogene in gastric and colon cancer. However, the functional role and mechanistic action of LINC00657 on colorectal cancer (CRC) remains unknown. Therefore, in this study, the role of LINC00657 in CRC was evaluated. Our results showed that LINC00657 was enriched in CRC stem-like cells (CSCs) and significantly promoted CSCs invasion ability. LINC00657 expression resulted frequently up-regulated in CRC patient tissue, and high expression of LINC00657 was correlated with an advanced clinical stage, lymph node metastasis, distant metastasis and poor overall survival of CRC patients. Furthermore, LINC00657 worked as a competing endogenous RNA (ceRNA) for miR-203a, antagonizing its function as a tumor suppressor and leading to the de-repression of CSCs invasion. Collectively, our observations revealed that LINC00657 is involved in CRC invasion by acting as a competing endogenous RNA. Thus, LINC00657 may serve as a potential prognostic factor and/or therapeutic target for CRC.
Collapse
Affiliation(s)
- Lian Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Chao Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Shipeng Yan
- Department of Cancer Prevention and Control, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Gui Hu
- Department of Gastroenterological Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Kaimin Xiang
- Department of Gastroenterological Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haibo Yu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
| |
Collapse
|