1
|
McKeown JP, Byrne AJ, Bright SA, Charleton CE, Kandwal S, Čmelo I, Twamley B, McElligott AM, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL). Pharmaceuticals (Basel) 2024; 17:1034. [PMID: 39204139 PMCID: PMC11359702 DOI: 10.3390/ph17081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels-Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17-2.69 µM (HG-3) and 0.35-1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82-95%) and PGA-1 (87-97%) at 10 µM, with low toxicity (12-16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL.
Collapse
Affiliation(s)
- James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Clara E. Charleton
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Ivan Čmelo
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 P3X2 Dublin, Ireland
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
2
|
Wang ZH, Zheng X, Rao GW, Zheng Q. Targeted small molecule therapy and inhibitors for lymphoma. Future Med Chem 2024; 16:1465-1484. [PMID: 39016063 PMCID: PMC11352716 DOI: 10.1080/17568919.2024.2359893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/21/2024] [Indexed: 07/18/2024] Open
Abstract
Lymphoma, a blood tumor, has become the ninth most common cancer in the world in 2020. Targeted inhibition is one of the important treatments for lymphoma. At present, there are many kinds of targeted drugs for the treatment of lymphoma. Studies have shown that Histone deacetylase, Bruton's tyrosine kinase and phosphoinositide 3-kinase all play an important role in the occurrence and development of tumors and become important and promising inhibitory targets. This article mainly expounds the important role of these target protein in tumors, and introduces the mechanism of action, structure-activity relationship and clinical research of listed small molecule inhibitors of these targets, hoping to provide new ideas for the treatment of lymphoma.
Collapse
Affiliation(s)
- Zhong-Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Xiang Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Quan Zheng
- Core Facility,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou324000, P. R. China
| |
Collapse
|
3
|
Camerini E, Amsen D, Kater AP, Peters FS. The complexities of T-cell dysfunction in chronic lymphocytic leukemia. Semin Hematol 2024; 61:163-171. [PMID: 38782635 DOI: 10.1053/j.seminhematol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by profound alterations and defects in the T-cell compartment. This observation has gained renewed interest as T-cell treatment strategies, which are successfully applied in more aggressive B-cell malignancies, have yielded disappointing results in CLL. Despite ongoing efforts to understand and address the observed T-cell defects, the exact mechanisms and nature underlying this dysfunction remain largely unknown. In this review, we examine the supporting signals from T cells to CLL cells in the lymph node niche, summarize key findings on T-cell functional defects, delve into potential underlying causes, and explore novel strategies for reversing these deficiencies. Our goal is to identify strategies aimed at resolving CLL-induced T-cell dysfunction which, in the future, will enhance the efficacy of autologous T-cell-based therapies for CLL patients.
Collapse
Affiliation(s)
- Elena Camerini
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Landsteiner Laboratory for Blood Cell Research at Sanquin, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Kohal R, Bhavana, Kumari P, Sharma AK, Gupta GD, Verma SK. Fyn, Blk, and Lyn kinase inhibitors: A mini-review on medicinal attributes, research progress, and future insights. Bioorg Med Chem Lett 2024; 102:129674. [PMID: 38408513 DOI: 10.1016/j.bmcl.2024.129674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.
Collapse
Affiliation(s)
- Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Arun Kumar Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
5
|
Famta P, Shah S, Vambhurkar G, Srinivasarao DA, Jain N, Begum N, Sharma A, Shahrukh S, Kumar KC, Bagasariya D, Khatri DK, Singh SB, Srivastava S. Quality by design endorsed fabrication of Ibrutinib-loaded human serum albumin nanoparticles for the management of leukemia. Eur J Pharm Biopharm 2023; 190:94-106. [PMID: 37467865 DOI: 10.1016/j.ejpb.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Ibrutinib (IB), a BCS class II drug suffers from limited aqueous solubility, short half-life and extensive first-pass metabolism. In this project, we aim to recruit the desirable properties of human serum albumin (HSA) as a biocompatible drug carrier to circumvent nanoparticle-associated drawbacks. Quality by design and multivariate analysis was used for the optimization of IB-NPs. Cell culture studies performed on the K562 cell line revealed that the Ibrutinib-loaded HSA NPs demonstrated improved cytotoxicity, drug uptake, and reactive oxygen species generation in the leukemic K562 cells. Cell cycle analysis revealed G2/M phase retention of the leukemia cells. In vitro protein corona and hemolysis studies revealed superior hematological stability compared to the free drug which showed greater than 40 % hemolysis. In vitro drug release studies showed prolonged release profile till 48 h. Pharmacokinetic studies demonstrated a 2.31-fold increase in AUC and an increase in half-life from 0.43 h to 2.887 h with a tremendous reduction in clearance and elimination rate indicating prolonged systemic circulation which is desirable in leukemia. Hence, we conclude that IB-loaded albumin nanoparticles could be a promising approach for the management of leukemia.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
7
|
Elaskalani O, Gilmore G, Hagger M, Baker RI, Metharom P. Adenosine 2A Receptor Activation Amplifies Ibrutinib Antiplatelet Effect; Implications in Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14235750. [PMID: 36497231 PMCID: PMC9741389 DOI: 10.3390/cancers14235750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic lymphocytic leukemia patients have an increased bleeding risk with the introduction of Bruton tyrosine kinase (BTK) inhibitors. BTK is a signaling effector downstream of the platelet GPVI receptor. Innate platelet dysfunction in CLL patients and the contribution of the leukemia microenvironment to the anti-platelet effect of BTK inhibitors are still not well defined. Herein, we investigated platelet function in stable, untreated CLL patients in comparison to age-matched healthy subjects as control. Secondly, we proposed a novel mechanism of platelet dysfunction via the adenosinergic pathway during BTK inhibitor therapy. Our data indicate that the nucleotidase that produces adenosine, CD73, was expressed on one-third of B-cells in CLL patients. Inhibition of CD73 improved platelet response to ADP in the blood of CLL patients ex vivo. Using healthy platelets, we show that adenosine 2A (A2A) receptor activation amplifies the anti-platelet effect of ibrutinib (10 nM). Ibrutinib plus an A2A agonist-but not ibrutinib as a single agent-significantly inhibited collagen (10 µg/mL)-induced platelet aggregation. Mechanistically, A2A activation attenuated collagen-mediated inhibition of p-VASP and synergized with ibrutinib to inhibit the phosphorylation of AKT, ERK and SYK kinases. This manuscript highlights the potential role of adenosine generated by the microenvironment in ibrutinib-associated bleeding in CLL patients.
Collapse
Affiliation(s)
- Omar Elaskalani
- Telethon Kids Institute, Cancer Centre, Nedlands, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Crawley, WA 6009, Australia
| | - Grace Gilmore
- Perth Blood Institute (PBI), Perth, WA 6005, Australia
- Western Australian Centre for Thrombosis and Haemostasis (WACTH), Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Madison Hagger
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ross I. Baker
- Perth Blood Institute (PBI), Perth, WA 6005, Australia
- Western Australian Centre for Thrombosis and Haemostasis (WACTH), Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (R.I.B.); (P.M.)
| | - Pat Metharom
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Correspondence: (R.I.B.); (P.M.)
| |
Collapse
|
8
|
Circulating versus Cellular Tumor DNA for the Detection of BTK Resistant CLL Clones. Leuk Res Rep 2022; 18:100359. [DOI: 10.1016/j.lrr.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
9
|
Wu Z, Wang L, Fan L, Tang H, Zuo X, Gu D, Lu X, Li Y, Wu J, Qin S, Xia Y, Zhu H, Wang L, Xu W, Li J, Jin H. Exploring the significance of PAK1 through chromosome conformation signatures in ibrutinib-resistant chronic lymphocytic leukaemia. Mol Oncol 2022; 16:2920-2935. [PMID: 35811334 PMCID: PMC9394240 DOI: 10.1002/1878-0261.13281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Ibrutinib exerts promising anticancer effects in chronic lymphocytic leukaemia (CLL). However, acquired resistance occurs during treatment, necessitating the exploration of underlying mechanisms. Although three‐dimensional genome organization has been identified as a major player in the development and progression of cancer, including drug resistance, little is known regarding its role in CLL. Therefore, we investigated the molecular mechanisms underlying ibrutinib resistance through multi‐omics analysis, including high‐throughput chromosome conformation capture (Hi‐C) technology. We demonstrated that the therapeutic response to ibrutinib is associated with the expression of p21‐activated kinase 1 (PAK1). PAK1, which was up‐regulated in CLL and associated with patients' survival, was involved in cell proliferation, glycolysis and oxidative phosphorylation. Furthermore, the PAK1 inhibitor IPA‐3 exerted an anti‐tumour effect and its combination with ibrutinib exhibited a synergistic effect in ibrutinib‐sensitive and ‐resistant cells. These findings suggest the oncogenic role of PAK1 in CLL progression and drug resistance, highlighting PAK1 as a potential diagnostic marker and therapeutic target in CLL including ibrutinib‐resistant CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Luqiao Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Lei Fan
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Hanning Tang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xiaoling Zuo
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Danling Gu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Xueying Lu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yue Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jiazhu Wu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Shuchao Qin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Yi Xia
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Huayuan Zhu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Li Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China
| | - Jianyong Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Jin
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, China.,Key Laboratory of Hematology of Nanjing Medical University, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Differential Response to Cytotoxic Drugs Explains the Dynamics of Leukemic Cell Death: Insights from Experiments and Mathematical Modeling. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study presents a framework whereby cancer chemotherapy could be improved through collaboration between mathematicians and experimentalists. Following on from our recently published model, we use A20 murine leukemic cells transfected with monomeric red fluorescent proteins cells (mCherry) to compare the simulated and experimental cytotoxicity of two Federal Drug Administration (FDA)-approved anticancer drugs, Cytarabine (Cyt) and Ibrutinib (Ibr) in an in vitro model system of Chronic Lymphocytic Leukemia (CLL). Maximum growth inhibition with Cyt (95%) was reached at an 8-fold lower drug concentration (6.25 μM) than for Ibr (97%, 50 μM). For the proposed ordinary differential equations (ODE) model, a multistep strategy was used to estimate the parameters relevant to the analysis of in vitro experiments testing the effects of different drug concentrations. The simulation results demonstrate that our model correctly predicts the effects of drugs on leukemic cells. To assess the closeness of the fit between the simulations and experimental data, RMSEs for both drugs were calculated (both RMSEs < 0.1). The numerical solutions of the model show a symmetrical dynamical evolution for two drugs with different modes of action. Simulations of the combinatorial effect of Cyt and Ibr showed that their synergism enhanced the cytotoxic effect by 40%. We suggest that this model could predict a more personalized drug dose based on the growth rate of an individual’s cancer cells.
Collapse
|
11
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
12
|
A Prospective Cross-Sectional Study on the Comparison of Ultrasound Assessment vs. Palpation in Chronic Lymphocytic Leukemia Patients in the Era of Targeted Therapy. J Clin Med 2022; 11:jcm11113206. [PMID: 35683596 PMCID: PMC9181657 DOI: 10.3390/jcm11113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Background. In IWCLL guidelines, progressive splenomegaly and lymphadenopathy are signs of active disease. In this study, we have tested the hypotheses if US could be a reliable tool for both superficial lymphnodes (SupLNs) and splenic assessment in chronic lymphocytic leukemia (CLL) patients. Methods. We enrolled N = 75 patients. SupLN and the spleen were assessed by two independent physicians (M1 and M2) by palpation and by a third physician (M3) with ultrasound sonography (US) using two different sonographers (US1 and US2). The results of M1 vs. M2 assessment, US1 vs. US2, palpation vs. US were compared. The echostructure of N = 1037 SupLN and of the spleen was also investigated. Results. The dimensions of SupLNs assessed by MD1 vs. MD2 were statistically discordant. Splenic size was concordant. There was concordance between US1 and US2 SupLN and splenic assessment. US found a higher number of pathological SupLN (Cohen’s Kappa < 0.1) than palpation, which misses remarkable-sized SupLNs. LN echostructure and splenic involvement patterns were described. Conclusions. US is a reliable, radiation-free tool useful in clinical practice to assess SupLN and splenic involvement in CLL.
Collapse
|
13
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Wang H, Zhang W, Yang J, Zhou K. The resistance mechanisms and treatment strategies of BTK inhibitors in B-cell lymphoma. Hematol Oncol 2021; 39:605-615. [PMID: 34651869 PMCID: PMC9293416 DOI: 10.1002/hon.2933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have revolutionized the treatment of B‐cell lymphoma (BCL). These drugs interfere with the mechanisms underlying malignant B‐cell pathophysiology, allowing better drug response as well as low toxicity. However, these multiple mechanisms also lead to drug resistance, which compromised the treatment outcome and needs to be solved urgently. This review focuses on genomic variations (such as BTK and its downstream PCLG2 mutations as well as Del 8p, 2p+, Del 6q/8p, BIRC3, TRAF2, TRAF3, CARD11, MYD88, and CCND1 mutations) and related pathways (such as PI3K/Akt/mTOR, NF‐κB, MAPK signaling pathways, overexpression of B‐cell lymphoma 6, platelet‐derived growth factor, toll‐like receptors, and microenvironment, cancer stem cells, and exosomes) involved in cancer pathophysiology to discuss the mechanisms underlying resistance to BTKi. We have also reviewed the newly reported drug resistance mechanisms and the proposed potential treatment strategies (the next‐generation BTKi, proteolysis‐targeting chimera‐BTK, XMU‐MP‐3, PI3K‐Akt‐mTOR pathway, MYC or LYN kinase inhibitor, and other small‐molecule targeted drugs) to overcome drug resistance. The findings presented in this review lay a strong foundation for further research in this field.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wentao Zhang
- Department of Urology, Armed Police Forces Hospital of Henan, Zhengzhou, China
| | - Jingyi Yang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
15
|
Kawahata W, Asami T, Kiyoi T, Irie T, Kashimoto S, Furuichi H, Sawa M. Discovery of AS-1763: A Potent, Selective, Noncovalent, and Orally Available Inhibitor of Bruton's Tyrosine Kinase. J Med Chem 2021; 64:14129-14141. [PMID: 34529443 DOI: 10.1021/acs.jmedchem.1c01279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although Bruton's tyrosine kinase (BTK) has been recognized as a validated drug target for the treatment of B-cell malignances, the emergence of clinical resistance to the first-generation covalent BTK inhibitors is becoming a serious concern. As a part of our effort to develop noncovalent BTK inhibitors, a series of novel pyrrolopyrimidines was identified as noncovalent inhibitors of both the wild-type and C481S mutant BTKs. Subsequent lead optimization led to the identification of an orally available, potent, and selective BTK inhibitor 13f (AS-1763) as a next-generation noncovalent BTK inhibitor. With significant efficacies in vivo tumor xenograft models, AS-1763 has advanced to phase 1 clinical trials.
Collapse
Affiliation(s)
- Wataru Kawahata
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Tokiko Asami
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takao Kiyoi
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takayuki Irie
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shigeki Kashimoto
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hatsuo Furuichi
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masaaki Sawa
- Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
16
|
Torabi S, Anjamrooz SH, Zeraatpisheh Z, Aligholi H, Azari H. Ibrutinib reduces neutrophil infiltration, preserves neural tissue and enhances locomotor recovery in mouse contusion model of spinal cord injury. Anat Cell Biol 2021; 54:350-360. [PMID: 34031271 PMCID: PMC8493027 DOI: 10.5115/acb.20.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Following acute spinal cord injury (SCI), excessive recruitment of neutrophils can result in inflammation, neural tissue loss and exacerbation of neurological outcomes. Ibrutinib is a bruton's tyrosine kinase inhibitor in innate immune cells such as the neutrophils that diminishes their activation and influx to the site of injury. The present study evaluated the efficacy of ibrutinib administration in the acute phase of SCI on neural tissue preservation and locomotor recovery. Ibrutinib was delivered intravenously at 3.125 mg/kg either immediately, 12 hours after, or both immediately and 12 hours after SCI induction in adult male C57BL/6 mice. Neutrophil influx into the lesion area was evaluated 24 hours following SCI using light microscopy and immunohistochemistry methods. Animals' body weight changes were recorded, and their functional motor recovery was assessed based on the Basso mouse scale during 28 days after treatment. Finally, spinal cord lesion volume was estimated by an unbiased stereological method. While animals' weight in the control group started to increase one week after injury, it stayed unchanged in treatment groups. However, the double injection of ibrutinib led to a significantly lower body weight compared to the control group at 4 weeks post-injury. Mean neutrophil counts per visual field and the lesion volume were significantly decreased in all ibrutinib-treated groups. In addition, ibrutinib significantly improved locomotor functional recovery in all treated groups, especially in immediate and double-injection groups. Neural tissue protection and locomotor functional recovery suggest ibrutinib treatment as a potent immunotherapeutic intervention for traumatic SCI that warrants clinical testing.
Collapse
Affiliation(s)
- Somayyeh Torabi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hadi Anjamrooz
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Ronconi G, Dondi L, Calabria S, Piccinni C, Pedrini A, Esposito I, Martini N. Real-world Prescription Pattern, Discontinuation and Costs of Ibrutinib-Naïve Patients with Chronic Lymphocytic Leukemia: An Italian Healthcare Administrative Database Analysis. Clin Drug Investig 2021; 41:595-604. [PMID: 34032988 DOI: 10.1007/s40261-021-01044-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE In order to integrate the existing and inconsistent information from clinical trials and real-world practice on chronic lymphocytic leukemia (CLL) treated with ibrutinib, this analysis aimed to describe the prescription pattern of new users of ibrutinib affected by CLL, focusing on discontinuation, severe adverse events (AEs) and change of treatment, and to assess the integrated healthcare expenditure from the Italian National Health System (INHS) perspective. METHODS Starting from the ReS database, adults with at least a supply of ibrutinib (ATC code L01XE27) were selected from 01/01/2016 to 12/31/2017. Those without any ibrutinib supply in the year before the index prescription were considered new users. Out of them, only patients with at least a primary or secondary in-hospital diagnosis of CLL (ICD-9-CM code 204.1*) from 01/01/2013 to 12/31/2018 were further broken down according to the ibrutinib's line treatment (first line-FL; second or later line-SLL) and analysed. They were characterized by sex and age in the selection period. Mean annual consumption (defined daily doses [DDD]), treatment discontinuation, changes of therapy, interruptions and healthcare costs in charge of the INHS were assessed during two follow-up years. RESULTS Out of more than 5 million inhabitants of the ReS database, 69 new ibrutinib users and diagnosed with CLL in 2016 (incidence: 1.6 × 100,000) and 41 in 2017 (incidence: 0.9 × 100,000) were selected. Of these, 21 (19.1%) were FL ibrutinib users and 89 (80.9%) were SLL ones, mostly males and with mean ages (±SD) of 65 ± 14 and 70 ± 10, respectively. The mean annual consumption among FL users decreased from 222.2 DDD per patient treated to 216.0 DDD, while increased among SLL patients from 238.6 DDD to 260.1 DDD, in the first and second follow-up year, respectively. The discontinuation rate was about 40% in the first year, similarly among FL and SLL users. SLL patients discontinued more frequently (52.8% vs 20.0%) in the second year. Very few AEs were recorded. The 62.5% of FL and 55.6% of SLL users discontinuing ibrutinib in 1-year follow-up, while one SLL patient (5.3%) in the second year changed therapy. The 20.0% and 15.9% of all new users in first and second year interrupted ibrutinib. The total integrated cost of FL patients was €55,732 reducing by about €15,000, while it was €58,716 for SLL ones decreasing by €6,000, respectively, in the first and in the second year. Pharmaceuticals were the key cost driver (ibrutinib accounted for more than 77%). CONCLUSIONS This analysis on Italian administrative data provided results about prescription patterns of ibrutinib FL and SLL new users with CLL, focusing on discontinuation, treatment change and healthcare costs over 2-year follow-up, and contributed to improve the knowledge on this hard-to-treat disease.
Collapse
Affiliation(s)
- Giulia Ronconi
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy
| | - Letizia Dondi
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy
| | - Silvia Calabria
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy.
| | - Carlo Piccinni
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy
| | - Antonella Pedrini
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy
| | | | - Nello Martini
- Fondazione ReS (Ricerca e Salute) - Health and Research Foundation, Via Magnanelli 6/3, 40033, Casalecchio di Reno (Bologna), Italy
| |
Collapse
|
18
|
Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton's tyrosine kinase (BTK): Current development. Eur J Med Chem 2021; 217:113329. [PMID: 33740548 DOI: 10.1016/j.ejmech.2021.113329] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
Therapy based on Bruton's tyrosine kinase (BTK) inhibitors one of the major treatment options currently recommended for lymphoma patients. The first generation of BTK inhibitor, Ibrutinib, achieved remarkable progress in the treatment of B-cell malignancies, but still has problems with drug-resistance or off-target induced serious side effects. Therefore, numerous new BTK inhibitors were developed to address this unmet medical need. In parallel, the effect of BTK inhibitors against immune-related diseases has been evaluated in clinical trials. This review summarizes recent progress in the research and development of BTK inhibitors, with a focus on structural characteristics and structure-activity relationships. The structure-refinement process of representative pharmacophores as well as their effects on binding affinity, biological activity and pharmacokinetics profiles were analyzed. The advantages and disadvantages of reversible/irreversible BTK inhibitors and their potential implications were discussed to provide a reference for the rational design and development of novel potent BTK inhibitors.
Collapse
Affiliation(s)
- Jiakuo Liu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Zhang
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
19
|
Gu D, Tang H, Wu J, Li J, Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol 2021; 14:40. [PMID: 33676527 PMCID: PMC7937220 DOI: 10.1186/s13045-021-01049-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
B cell receptor (BCR) signaling is involved in the pathogenesis of B cell malignancies. Activation of BCR signaling promotes the survival and proliferation of malignant B cells. Bruton tyrosine kinase (BTK) is a key component of BCR signaling, establishing BTK as an important therapeutic target. Several covalent BTK inhibitors have shown remarkable efficacy in the treatment of B cell malignancies, especially chronic lymphocytic leukemia. However, acquired resistance to covalent BTK inhibitors is not rare in B cell malignancies. A major mechanism for the acquired resistance is the emergence of BTK cysteine 481 (C481) mutations, which disrupt the binding of covalent BTK inhibitors. Additionally, adverse events due to the off-target inhibition of kinases other than BTK by covalent inhibitors are common. Alternative therapeutic options are needed if acquired resistance or intolerable adverse events occur. Non-covalent BTK inhibitors do not bind to C481, therefore providing a potentially effective option to patients with B cell malignancies, including those who have developed resistance to covalent BTK inhibitors. Preliminary clinical studies have suggested that non-covalent BTK inhibitors are effective and well-tolerated. In this review, we discussed the rationale for the use of non-covalent BTK inhibitors and the preclinical and clinical studies of non-covalent BTK inhibitors in B cell malignancies.
Collapse
Affiliation(s)
- Danling Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Hanning Tang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Pukou CLL Center, Nanjing, 210000, China.
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Pukou CLL Center, Nanjing, 210000, China.
| |
Collapse
|