1
|
Lv X, Yang C, Li X, Liu Y, Yang Y, Jin T, Chen Z, Jia J, Wang M, Li L. Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions. J Enzyme Inhib Med Chem 2025; 40:2468853. [PMID: 39992186 PMCID: PMC11852237 DOI: 10.1080/14756366.2025.2468853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Hearing loss profoundly affects social engagement, mental health, cognition, and brain development, with sensorineural hearing loss (SNHL) being a major concern. Linked to ototoxic medications, ageing, and noise exposure, SNHL presents significant treatment challenges, highlighting the need for effective prevention and regeneration strategies. Ferroptosis, a distinct form of cell death featuring iron-dependent lipid peroxidation, has garnered interest due to its potential role in cancer, ageing, and neuronal degeneration, especially hearing loss. The emerging role of ferroptosis as a crucial mediator in SNHL suggests that it may offer a novel therapeutic target for otoprotection. This review aims to summarise the intricate connection between ferroptosis and SNHL, offering a fresh perspective for exploring targeted therapeutic strategies that could potentially mitigate cochlear cells damage and enhance the quality of life for individuals with hearing impairments.
Collapse
Affiliation(s)
- Xingyi Lv
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenyi Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xianying Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yun Liu
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yu Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tongyan Jin
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhijian Chen
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jinjing Jia
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Gao YF, Yang YJ, Qin JB, Yu MY, Hu SW, Zhang HF, Lin FH, Hu HY, Fang MJ, Zeng JZ. Design, synthesis, and biological evaluation of quinolinyl-ureido-phenyl-hydrazide derivatives and quinolinyl-hydrazide derivatives as anticancer agents targeting Nur77-mediated ferroptosis. Eur J Med Chem 2025; 291:117559. [PMID: 40215561 DOI: 10.1016/j.ejmech.2025.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
In the recent decade, targeting ferroptosis for cancer therapy has attracted remarkable attention. Interestingly, the transcriptional regulator Nur77, a promising therapeutic target in cancer, has been recently identified as a crucial regulator of ferroptosis. However, no ferroptosis inducer targeting Nur77 has been reported currently. In this study, we built upon our prior research on Nur77 modulator 4-PQBH to design and synthesize four series of new compounds, with the objective of developing novel Nur77-mediated ferroptosis inducers. Among them, compound 8f exhibited the most potency against the tested cancer cell lines, including human estrogen positive breast cancer and triple-negative breast cancer cell lines, while displaying lower toxicity towards human normal cell lines HaCaT and MCF-10A (IC50> 50 μM). Furthermore, 8f demonstrated superior Nur77-binding activity in comparison to the reference compound Csn-B, and it has the capacity to activate the Nur77-driven luciferase activity and increase the protein level of Nur77. Remarkably, 8f induced an increase in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and lipid peroxidation, concurrently with a reduction in the expression of GPX4 protein, culminating in the induction of ferroptosis in a Nur77-dependent manner. In vivo, 8f treatment has been observed to significantly suppress MCF7 xenograft tumor growth. Consequently, a novel ferroptosis inducer targeting Nur77 (8f) is first reported as a potent anti-EPBC agent, providing may serve as a promising lead for further drug development targeting Nur77-mediated ferroptosis.
Collapse
Affiliation(s)
- Yan-Fang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yi-Jing Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing-Bo Qin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of the Interventional Medicine Foundation of Guangdong Province, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Ming-Yue Yu
- Xingzhi College, Zhejiang Normal University, Lanxi, 321004, China; College of Chemistry and Bioengineering, Yichun, 336000, China
| | - Sheng-Wei Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hao-Fan Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Fan-Hong Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hong-Yu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi, 321004, China.
| | - Mei-Juan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Qiu J, Guo F, Shi J, Guo T, Piao H. Piperlongumine inhibits glioblastoma proliferation by inducing ferroptosis. J Pharm Pharmacol 2025; 77:822-833. [PMID: 39692457 DOI: 10.1093/jpp/rgae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of Piperlongumine on Glioblastoma multiforme. METHODS The effects of Piperlongumine on the viability and proliferation of glioma cells LN229 and A172 were measured. Changes in mitochondrial structure were observed. Cell proliferative capacity was assessed using immunofluorescence. The levels of glutathione, malondialdehyde, 4-hydroxynonenal, and intracellular reactive oxygen species were detected. The levels of ferroptosis-related proteins were detected. A plasmid transfection was performed to overexpress the nuclear factor erythroid 2-related factor 2 gene; a subcutaneous tumor model was established in nude mice to observe the in vivo inhibitory effects of Piperlongumine on Glioblastoma multiforme and the recovery effect of Fer-1. The expression levels of ferroptosis-related proteins were detected using immunohistochemistry. KEY FINDINGS Piperlongumine inhibited the viability of glioma cells, as well as their proliferation. The ferroptosis inhibitors were able to restore the inhibitory effect of Piperlongumine on glioma cell proliferation. Forced overexpression of nuclear factor erythroid 2-related factor 2 partially reversed Piperlongumine-induced ferroptosis; Piperlongumine exhibited a significant inhibitory effect on Glioblastoma multiforme cells in vivo, which could be restored by Fer-1. CONCLUSIONS Piperlongumine inhibits Glioblastoma multiforme proliferation by inducing ferroptosis in vitro and vivo model.
Collapse
Affiliation(s)
- Jianting Qiu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110000, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning 530000, China
| | - Ji Shi
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110000, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Haozhe Piao
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang 110000, China
| |
Collapse
|
4
|
Wang D, Li L, Zhang F, Liu Q, Wang WL, Wang ZX, Wu YT, Bu PL. SLC1A5 mediates myocardial damage after myocardial infarction by triggering cardiomyocyte ferroptosis. Biochem Pharmacol 2025:117047. [PMID: 40490039 DOI: 10.1016/j.bcp.2025.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/05/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025]
Abstract
Myocardial infarction (MI) has become a major disease that causes significant global mortality. Notably ferroptosis may exert a key effect on myocardial injury after MI. As the glutamine transporter on the cell membrane, solute carrier family 1 member 5 (SLC1A5) plays a role as a ferroptosis-inducing gene and has a mediating effect on cell ferroptosis. However, whether SLC1A5 is involved in mediating cardiomyocyte ferroptosis and myocardial injury after MI remains to be further elucidated. In the present study, we investigated whether SLC1A5 mediated myocardial injury after MI by triggering cardiomyocyte ferroptosis in vivo and in vitro. Based on our findings, SLC1A5 exhibited crucial mediating effects on post-MI cardiomyocyte ferroptosis and myocardial injury, and these effects were stimulated by SLC1A5 overexpression, but inhibited by ferrostatin-1 (a ferroptosis inhibitor)and V9302 (a SLC1A5 inhibitor). In conclusion, our results revealed a novel molecular mechanism of ferroptosis regulated by SLC1A5, which is essential for cardiomyocyte ferroptosis pathogenesis and myocardial injury post-MI.
Collapse
Affiliation(s)
- Dong Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, China; Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lei Li
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Feng Zhang
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Qian Liu
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Wen-Long Wang
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Zhi-Xin Wang
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou 256603, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Pei-Li Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Alarcón-Veleiro C, López-Calvo I, Berjawi L, Lucio-Gallego S, Mato-Basalo R, Quindos-Varela M, Lesta-Mellid R, Santamarina-Caínzos I, Varela-Rodríguez S, Fraga M, Quintela M, Vizoso-Vázquez A, Arufe MC, Fafián-Labora J. Ferroptosis: An emerging strategy for managing epithelial ovarian cancer. Biomed Pharmacother 2025; 187:118065. [PMID: 40306179 DOI: 10.1016/j.biopha.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Ferroptosis is a regulated form of cell death characterised by iron-dependent lipid peroxidation, a process intricately linked to cellular redox homeostasis. This form of cell death is induced by the accumulation of intracellular iron and the subsequent generation of reactive oxygen species (ROS), which leads to lipid peroxidation and ultimately cell death. Ferroptosis is distinct from traditional forms of cell death, such as apoptosis, and holds significant therapeutic potential, particularly in cancers harboring rat sarcoma virus (RAS) mutations, such as epithelial ovarian cancer (EOC). EOC is notoriously resistant to conventional therapies and is associated with a poor prognosis. In this review, we examine recent progress in the understanding of ferroptosis, with a particular focus on its redox biology and the complex regulatory networks involved. We also propose a novel classification system for ferroptosis modulators, grouping them into six categories (I, II, III, IV, V and VI) based on their mechanisms of action and their roles in modulating cellular redox status. By refining these categories, we aim to provide deeper insights into the role of ferroptosis in cancer biology, especially in EOC, and to identify potential therapeutic avenues. We propose that further investigation of ferroptosis in the context of redox biology could reveal novel biomarkers and therapeutic targets, offering promising strategies to overcome resistance mechanisms and improve clinical outcomes for patients with EOC and other treatment-resistant cancers.
Collapse
Affiliation(s)
- C Alarcón-Veleiro
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - I López-Calvo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain; Centro Interdisciplinar de Química de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Rúa as Xubias 84, A Coruña 15006, Spain
| | - L Berjawi
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - S Lucio-Gallego
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - R Mato-Basalo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - M Quindos-Varela
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - R Lesta-Mellid
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - I Santamarina-Caínzos
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - S Varela-Rodríguez
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - M Fraga
- Department of Anatomical Pathology, University Hospital Complex A Coruña, As Xubias 84, A Coruña 15006, Spain
| | - M Quintela
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - A Vizoso-Vázquez
- Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain
| | - M C Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| | - J Fafián-Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| |
Collapse
|
6
|
Zhou J, Wang J, Yang L, Fu T, Li H, Shan Y, Gao H, Xie C, Zhang L, Zhang M, Ma J, Liu L, Fang H, Jiang D, Xu M, Pan Q, Gu S. N6-methyadenosine-modified YWHAE mRNA promotes proliferation and inhibits ferroptosis in hepatoblastoma by mediating SLC7A11 expression. Oncogene 2025; 44:1634-1645. [PMID: 40074884 DOI: 10.1038/s41388-025-03334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/03/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Hepatoblastoma (HB) is a rare but predominant liver cancer in children, with few treatment choices in advanced stages. YWHAE is closely related to several human diseases and acts as a molecular scaffold for malignant transformation. However, whether YWHAE promotes HB development remains unknown. Conducting RNA and m6A sequencing on HB tissues, we found that YWHAE was upregulated and modified by N6-methyadenosine. Functionally, YWHAE promoted proliferation and inhibited cell death in HB by in vitro and in vivo studies. Mechanistically, METTL3-dependent m6A modification activated YWHAE mRNA expression, and the m6A reader IGF2BP2 recognized and bound to the m6A site on YWHAE mRNA, thereby enhancing the mRNA stability of YWHAE. Interestingly, RNA sequencing revealed that YWHAE knockdown was involved in regulating ferroptosis of HB cells by mediating SLC7A11 expression. Moreover, knockdown of YWHAE significantly increased the levels of lipid ROS and peroxides in HB cells, promoting the susceptibility of HB cells to ferroptosis. In summary, these findings illuminated the role of YWHAE in HB progression and uncovered its relevance to ferroptosis as a new therapeutic target for HB.
Collapse
Affiliation(s)
- Jiquan Zhou
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Jing Wang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Liyuan Yang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Tingyi Fu
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yuhua Shan
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Chenjie Xie
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Lei Zhang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Li Liu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Min Xu
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Song Gu
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
- Department of International Medical, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
7
|
Li X, Zhao Y, Liu Y, Zhang CS, Xu ZY, Wang SR, Zhang TM, Zhang Y, Liang SX, Yan YB. Panx3 mediates ferroptosis via the AKT/mTOR signaling pathway in oral squamous cell carcinoma. Cell Signal 2025; 134:111908. [PMID: 40441467 DOI: 10.1016/j.cellsig.2025.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/17/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
Pannexin 3 (Panx3) has been the subject of numerous studies across different cell types, predominantly concentrating on bone remodeling, wound repair, and dermal inflammation. However, the link between Panx3 and cancer remains minimally explored. Here, we showed for the first time that the expression of Panx3 was lower in oral squamous cell carcinoma (OSCC) tissues than in normal oral mucosa tissues, and was associated with the differentiation of OSCC. We found that overexpression of Panx3 significantly promotes ferroptosis while inhibiting proliferation, migration, and invasion in SCC15 and CAL27 cells. Furthermore, in Panx3-overexpressing OSCC cells, the expression levels of P-AKT, P-mTOR, GPX4, and SLC7A11 were significantly decreased, whereas ACSL4 expression was markedly upregulated. Subsequently, the enhanced ferroptosis was significantly rescued upon the addition of the AKT activator SC79 to Panx3-overexpressing SCC15 and CAL27 cells. The tumor-suppressive role of Panx3 through ferroptosis induction was further confirmed by xenograft assays, which demonstrated significantly inhibited tumor growth. In conclusion, the results suggested that Panx3 overexpression reduced the survival of OSCC cells and inhibited the progression of OSCC by promoting ferroptosis via the inhibition of AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xuan Li
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, China; Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Yan Zhao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, China; Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Yang Liu
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin 300070, China; Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Chang-Song Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Zhao-Yuan Xu
- Department of Oral Medical Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241000, China
| | - Shi-Rui Wang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China; Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Tong-Mei Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China
| | - Yan Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China.
| | - Su-Xia Liang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China; Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin 300041, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin 300041, China.
| |
Collapse
|
8
|
Zhou D, Huang Z, Liu J, Tan J, Li H, Ai Y. Gastrodia protects HT22 cells from damage caused by oxygen glucose deprivation and reperfusion through inhibiting ferroptosis. Sci Rep 2025; 15:18470. [PMID: 40425648 PMCID: PMC12117028 DOI: 10.1038/s41598-025-03404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Gastrodin (Gas) is a key active ingredients of Gastrodia elata Bl., with applications in treating cardiovascular and neurodegenerative conditions. However, the impact of Gas on neuronal damage caused by cerebral ischemia/reperfusion remains uncertain. A cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established and the viability and apoptosis of HT22 cells were measured using the CCK-8 assay and TUNEL staining. Different kits detected the levels of LDH, Fe2+ and MDA. The levels of ferroptosis-related genes and proteins were evaluated utilizing RT-qPCR and Western blotting. Following OGD/R, there was a decrease in HT22 cell viability and an increase in LDH level and apoptosis rate. Gas (25µM) increased cell viability, decreased LDH, Fe2+, MDA and ACSL4 levels, up-regulated SLC7A11 and GPX4 and ameliorated OGD/R-induced apoptosis (P < 0.01). Ferroptosis inducer Erastin (Era, 10µM) successfully induced ferroptosis in HT22 cells, while Gas treatment attenuated the effect of Era. Era further promoted OGD/R-induced damage and ferroptosis in HT22 cells, whereas Gas inhibited the effect of Era. In conclusion, Gas might provide protection against induced HT22 cell injury caused by OGD/R through inhibiting ferroptosis, shows promising potential for clinical treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Dongyue Zhou
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Zhixuan Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jian Liu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jinlong Tan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yangwen Ai
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China.
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China.
| |
Collapse
|
9
|
Chang L, Qin C, Wu J, Jiang H, Xu Q, Chen J, Xu X, Zhang X, Guan M, Deng X. The crosstalk between glutathione metabolism and non-coding RNAs in cancer progression and treatment resistance. Redox Biol 2025; 84:103689. [PMID: 40403492 DOI: 10.1016/j.redox.2025.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025] Open
Abstract
Excessive reactive oxygen species (ROS) are closely associated with the initiation and progression of cancers. As the most abundant intracellular antioxidant, glutathione (GSH) plays a critical role in regulating cellular ROS levels, modulating physiological processes, and is intricately linked to tumor progression and drug resistance. However, the underlying mechanisms remain not fully elucidated. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of GSH levels. Different ncRNAs modulate various pathways involved in GSH metabolism, and these regulatory targets have the potential to serve as therapeutic targets for enhancing cancer treatment. In this review, we summarize the functions of GSH metabolism and highlight the significance of ncRNA-mediated regulation of GSH in cancer progression, drug resistance, and clinical applications.
Collapse
Affiliation(s)
- Lu Chang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Chao Qin
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jianbo Wu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China.
| |
Collapse
|
10
|
Leng J, Sun J, Guo Z, Wang L, Song L. The molecular mechanism of ferroptosis in the Pacific oyster Crassostrea gigas under Erastin treatment or high temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105366. [PMID: 40185349 DOI: 10.1016/j.dci.2025.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent form of programmed cell death, and it is distinct from apoptosis, pyroptosis, and autophagy. In the present study, the hemocytes were found to be shrunken under Erastin treatment or high temperature stress. The mitochondrial atrophy, crest loss and fracture were observed in hemocytes under high temperature stress. In addition, the fluorescence intensity of mitochondrial probe JC-1 monomers increased significantly in hemocytes under high temperature stress. Hemocytes were found to be wrinkled under ultrastructure and the contents of LPO, ROS and GSH increased significantly under Erastin treatment or high temperature stress. The band intensity of CgVDAC2 also decreased under Erastin treatment or high temperature stress. The mRNA expressions of genes involved in enhancing the antioxidation system as well as genes involved in promoting the iron metabolism all decreased significantly under Erastin treatment or high temperature stress. Those of genes involved in impairing the antioxidation system, genes involved in inhibiting the iron metabolism, as well as genes involved in reducing the lipid peroxidation all increased significantly under Erastin treatment or high temperature stress. These results indicated that Erastin could activate the three key ferroptotic signaling pathways in oyster and the activation mechanism of ferroptosis in oyster under high temperature stress was similar with that under Erastin treatment.
Collapse
Affiliation(s)
- Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
Pourhabib Mamaghani M, Mousavikia SN, Azimian H. Ferroptosis in cancer: Mechanisms, therapeutic strategies, and clinical implications. Pathol Res Pract 2025; 269:155907. [PMID: 40101548 DOI: 10.1016/j.prp.2025.155907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The resistance of cancer cells to existing treatments has become a major challenge for researchers despite advancements in cancer treatment. Studies have shown that this resistance is due to cancer cells evading apoptosis. Moreover, the most common form of cell death induced by chemotherapy and radiotherapy is apoptosis. One of the most essential mechanisms cancer cells escape apoptosis is the excessive expression of tumors' apoptosis inhibitors. Therefore, finding a non-apoptotic pathway that bypasses apoptosis could be a hopeful strategy for cancer treatment. Ferroptosis has been identified as a non-apoptotic and regulated cell death process characterized by the accumulation of lipid peroxides and iron-dependent reactive oxygen species (ROS). Although studies have shown that ferroptosis plays a role in the development of many diseases, including cancer, it also has the potential to decrease resistance to current treatments, such as chemotherapy. Additionally, research has shown that ferroptosis successfully kills cancer cells, such as breast, stem, and lung cancer cells. Therefore, ferroptosis can be identified as a beneficial therapeutic mechanism for cancer treatment. Although ferroptosis has been introduced as an effective treatment path for cancer, its role, along with its therapeutic inducers, in increasing the therapeutic effect has not been investigated. In this review, we aim to introduce ferroptosis, compare it with other cell deaths known so far, and explain its role in cancer treatment. We believe that ferroptosis can be widely used to overcome cancer cells.
Collapse
Affiliation(s)
- Mina Pourhabib Mamaghani
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Han W, Bian X, Fu H, Liu M, Wang H, Liu H. Integrating Single-Cell Sequencing and Transcriptome Analysis to Investigate the Role of Ferroptosis in Ischemic Stroke and the Molecular Mechanisms of Immune Checkpoints. World Neurosurg 2025; 197:123908. [PMID: 40118372 DOI: 10.1016/j.wneu.2025.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Early diagnosis of ischemic stroke (IS) remains challenging. Given the crucial role of ferroptosis in IS, this study aims to identify key genes associated with ferroptosis in IS, providing insights into its molecular mechanisms and potential biomarkers for early detection. METHODS The single-cell transcriptome dataset GSE247474 from the Gene Expression Omnibus. Ferroptosis scores in astrocytes were calculated using the WP_FERROPTOSIS gene set, and differential analysis was conducted to compare ferroptosis activity between the disease and control groups. Key ferroptosis-related genes were identified using Lasso regression and support vector machine algorithms, and their diagnostic potential was assessed through receiver operating characteristic curve analysis. Additionally, we performed immune infiltration analysis and transcription factor network prediction. Pseudotime analysis was used to explore the differentiation trajectories of astrocytes and T-cell subsets. RESULTS Astrocytes in the disease group showed significantly higher ferroptosis scores than those in the control group. Using machine learning algorithms, we identified 3 key ferroptosis-related genes-SLC3A2 (solute carrier family 3 member 2), FDFT1 (farnesyl-diphosphate farnesyltransferase 1), and BACH1 (BTB and CNC homology 1)-and validated their diagnostic value (area under the curve >0.9). Immune infiltration analysis revealed that SLC3A2 and BACH1 expression levels were positively correlated with CD4+ follicular T cells and negatively correlated with CD4+ memory T cells. FDFT1 showed positive correlations with both mast cells and CD4+ memory T cells. Pseudotime analysis demonstrated dynamic changes in key gene expression along the differentiation trajectories of astrocytes and T cells. CONCLUSIONS SLC3A2, FDFT1, and BACH1 are potential molecular markers for IS diagnosis.
Collapse
Affiliation(s)
- Weidong Han
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Haiyang Fu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Min Liu
- Department of Clinical Laboratory, Liupanshui Maternal and Child Health Hospital, Liupanshui, Guizhou, China
| | - Hongliang Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Haimei Liu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Lin C, Xie S, Wang M, Shen J. PRDX1 knockdown promotes erastin-induced ferroptosis and impedes diffuse large B-cell lymphoma development by inhibiting the MAPK/ERK pathway. BMC Cancer 2025; 25:806. [PMID: 40307771 PMCID: PMC12042503 DOI: 10.1186/s12885-025-14173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
AIM Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma and DLBCL cells are highly sensitive to ferroptosis. The purpose of this research was to evaluate the role and molecular mechanism of peroxiredoxin 1 (PRDX1) on ferroptosis in DLBCL. METHODS The expression of PRDX1 in DLBCL tissues and cells was detected using bioinformatics analysis and reverse transcription quantitative PCR. The impacts of PRDX1 on DLBCL cell proliferation, apoptosis, migration, invasion, and ferroptosis were assessed through a series of in vitro experiments. A xenograft tumor model was constructed to verify the roles of PRDX1 in vivo. Transcriptome sequencing was conducted to identify PRDX1-mediated signaling pathways. Anisomycin, an agonist of mitogen-activated protein kinase (MAPK), was used to explore the modulation of PRDX1 on the MAPK pathway. RESULTS PRDX1 expression was upregulated in DLBCL. PRDX1 knockdown inhibited DLBCL cell proliferation, migration, and invasion, promoted apoptosis, and suppressed xenograft tumor growth. PRDX1 knockdown boosted erastin-induced ferroptosis by increasing the levels of iron and MDA, while decreasing the levels of GSH. It also promoted COX2 protein expression and inhibited GPX4 and SLC7A11 protein levels. PRDX1 knockdown reduced the phosphorylation levels of MEK and ERK both under conditions with or without erastin induction. The MAPK/ERK pathway agonist anisomycin, significantly reversed the inhibitory effects of PRDX1 knockdown on the malignant behaviors of DLBCL cells and the promotion of ferroptosis. CONCLUSION PRDX1 knockdown facilitates erastin-induced ferroptosis and obstacles DLBCL progression by inhibiting the MAPK/ERK pathway, offering a potential treatment strategy for DLBCL treatment.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Animals
- Mice
- Peroxiredoxins/genetics
- Peroxiredoxins/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Piperazines/pharmacology
- Cell Proliferation/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Cell Movement
- Gene Knockdown Techniques
- Gene Expression Regulation, Neoplastic
- Apoptosis/drug effects
- Male
- Female
Collapse
Affiliation(s)
- Chuanming Lin
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Economic Development District, Ganzhou City, Jiangxi Province, 341000, China
- Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province, 350001, China
| | - Shuiling Xie
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Economic Development District, Ganzhou City, Jiangxi Province, 341000, China
| | - Menger Wang
- Gannan Medical University, Rongjiang New District University Park, Ganzhou City, Jiangxi Province, 341099, China
| | - Jianzhen Shen
- Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province, 350001, China.
| |
Collapse
|
14
|
Kwun MS, Lee DG. Ferroptosis-Like Death Induction in Saccharomyces cerevisiae by Gold Nanoparticles. J Microbiol Biotechnol 2025; 35:e2501029. [PMID: 40295204 PMCID: PMC12089944 DOI: 10.4014/jmb.2501.01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Ferroptosis, a novel form of regulated cell death (RCD), has emerged as a promising therapeutic strategy for cancer treatment. While gold nanoparticles (AuNPs) are known to induce cell death and ferroptosis in combination with certain antibiotics, the mechanisms underlying ferroptosis in microorganisms remain poorly understood. This study aimed to investigate whether AuNPs induce ferroptosis-like cell death in the eukaryotic microbe Saccharomyces cerevisiae. Our findings revealed that AuNPs significantly reduced cell viability in S. cerevisiae, suggesting their ability to trigger cell death. Ferroptosis-related precursors, including intracellular iron overload and depletion of glutathione (GSH), were observed, leading to the inactivation of glutathione peroxidase (GPx). These changes were associated with the accumulation of reactive oxygen species (ROS) and lipid peroxidation, which amplified oxidative stress within the cells. Elevated ROS levels and lipid peroxidation further resulted in membrane rupture and the formation of 8-hydroxydeoxyguanosine, indicating DNA damage. Mitochondrial dysfunction, a hallmark of ferroptosis, was also evident. AuNP treatment caused mitochondrial membrane potential hyperpolarization and a reduction in mitochondrial membrane density. Unlike previously characterized forms of RCD, ferroptosis-like death in S. cerevisiae did not involve chromatin condensation, DNA fragmentation, or metacaspase activation. Finally, ferroptosis-like characteristics were confirmed using Liperfluo, a lipid ROS-specific probe. In conclusion, this study demonstrated that AuNPs can induce ferroptosis-like cell death in S. cerevisiae. These findings highlight the potential of AuNPs as antifungal agents and contribute to the broader understanding of ferroptosis in eukaryotic microbes.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Kolligundla LP, Sullivan KM, Mukhi D, Andrade-Silva M, Liu H, Guan Y, Gu X, Wu J, Doke T, Hirohama D, Guarnieri P, Hill J, Pullen SS, Kuo J, Inamoto M, Susztak K. Glutathione-specific gamma-glutamylcyclotransferase 1 ( CHAC1) increases kidney disease risk by modulating ferroptosis. Sci Transl Med 2025; 17:eadn3079. [PMID: 40267214 DOI: 10.1126/scitranslmed.adn3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/20/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association studies (GWASs) have identified more than 1000 loci where genetic variants correlate with kidney function. However, the specific genes, cell types, and mechanisms influenced by these genetic variants remain largely uncharted. Here, we identified glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) on chromosome 15 as affected by GWAS variants by analyzing human kidney gene expression and methylation information. Both CHAC1 RNA and protein were expressed in the loop of Henle region in mouse and human kidneys, and CHAC1 expression was higher in patients carrying disease risk variants. Using CRISPR technology, we created mice with a single functional copy of the Chac1 gene (Chac1+/-) that displayed no baseline phenotypic alterations in kidney structure or function. These mice demonstrated resilience to kidney disease in multiple models, including folic acid-induced nephropathy, adenine-induced chronic kidney disease, and uninephrectomy-streptozotocin-induced diabetic nephropathy. We further showed that CHAC1 plays a critical role in degrading the cellular antioxidant glutathione. Tubule cells isolated from Chac1+/- mice showed increased glutathione, decreased lipid peroxidation, improved cell viability, and protection against ferroptosis. Expression of ferroptosis-associated genes was also lower in mice with only one copy of Chac1. Higher CHAC1 protein also correlated with ferroptosis-related protein abundance in kidney biopsies from patients with kidney disease. This study positions CHAC1 as an important mediator of kidney disease that influences glutathione concentrations and ferroptosis, suggesting potential avenues to explore for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Lakshmi P Kolligundla
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Katie M Sullivan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Pediatrics, Medical College of Wisconsin Pediatric Nephrology, Milwaukee, WI 53226, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Magaiver Andrade-Silva
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Yuting Guan
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Xiangchen Gu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Daigoro Hirohama
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| | - Paolo Guarnieri
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jon Hill
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Jay Kuo
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | | | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Penn/CHOP Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19014, USA
| |
Collapse
|
16
|
Gong W, Wang Y, Li Q, Gao Y, Li J. Regulation of SLC7A11 by LncRNA GPRC5D-AS1 mediates ferroptosis in skeletal muscle: Mechanistic exploration of sarcopenia. Front Mol Biosci 2025; 12:1557218. [PMID: 40309008 PMCID: PMC12040812 DOI: 10.3389/fmolb.2025.1557218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Sarcopenia is a chronic, progressive disease characterized by the gradual loss of skeletal muscle strength and mass. This study investigates the role of the long non-coding RNA GPRC5D-AS1 in the development and progression of sarcopenia through its regulation of SLC7A11. Skeletal muscle samples were obtained from sarcopenia patients and healthy controls to assess the expression levels of GPRC5D-AS1 and SLC7A11. Flow cytometry was used to evaluate iron content, lipid peroxidation, and antioxidant markers. A ferroptosis model was established in human skeletal muscle cells (HSKM) using the inducer erastin, and GPRC5D-AS1 overexpression plasmids were introduced to observe their effects on cell proliferation and ferroptosis indicators. In the sarcopenia group, both GPRC5D-AS1 and SLC7A11 expression levels decreased significantly, along with SLC7A11 protein translation. Erastin treatment markedly reduced cell viability and increased iron content, elevating ferroptosis marker genes (COX2, ACSL4, PTGS2, NOX1) while reducing GPX4 and FTH1 levels. The overexpression of GPRC5D-AS1 reversed these changes, enhancing antioxidant capacity and cell survival. Conversely, silencing SLC7A11 diminished the protective effects of GPRC5D-AS1 on cell proliferation and ferroptosis. These findings suggest that GPRC5D-AS1 overexpression increases SLC7A11 expression and reduces ferroptosis incidence in HSKM.
Collapse
Affiliation(s)
- Wei Gong
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Wang
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, China
| | - Qun Li
- Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yating Gao
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Geriatrics and Special medical treatment, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Yang Q, Zhang H, Luo J, Yu H, Yang X, Wang C. FADS2 inhibits colorectal cancer cell proliferation by regulating ferroptosis through SLC7A11/GPX4. Mol Biol Rep 2025; 52:394. [PMID: 40232565 DOI: 10.1007/s11033-025-10395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading factor in cancer mortality globally. Ferroptosis, a regulated cell death described via lipid peroxidation, is crucial in cancer biology. This study explores the link between ferroptosis, FADS2, and CRC, focusing on the prognostic significance and therapeutic potential of targeting FADS2. METHODS The differential expression analysis of the Cancer Genome Atlas-colon adenocarcinoma (TCGA-COAD) and GSE36400 datasets was conducted to determine key ferroptosis-related genes, followed by functional enrichment analysis. Prognosis-related genes were assessed utilizing Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. Genetic variation analysis and immune analysis were employed to evaluate the clinical significance of FADS2. The impacts of FADS2 knockdown on CRC cell migration, proliferation, invasion, and ferroptosis were evaluated by in vitro cell experiments. RESULTS 64 key ferroptosis-related genes in CRC were highly enriched in pathways such as glutathione metabolism and peroxisome. Eleven prognosis-associated genes were identified, with TP53 showing the highest mutation frequency. High FADS2 expression was linked to poorer prognosis and higher immune cell infiltration. FADS2 knockdown significantly decreased glutathione (GSH) levels, SLC7A11, and GPX4 expression, increased malondialdehyde (MDA) levels, indicating the promotion of ferroptosis. Functional tests revealed knockdown FADS2 repressed CRC cell proliferation, migration, and invasion. SLC7A11 or GPX4 overexpression partially rescued the effects of FADS2 knockdown. Additionally, FADS2 knockdown enhances the chemosensitivity of CRC cells to oxaliplatin. CONCLUSION FADS2 is essential for encouraging CRC cell proliferation and tumor growth by preventing ferroptosis. Targeting FADS2 may enhance ferroptosis and suppress CRC progression, offering a possible course of treatment for CRC patients. The knockdown of FADS2 enhances the chemosensitivity of CRC cells to oxaliplatin, providing valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Qinghui Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Jing Luo
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hongmei Yu
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Tao Q, Li Y, Zhang W, Zhang M, Li X, Jin H, Zheng J, Li Y. Long non-coding RNA ZFAS1 promotes ferroptosis by regulating the miR-185-5p/SLC25A28 axis in clear cell renal cell carcinoma. Int J Biol Macromol 2025; 304:140602. [PMID: 39922352 DOI: 10.1016/j.ijbiomac.2025.140602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/04/2024] [Accepted: 11/11/2024] [Indexed: 02/10/2025]
Abstract
Ferroptosis is a novel, iron-dependent regulated cell death mode. The biochemical features of ferroptosis include iron accumulation, lipid peroxidation, inhibition of glutathione peroxidase 4 (GPX4) and antioxidant glutathione (GSH) decrease through inhibition of the system xc- transporter. Zinc finger NFX1 type-containing 1 (ZNFX1) antisense RNA 1 (ZFAS1) is a long non-coding RNA that has been identified as an oncogene in various types of cancers. However, its regulatory role and molecular mechanisms in clear cell renal cell carcinoma (ccRCC) ferroptosis remain unclear. In this study, the ferroptosis inducers (FINS) (erastin and RSL3) were found to increase ZFAS1 expression through the facilitation of SP1 binding to the ZFAS1 promoter. ZFAS1 increased mRNA and protein levels of solute carrier family 25 member 28 (SLC25A28) via functioning as a miR-185-5p sponge. Overexpressed SLC25A28 increased the production of ROS and caused a decrease in NADPH and GSH in cells treated with FINS. In addition, overexpression of ZFAS1 enhanced ferroptosis both in vitro and in vivo. Altogether, this study demonstrates that ZFAS1 is a crucial element of ferroptosis in ccRCC, as it is responsible for the regulation of miR-185-5p and SLC25A28. Introducing ferroptosis could be a beneficial approach to treat ccRCC patients with high ZFAS1 levels.
Collapse
Affiliation(s)
- Qiqi Tao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weizhi Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghong Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Jin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yeping Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
19
|
Dan Y, Zhao X, Li J, Zhong H, Zhang H, Wu J, He J, Li L, Song Q, Xu B. Harnessing pseudogenes for lung cancer: A novel epigenetic target in diagnosis, prognosis and treatment. Crit Rev Oncol Hematol 2025; 208:104645. [PMID: 39900316 DOI: 10.1016/j.critrevonc.2025.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Pseudogenes are abundantly present in the human genome and are often thought of as nonfunctional nucleotide sequences, but a growing body of research suggests that pseudogenes can play important biological roles through a variety of pathways, and can be involved in the development of cancer. Lung cancer is one of the most prevalent cancers in the world and it is crucial to find new therapeutic strategies for the treatment of lung cancer. In recent years, studies on the effects of pseudogenes on lung carcinogenesis have increased rapidly. This has pointed to new directions in the diagnosis and treatment of lung cancer. Aim of this paper is to comprehensively discuss the role and influence of pseudogenes in the lung cancer, and the potential of pseudogenes as novel epigenetic targets in lung cancer diagnosis and prognosis and treatment, which is significant for realizing the clinical benefits of pseudogenes.
Collapse
Affiliation(s)
- Yuchao Dan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xinyi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Hao Zhong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Junju He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
20
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
21
|
Xu SY, Yin SS, Wang L, Zhong H, Wang H, Yu HY. Insights into emerging mechanisms of ferroptosis: new regulators for cancer therapeutics. Cell Biol Toxicol 2025; 41:63. [PMID: 40131564 PMCID: PMC11937073 DOI: 10.1007/s10565-025-10010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxides, which has been implicated in the pathogenesis of various diseases, and therapeutic agents targeting ferroptosis are emerging as promising tools for cancer treatment. Current research reveals that ferroptosis-targeted therapies can effectively inhibit tumor progression or delay cancer development. Notably, natural product-derived compounds-such as artemisinin, baicalin, puerarin, quercetin, kaempferol, and apigenin-have demonstrated the ability to modulate ferroptosis, offering potential anti-cancer benefits. Mechanistically, ferroptosis exhibits negative glutathione peroxidase 4 (GPX4) regulation and demonstrates a positive correlation with plasma membrane polyunsaturated fatty acid (PUFA) abundance. Moreover, the labile iron pool (LIP) serves as the redox engine of ferroptosis. This review systematically analyzes the hallmarks, signaling pathways, and molecular mechanisms of ferroptosis, with a focus on how natural product-derived small molecules regulate this process. It further evaluates their potential as ferroptosis inducers or inhibitors in anti-tumor therapy, providing a foundation for future clinical translation.
Collapse
Affiliation(s)
- Si-Yi Xu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuang-Shuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hao Zhong
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hai-Yang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
22
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
23
|
Yao S, Quan Y. Research progress of ferroptosis pathway and its related molecular ubiquitination modification in liver cancer. Front Oncol 2025; 15:1502673. [PMID: 40190567 PMCID: PMC11968660 DOI: 10.3389/fonc.2025.1502673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
As a new type of programmed cell death, ferroptosis is characterized by iron metabolism disorder and reactive oxygen species (ROS) accumulation, and is involved in regulating the occurrence and development of cancer cells. Especially in the field of liver cancer treatment, ferroptosis shows great potential because it can induce tumor cell death. Ubiquitination is a process of protein post-translational modification, which can affect the stability of proteins and regulate the progress of ferroptosis. This article reviews the research progress of ubiquitination modification of molecules related to ferroptosis pathway in the regulation of liver cancer, providing a new strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Silin Yao
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First People’s Hospital of Zhaoqing, Guangdong Medical University, Zhaoqing, Guangdong, China
| |
Collapse
|
24
|
Gupta A, Rachana SP, Moorkoth S, Dhas N. Quality by design based ecofriendly HPLC analytical method for simultaneous quantification of erastin and lenalidomide in mesoporous silica nanoparticles. Sci Rep 2025; 15:8873. [PMID: 40087405 PMCID: PMC11909239 DOI: 10.1038/s41598-025-93331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
The aims of this work to optimize and validate a RP-HPLC method to quantify erastin (ERT) and lenalidomide (LND) in mesoporous silica nanoparticles (MSNs). The Design of Experiments (DoE) strategy optimized the RP-HPLC method. The independent variables were buffer ratio, buffer pH, flow rate and injection volume. The dependent variables were retention time (Rt), Peak area, and resolution between the peaks of the analytes. The optimized conditions were: buffer ratio 68% and methanol 32%, flow rate 0.8 mL/min, buffer pH 5.8, and injection volume 10 µL. The ICH Q2(R1) recommendations were followed in the validation of the optimized RP-HPLC method. The method demonstrated linearity of more than 0.99 for both ERT and LND. The LOD and LOQ were 0.75 and 1.62 ng/mL for ERT; for LND 31.25 and 50 ng/mL. The specificity of the established RP-HPLC method was unaffected by the MSNs matrix. The drugs-loaded MSNs were analyzed using the suggested RP-HPLC technique. The % entrapment efficiency of ERT and LND was found to be 72.65 and 79.50%, and drug loading of ERT and LND was found to be 14 and 17% in MSNs, respectively. The optimized RP-HPLC method was used to check the in-vitro drug release of the ERT and LND from the ERT-LND@MSNs. Surface properties of synthesized MSNs was checked through particle and SEM analysis. The developed analytical method was eco-friendly according to AGREE analysis and GAPI analysis.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - S P Rachana
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Wang D, Shen J, Wang Y, Cui H, Li Y, Zhou L, Li G, Wang Q, Feng X, Qin M, Dong B, Yang P, Li Y, Ma X, Ma J. Mechanisms of Ferroptosis in bone disease: A new target for osteoporosis treatment. Cell Signal 2025; 127:111598. [PMID: 39788305 DOI: 10.1016/j.cellsig.2025.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause. Secondary osteoporosis, on the other hand, occurs when certain medications, diabetes, or nutritional deficiencies lead to a decrease in bone density. Ferroptosis, a new iron-dependent programmed cell death process, is critical in regulating the development of osteoporosis, but the underlying molecular mechanisms are complex. In the pathologic process of osteoporosis, several studies have found that ferroptosis may occur in osteocytes, osteoblasts, and osteoclasts, cell types closely related to bone metabolism. The imbalance of iron homeostasis in osteoblasts and excessive iron accumulation can promote lipid peroxidation through the Fenton reaction, which induces ferroptosis in osteoblasts and affects their role in regulating bone metabolism. Ferroptosis in osteoblasts inhibits bone formation and reduces the amount of new bone production. Osteoclast-associated ferroptosis abnormalities, on the other hand, may alter the homeostasis of bone resorption. In this paper, we start from the molecular mechanism of ferroptosis, and introduce the ways in which ferroptosis affects the physiological and pathological processes of the body. After that, the effects of ferroptosis on osteoblasts and osteoclasts will be discussed separately to elucidate the molecular mechanism between ferroptosis and osteoporosis, which will provide a new breakthrough for the prevention and treatment of osteoporosis and a more effective and better idea for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Jiahui Shen
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yanxin Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Liyun Zhou
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotian Feng
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Mengran Qin
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| |
Collapse
|
26
|
Ma Y, Lin H, Li Y, An Z. Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1. Cell Biochem Biophys 2025; 83:1299-1312. [PMID: 39354278 DOI: 10.1007/s12013-024-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is prevalent worldwide and seriously threatens human health. RA-fibroblast-like synoviocytes (FLS) play important roles in almost all aspects of RA progression. This study aimed to study the effect of Amentoflavone (AMF), a polyphenol compound derived from extracts of Selaginella tamariscina, on the abnormal biological behaviors of RA-FLS. The immortalized human RA-FLS cell line (MH7A) was treated with AMF or transfected with small interfering RNAs (siRNAs) targeting peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). Then, cell viability was detected by CCK-8 assay. EDU staining, wound healing and transwell assays were employed to measure the capacities of MH7A cell proliferation, migration and invasion. The levels of inflammatory factors were assessed using ELISA kits. Additionally, ferroptosis was analyzed by detecting Fe2+ content, lipid reactive oxygen species (ROS) level and expression of ferroptosis-related proteins. Pull-down assay was employed to verify the targeted binding of AMF to PIN1. Further, PIN1 overexpression or ferroptosis inhibitor Ferrostatin-1 (Fer-1) addition was conducted to elucidate the regulatory mechanism of AMF on PIN1 and ferroptosis. Results revealed that AMF intervention or PIN1 knockdown inhibited the proliferation, migration, invasion and inflammation in MH7A cells. AMF facilitated lipid peroxidation and ferroptosis in MH7A cells. Moreover, AMF targeted inhibition of PIN1 expression, and PIN1 overexpression restored the promoting effect of AMF on lipid peroxidation and ferroptosis in MH7A cells. Besides, Fer-1 reversed the impacts of AMF on the abnormal biological behaviors of MH7A cells. In summary, AMF induced ferroptosis to inhibit the proliferation, migration, invasion and inflammation in RA-FLS by inhibiting PIN1, providing a promising candidate for RA treatment.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China
| | - Hongjun Lin
- Henan Institute for Drug and Medical Device Inspection, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Zhuoling An
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China
| |
Collapse
|
27
|
Chatterjee T, Zarjou A. Navigating the Complex Pathogenesis of Acute Kidney Injury: Exploring Macrophage Dynamics, Mitochondrial Dysfunction, and Ferroptosis Pathways. ADVANCES IN KIDNEY DISEASE AND HEALTH 2025; 32:122-132. [PMID: 40222799 PMCID: PMC11999248 DOI: 10.1053/j.akdh.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Acute kidney injury, a rapid decline in kidney function coupled with physiological and homeostatic perturbations, is an independent risk factor for both short-term and long-term health outcomes. As incidence of acute kidney injury continues to rise globally, the significant clinical and economic challenge of acute kidney injury underscores the need for its prompt recognition and application of novel and germane strategies to reduce its severity and facilitate recovery. Understanding the multifaceted cascade of events engaged in pathogenesis of acute kidney injury is pivotal for the development of effective preventive and therapeutic strategies. To facilitate an in-depth discussion on emerging therapeutic targets, this review will examine the role of macrophages in kidney injury and repair, explore the alterations in mitochondrial biogenesis dynamics induced by acute kidney injury, and provide insights into the molecular mechanisms underlying the contribution of ferroptosis to kidney injury.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
28
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
29
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, Álvarez-Córdoba M, Romero-González A, López-Cabrera A, De Oliveira MC, Rodríguez-Sacristán A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Polydatin and Nicotinamide Prevent Iron Accumulation and Lipid Peroxidation in Cellular Models of Mitochondrial Diseases. Antioxidants (Basel) 2025; 14:215. [PMID: 40002401 PMCID: PMC11851670 DOI: 10.3390/antiox14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, is regulated by a complex network involving lipid metabolism, iron homeostasis, and the oxidative-reductive system, with iron accumulation and lipid peroxidation as key drivers. Mitochondrial dysfunction and ROS overproduction often underlie the pathogenesis of mitochondrial diseases, for which treatment options are limited, emphasizing the need for novel therapies. In this study, we investigated whether polydatin and nicotinamide could reverse ferroptosis-related pathological features in cellular models derived from patients with pathogenic GFM1 variants. Mutant fibroblasts showed increased iron and lipofuscin accumulation, altered expression of iron metabolism-related proteins, elevated lipid peroxidation, and heightened susceptibility to erastin-induced ferroptosis. Treatment with polydatin and nicotinamide effectively corrected these alterations and reduced iron accumulation and lipid peroxidation in induced neurons. Furthermore, chloramphenicol treatment in control cells mimicked the mutant phenotype, suggesting that these pathological changes are linked to the mitochondrial protein synthesis defect characteristic of pathogenic GFM1 variants. Notably, adding vitamin E to the polydatin and nicotinamide co-treatment resulted in a reduction in the minimum effective concentration, suggesting potential benefits of its inclusion. In conclusion, the combination of polydatin, nicotinamide, and vitamin E could represent a promising therapeutic option for patients with mitochondrial disorders caused by pathogenic GFM1 variants.
Collapse
Affiliation(s)
- Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| | - Marta Castro De Oliveira
- Neuropediatria, Neurolinkia, C. Jardín de la Isla, 8, Local 4 y 5, 41014 Sevilla, Spain;
- FEA Pediatría, Centro Universitario Hospitalar de Faro, R. Leão Penedo, 8000-386 Faro, Portugal
| | - Andrés Rodríguez-Sacristán
- Neuropediatría, Servicio de Pediatría, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain;
- Departamento de Farmacología, Radiología y Pediatría de la Facultad de Medicina de la Universidad de Sevilla, 41009 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (M.Á.-C.); (A.R.-G.); (A.L.-C.)
| |
Collapse
|
30
|
Ovejero S, Alibert L, Devin J, Cañeque T, Jacquier V, Romero A, Amar S, Abouladze M, de Paco EG, Gadacha OK, Requirand G, Robert N, Zellagui ML, de Boussac H, Cartron G, Chiche J, Ricci JE, Herbaux C, Rodriguez R, Moreaux J, Bret C. Ironomycin induces mantle cell lymphoma cell death by targeting iron metabolism addiction. Theranostics 2025; 15:2834-2851. [PMID: 40083931 PMCID: PMC11898298 DOI: 10.7150/thno.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Mantle-cell lymphoma (MCL) remains an aggressive and incurable cancer. Accumulating evidence reveals that abnormal iron metabolism plays an important role in tumorigenesis and in cancer progression of many tumors. Based on these data, we searched to identify alterations of iron homeostasis in MCL that could be exploited to develop novel therapeutic strategies. Methods: Analysis of the iron metabolism gene expression profile of a cohort of patients with MCL enables the identification of patients with a poor outcome who might benefit from an iron homeostasis-targeted therapy. We analyzed the therapeutic interest of ironomycin, known to sequester iron in the lysosome and to induce ferroptosis. Results: In a panel of MCL cell lines, ironomycin inhibited MCL cell growth at nanomolar concentrations compared with conventional iron chelators. Ironomycin treatment resulted in ferroptosis induction and decreased cell proliferation rate, with a reduced percentage of cells in S-phase together with Ki67 and Cyclin D1 downregulation. Ironomycin treatment induced DNA damage response, accumulation of DNA double-strand breaks, and activated the Unfolded Protein Response (UPR). We validated the therapeutic interest of ironomycin in primary MCL cells of patients. Ironomycin demonstrated a significant higher toxicity in MCL cells compared to normal cells from the microenvironment. We tested the therapeutic interest of combining ironomycin with conventional treatments used in MCL. We identified a synergistic effect when ironomycin is combined with Ibrutinib, Bruton's tyrosine kinase (BTK) inhibitor, associated with a strong inhibition of B-Cell receptor (BCR) signaling. Conclusion: Altogether, these data underline that MCL patients my benefit from targeting iron homeostasis using ironomycin alone or in combination with conventional MCL treatments.
Collapse
Affiliation(s)
- Sara Ovejero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Laura Alibert
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Julie Devin
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Valentin Jacquier
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Andrea Romero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Salome Amar
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Johanna Chiche
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Charles Herbaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Raphael Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Jerome Moreaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Caroline Bret
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| |
Collapse
|
31
|
Wang Y, Xu Y, Qu Y, Jin Y, Cao J, Zhan J, Li Z, Chai C, Huang C, Li M. Ferroptosis: A novel cell death modality as a synergistic therapeutic strategy with photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 51:104463. [PMID: 39736368 DOI: 10.1016/j.pdpdt.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent additional strategies for tumor treatment. Photodynamic therapy (PDT) is a relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis. Ferroptosis, an iron-dependent type of programmed cell death characterized by accumulation of reactive oxygen species and lipid peroxidation products to lethal levels, has emerged as an attractive target trigger for tumor therapies. Recent research has revealed a close association between PDT and ferroptosis, suggesting that combining ferroptosis inducers with PDT could strengthen their synergistic anti-tumor efficiency. Here in this review, we discuss the rationale for combining PDT with ferroptosis inducers and highlight the progress of single-molecule photosensitizers to induce ferroptosis, as well as the applications of photosensitizers combined with other therapeutic drugs for collaborative therapy. Furthermore, given the current research dilemma, we propose potential therapeutic strategies to advance the combined usage of PDT and ferroptosis inducers, providing the basis and guidelines for prospective clinical translation and research directionality with regard to PDT.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiting Xu
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yong Qu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifang Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Jinshan Zhan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuxing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Zhang NY, Liu JY, Zheng H, Wang KM, Zhang J, Meng N, Jiang CS. Design, Synthesis, and Biological Evaluation of New Improved Ferrostatin-1 Derived Ferroptosis Inhibitors. Chem Biodivers 2025; 22:e202402141. [PMID: 39367646 DOI: 10.1002/cbdv.202402141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Ferrostatin-1 (Fer-1), a first potent ferroptosis inhibitor, faces limitations in clinical use due to its low potency and metabolic instability. This study introduces a series of novel Ferrostatin-1 analogs designed to enhance plasm stability. Our design strategy focused on the modification of the 3-NH2 of Fer-1 with benzenesulfonyl groups, resulting in analogs 9-25. Biological evaluation revealed that compound 18, with an EC50 value of 0.57 μM, outperformed Fer-1 in inhibiting ferroptosis. It reduced intracellular ferrous ion accumulation, lipid peroxidation, and restored glutathione (GSH) and glutathione peroxidase 4 (GPX4) levels effectively. Moreover, compound 18 exhibited favorable solubility and remarkable metabolic stability in rat plasma. These results position compound 18 as a promising candidate for developing therapeutics against ferroptosis-related diseases.
Collapse
Affiliation(s)
- Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jun-Yu Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan, 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, China
| |
Collapse
|
33
|
Ji Y, Lin Y, He J, Xie Y, An W, Luo X, Qiao X, Li Z. Research progress of mitochondria and cytoskeleton crosstalk in tumour development. Biochim Biophys Acta Rev Cancer 2025; 1880:189254. [PMID: 39732178 DOI: 10.1016/j.bbcan.2024.189254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
During tumour progression, organelle function undergoes dramatic changes, and crosstalk among organelles plays a significant role. Crosstalk between mitochondria and other organelles such as the endoplasmic reticulum and cytoskeleton has focussed attention on the mechanisms of tumourigenesis. This review demonstrates an overview of the molecular structure of the mitochondrial-cytoskeletal junction and its biological interactions. It also presents a detailed and comprehensive description of mitochondrial-cytoskeletal crosstalk in tumour occurrence and development, including tumour cell proliferation, apoptosis, autophagy, metabolic rearrangement, and metastasis. Finally, the application of crosstalk in tumour therapy, including drug combinations and chemoresistance, is discussed. This review offers a theoretical basis for establishing mitochondrial-cytoskeletal junctions as therapeutic targets, and offers novel insights into the future management of malignant tumours.
Collapse
Affiliation(s)
- Yue Ji
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Yingchi Lin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, China
| | - Jing He
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning Province, China
| | - Yuanyuan Xie
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Wenmin An
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xinyu Luo
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| |
Collapse
|
34
|
Kusi D, Sun Y, Liu C. Advances in Manganese-based nanomaterials for cancer therapy via regulating Non-Ferrous ferroptosis. Int J Pharm 2025; 669:125101. [PMID: 39706379 DOI: 10.1016/j.ijpharm.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process. Mn-based nanomaterials have shown significant promise in cancer treatment by enhancing ROS production, depleting antioxidant defenses, and inducing ferroptosis. Additionally, these materials offer advantages in tumor imaging, immunotherapy, and catalyzing the Fenton-like reactions essential for ferroptosis. This review delves into the mechanisms of Mn-induced ferroptosis, focusing on recent advancements in Mn-based nanomaterials and their applications in chemodynamic therapy and immunotherapy. By leveraging non-ferrous ion-mediated ferroptosis, these approaches provide a novel avenue for cancer treatment. Furthermore, this review explores the potential role of Mn-based nanomaterials in the lipid metabolism pathways involved in ferroptosis and highlights the advantages of Mn ions over other metals in promoting ferroptosis. These insights offer new perspectives for the development of tumor therapies centered on Mn-based nanomaterials.
Collapse
Affiliation(s)
- Dipa Kusi
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, Jiaxing 314001 PR China.
| | - Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
35
|
Kirkwood-Donelson KI, Jarmusch AK, Bortner CD, Merrick BA, Sinha BK. Metabolic consequences of erastin-induced ferroptosis in human ovarian cancer cells: an untargeted metabolomics study. Front Mol Biosci 2025; 11:1520876. [PMID: 39902375 PMCID: PMC11788483 DOI: 10.3389/fmolb.2024.1520876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Ovarian cancer has been difficult to cure due to acquired or intrinsic resistance and therefore, newer or more effective drugs/approaches are needed for a successful treatment in the clinic. Erastin (ER), a ferroptosis inducer, kills tumor cells by generating and accumulating reactive oxygen species (ROS) within the cell, resulting in an iron-dependent oxidative damage-mediated ferroptotic cell death. Methods We have utilized human ovarian cancer cell lines, OVCAR-8 and its adriamycin-selected, multi-drug resistance protein (MDR1)-expressing NCI/ADR-RES, both equally sensitive to ER, to identify metabolic biomarkers of ferroptosis. Results Our studies showed that ER treatment rapidly depleted cellular glutathione and cysteine and enhanced formation of ophthalamate (OPH) in both cells. Opthalalmate has been proposed to be a biomarker of oxidative stress in cells. Our study also found significant decreases in cellular taurine, a natural antioxidant in cells. Additionally, we found that ER treatment decreased cellular levels of NAD+/NADP+, carnitines and glutamine/glutamate in both cells, suggesting significant oxidative stress, decrease in energy production, and cellular and mitochondrial disfunctions, leading to cell death. Conclusion Our studies identified several potential biomarkers of ER-induced ferroptosis including OPH, taurine, NAD+, NADP+ and glutamate in ovarian cancer cells. Identifying specific metabolic biomarkers that are predictive of whether a cancer is susceptible to ferroptosis will help us devise more successful treatment modalities.
Collapse
Affiliation(s)
- Kaylie I. Kirkwood-Donelson
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Alan K. Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Carl D. Bortner
- Laboratory of Signal Transduction, Research Triangle Park, NC, United States
| | - Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| |
Collapse
|
36
|
Słoka J, Strzałka-Mrozik B, Kubica S, Nowak I, Kruszniewska-Rajs C. Influence of Mesalazine on Ferroptosis-Related Gene Expression in In Vitro Colorectal Cancer Culture. Biomedicines 2025; 13:219. [PMID: 39857803 PMCID: PMC11762154 DOI: 10.3390/biomedicines13010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) is one of the most common oncological disorders. Its fundamental treatments include surgery and chemotherapy, predominantly utilizing 5-fluorouracil (5-FU). Despite medical advances, CRC continues to present a high risk of recurrence, metastasis and low survival rates. Consequently, significant emphasis has been directed towards exploring novel types of cell death, particularly ferroptosis. Ferroptosis is characterized by iron imbalance and the accumulation of lipid peroxides and reactive oxygen species (ROS), leading to cellular damage and death. Thus, the discovery of safe inducers of ferroptosis, offering new hope in the struggle against CRC, remains crucial. In this study, we applied the concept of drug repositioning, selecting mesalazine (MES), a non-steroidal anti-inflammatory drug (NSAID), for investigation. Methods: The study was conducted on the colon cancer cell line DLD-1 and normal intestinal epithelial cells from the CCD 841 CoN cell line. Both cell lines were treated with MES solutions at concentrations of 10, 20, 30, 40, and 50 mM. Cytotoxicity was assessed using the MTT assay, while ferroptosis-related gene expression analysis was performed using oligonucleotide microarrays, with RT-qPCR used for validation. Results: MES effectively reduces the viability of DLD-1 cells while minimally affecting normal intestinal cells. Subsequent oligonucleotide microarray analysis revealed that MES significantly alters the expression of 56 genes associated with ferroptosis. Conclusions: Our results suggest that MES may induce ferroptosis in CRC, providing a foundation for further research in this area.
Collapse
Affiliation(s)
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (J.S.); (S.K.); (I.N.); (C.K.-R.)
| | | | | | | |
Collapse
|
37
|
Perera L, Brown SM, Silver BB, Tokar EJ, Sinha BK. Ferroptosis Inducers Erastin and RSL3 Enhance Adriamycin and Topotecan Sensitivity in ABCB1/ABCG2-Expressing Tumor Cells. Int J Mol Sci 2025; 26:635. [PMID: 39859349 PMCID: PMC11765678 DOI: 10.3390/ijms26020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line. Here, we examined the effects of both Erastin and RSL3 (Ras-Selected Ligand 3) on reversing Adriamycin resistance in these cell lines. Our results show that Erastin significantly enhanced Adriamycin uptake in NCI/ADR-RES cells without affecting sensitive cells. Furthermore, we observed that Erastin enhanced Adriamycin cytotoxicity in a time-dependent manner. The selective iNOS inhibitor, 1400W, reduced both uptake and cytotoxicity of Adriamycin in P-gp-expressing NCI/ADR-RES cells only. These findings were also confirmed in a BCRP-expressing human breast cancer cell line (MCF-7/MXR), which was selected for resistance to Mitoxantrone. Both Erastin and RSL3 were found to be cytotoxic to MCF-7/MXR cells. Erastin significantly enhanced the uptake of Hoechst dye, a well-characterized BCRP substrate, sensitizing MCF-7/MXR cells to Topotecan. The effect of Erastin was inhibited by 1400W, indicating that iNOS is involved in Erastin-mediated enhancement of Topotecan cytotoxicity. RSL3 also significantly increased Topotecan cytotoxicity. Our findings-demonstrating increased cytotoxicity of Adriamycin and Topotecan in P-gp- and BCRP-expressing cells-suggest that ferroptosis inducers may be highly valuable in combination with other chemotherapeutics to manage patients' cancer burden in the clinical setting.
Collapse
Affiliation(s)
- Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, North Carolina, NC 27709, USA;
| | - Shalyn M. Brown
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA; (S.M.B.); (B.B.S.); (E.J.T.)
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA; (S.M.B.); (B.B.S.); (E.J.T.)
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA; (S.M.B.); (B.B.S.); (E.J.T.)
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA; (S.M.B.); (B.B.S.); (E.J.T.)
| |
Collapse
|
38
|
Sun LY, Ke SB, Li BX, Chen FS, Huang ZQ, Li L, Zhang JF, Cai YX, Zhu HJ, Zhang XD, Du RL, Liu Y, Chen YS. ANP32E promotes esophageal cancer progression and paclitaxel resistance via P53/SLC7A11 axis-regulated ferroptosis. Int Immunopharmacol 2025; 144:113436. [PMID: 39566382 DOI: 10.1016/j.intimp.2024.113436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Esophageal cancer (EC) is associated with high mortality rates and widespread resistance to chemotherapeutic agents, like paclitaxel (PTX), posing a significant global public health challenge. ANP32E is a member of the acidic nuclear phosphoprotein 32 family, its specific biological functions and mechanisms in EC remain unclear. Through bioinformatics analysis and clinical tissue sample studies, we observed a marked upregulation of ANP32E expression in EC tissues. Utilizing ANP32E knock-out EC cell models and xenograft experiments in nude mice, we demonstrated that the absence of ANP32E significantly inhibits tumor progression and migration, whereas its overexpression exacerbates tumor growth. Transcriptomic sequencing (RNA-seq) further revealed activation of the ferroptosis pathway in ANP32E deficient cells, which was confirmed through experiments showing enhanced ferroptosis that could be reversed by the ferroptosis inhibitor ferrostatin-1. At the molecular level, ANP32E regulates EC progression and ferroptosis via the p53/SLC7A11 axis. ANP32E depletion resulted in increased p53 expression level, while inhibition of p53 partially restored the suppressed cell proliferation and increased ferroptosis in ANP32E-depleted cells. Additionally, knocking out ANP32E significantly enhanced EC cell sensitivity to PTX, Combining PTX with the ferroptosis inducer erastin was more effective in inhibiting tumor growth. In vivo, we confirmed the synergistic effect of ANP32E knock-out combined with PTX demonstrating superior tumor suppressing. Overall, our findings suggest that ANP32E regulates EC progression and ferroptosis through the p53/SLC7A11 axis, offering a potential molecular target for overcoming PTX resistance in EC treatment.
Collapse
Affiliation(s)
- Li-Ying Sun
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shao-Bo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo-Xin Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Fei-Shan Chen
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Zhi-Qun Huang
- Department of Allergy The 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Le Li
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Jian-Feng Zhang
- Xuancheng Institutes of Food and Drug Control, Xuancheng 242000, China
| | - Yu-Xin Cai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang-Jia Zhu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Dong Zhang
- Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liu
- Hengyang Medical School, University of South China, Hengyang 421000, China.
| | - Yong-Shun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
39
|
Kim JM, Kim Y, Na HJ, Hur HJ, Lee SH, Sung MJ. Magnolia kobus DC. suppresses neointimal hyperplasia by regulating ferroptosis and VSMC phenotypic switching in a carotid artery ligation mouse model. Chin Med 2025; 20:3. [PMID: 39754271 PMCID: PMC11699803 DOI: 10.1186/s13020-024-01051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells. METHODS This study was conducted to estimate the vascular protective effects of MO by systematically measuring histopathological analysis and western blot analysis in CAL animal model. In vitro protective effects of MO were evaluated by estimating cell viability, reactive oxygen species (ROS) content, glutathione (GSH) levels, lipid peroxidation, mitochondrial morphological change, cell proliferation, migration, western blot analysis, and qRT-PCR against erastin (Era)-induced A7r5 cells. RESULTS MO intake significantly improved neointimal formation, inhibited ferroptosis and vascular smooth muscle cell (VSMC) phenotypes, and ameliorated the antioxidant system of carotid artery tissues. In addition, MO treatment effectively ameliorated Era-induced ferroptotic cytotoxicity, including cellular death, ROS production, and cell migration status. MO treatment also suppressed proliferation and migration in Era-induced A7r5 cells. MO considerably regulated Era-induced abnormal mechanisms related to ferroptotic changes, VSMC phenotype switching, and the ROS scavenging system in A7r5 cells. CONCLUSION MO has the potential for use as a functional food supplement, nutraceutical, or medicinal food, with protective effects on vascular health by regulating ferroptosis and VSMC phenotypic switching.
Collapse
Affiliation(s)
- Jong Min Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Yiseul Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Hyun-Jin Na
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Haeng Jeon Hur
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Sang Hee Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea
| | - Mi Jeong Sung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
| |
Collapse
|
40
|
Yuan Z, Han X, Xiao M, Zhu T, Xu Y, Tang Q, Lian C, Wang Z, Li J, Wang B, Li C, Xiang X, Jin R, Liu Y, Yu X, Zhang K, Li S, Ray M, Li R, Gruzdev A, Shao S, Shao F, Wang H, Lian W, Tang Y, Chen D, Lei Y, Jin X, Li Q, Long W, Huang H, DeMayo FJ, Liu J. Overexpression of ELF3 in the PTEN-deficient lung epithelium promotes lung cancer development by inhibiting ferroptosis. Cell Death Dis 2024; 15:897. [PMID: 39695109 PMCID: PMC11655876 DOI: 10.1038/s41419-024-07274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis has been shown to play a crucial role in preventing cancer development, but the underlying mechanisms of dysregulated genes and genetic alternations driving cancer development by regulating ferroptosis remain unclear. Here, we showed that the synergistic role of ELF3 overexpression and PTEN deficiency in driving lung cancer development was highly dependent on the regulation of ferroptosis. Human ELF3 (hELF3) overexpression in murine lung epithelial cells only caused hyperplasia with increased proliferation and ferroptosis. hELF3 overexpression and Pten genetic disruption significantly induced lung tumor development with increased proliferation and inhibited ferroptosis. Mechanistically, we found it was due to the induction of SCL7A11, a typical ferroptosis inhibitor, and ELF3 directly and positively regulated SCL7A11 in the PTEN-deficient background. Erastin-mediated inhibition of SCL7A11 induced ferroptosis in cells with ELF3 overexpression and PTEN deficiency and thus inhibited cell colony formation and tumor development. Clinically, human lung tumors showed a negative correlation between ELF3 and PTEN expression and a positive correlation between ELF3 and SCL7A11 in a subset of human lung tumors with PTEN-low expression. ELF3 and SCL7A11 expression levels were negatively associated with lung cancer patients' survival rates. In summary, ferroptosis induction can effectively attenuate lung tumor development induced by ELF3 overexpression and PTEN downregulation or loss-of-function mutations.
Collapse
Affiliation(s)
- Zengzhuang Yuan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Manyu Xiao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoyu Zhu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Qian Tang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Junming Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Boyu Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xiaochen Xiang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ruobai Jin
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yufei Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kehang Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Songsong Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Madhumita Ray
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Rong Li
- Department of Obstetrics, Gynecology and Women' Health, University of Missouri, Columbia, MO, USA
| | - Artiom Gruzdev
- Gene Editing and Mouse Model Core, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Fangwei Shao
- Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, China
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, Zhejiang, China
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wang Lian
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical Hospital, Quzhou People's Hospital, Wenzhou, China
| | - Xuru Jin
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical Hospital, Quzhou People's Hospital, Wenzhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Huaqiong Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, Zhejiang, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Carlos A, Mendes M, Cruz MT, Pais A, Vitorino C. Ferroptosis driven by nanoparticles for tackling glioblastoma. Cancer Lett 2024; 611:217392. [PMID: 39681210 DOI: 10.1016/j.canlet.2024.217392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and drug-resistant brain tumor. There are no effective treatment options for GBM, which usually leads to relapses that cause patients to die a few months later. Ferroptosis, a newly discovered mechanism of regulated cell death, has been identified as a tumor suppressor in solid tumors and represents an alternative to apoptosis resistance. This mechanism of cell death is characterized by iron overload, which is responsible for generating reactive oxygen species (ROS) in the cell. Understanding the ferroptosis pathway and its key regulators can be used to develop rational delivery systems that specifically target these regulators in GBM cells and promote cell death. This review conducted a systematic literature search to better understand the potential of ferroptosis as a target for developing nanoparticles to tackle GBM. The mechanisms of action, design parameters, efficacy, and safety concerns of 16 nanoparticles were evaluated, demonstrating the potential of combining ferroptosis inducers with nanocarriers to promote a selective delivery to the tumor microenvironment.
Collapse
Affiliation(s)
- Ana Carlos
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC) and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences-IMS, Departmente of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
42
|
Giarrizzo M, LaComb JF, Patel HR, Reddy RG, Haley JD, Graves LM, Iwanowicz EJ, Bialkowska AB. TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells. Mol Cancer Ther 2024; 23:1761-1778. [PMID: 39233476 PMCID: PMC11614700 DOI: 10.1158/1535-7163.mct-24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Oxidative phosphorylation is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates nonspecific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound TR-107 has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multitargeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer cells. TR-107 inhibited colorectal cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response and mitochondrial DNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of oxidative phosphorylation and a reduction in total cellular respiration. Multiomics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by colorectal cancer cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Hetvi R Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Rohan G Reddy
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Developmental Therapeutics at SBU Cancer Center, Stony Brook University, Stony Brook, New York
- SBU Proteomics Center, Stony Brook University, Stony Brook, New York
| | - Lee M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
43
|
Cheng Y, Yu G, Du C, Chen Z, Liu X. Yanghe Decoction promotes ferroptosis through PPARγ-dependent autophagy to inhibit the malignant progression of triple-negative breast cancer. Prostaglandins Other Lipid Mediat 2024; 175:106909. [PMID: 39284544 DOI: 10.1016/j.prostaglandins.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that displays highly aggressive with poor prognosis. Yanghe Decoction (YHD) has been used in the treatment of breast cancer for many years. We aimed to explore the effects of YHD on the malignant phenotypes of MDA-MB-231 cells and the potential mechanism related to PPARγ, autophagy and ferroptosis. The serum of rat containing different concentrations of YHD were collected to culture MDA-MB-231 cells. Cell viability and proliferation were assessed by the CCK-8 assay and EDU staining. Wound healing- and transwell assays were used to detect the capacities of MDA-MB-231 cell migration and invasion. Additionally, the levels of lipid peroxidation, Fe2+ and the expression of ferroptosis-related proteins were evaluated. The expression of PPARγ and autophagy-related proteins was assessed using immunofluorescence staining or western blot assay. Then, the PPARγ inhibitor (GW9662), autophagy inhibitor (3-MA) and autophagy inducer (rapamycin; Rap) were used to further study the potential mechanism of YHD on TNBC. Results indicated that contained-YHD serum significantly decreased the viability, proliferation, migration and invasion of TNBC cells. Moreover, YHD promoted lipid peroxidation level, elevated Fe2+ content and downregulated GPX4, SLC7A11 and SLC3A2 expression. Besides, autophagy was induced and PPARγ was upregulated by YHD in MDA-MB-231 cells. Furthermore, GW9662 alleviated the impacts of YHD on autophagy of MDA-MB-231 cells. Rap reversed the effects of GW9662 on lipid peroxidation, ferroptosis, proliferation, migration and invasion of MDA-MB-231 cells. 3-MA had the similar effects to GW9662. Collectively, YHD suppressed the malignant progression of MDA-MB-231 cells by inducing ferroptosis through PPARγ-dependent autophagy.
Collapse
Affiliation(s)
- YangZi Cheng
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| | - GuiPing Yu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Chen Du
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - ZhaoHui Chen
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - XuFeng Liu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| |
Collapse
|
44
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
45
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
46
|
Walter M, Weißbach H, Gembardt F, Halder S, Schorr K, Fleischmann D, Todorov V, Hugo C, Goepferich A. Long-term residence and efficacy of adenovirus-mimetic nanoparticles in renal target tissue. J Drug Target 2024; 32:1320-1332. [PMID: 39171543 DOI: 10.1080/1061186x.2024.2390628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery via active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Hannah Weißbach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Sagor Halder
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Vladimir Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health - School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
47
|
Yan Y, Yang N, Qin F, Hao Y. Echinacoside Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease by Inhibiting Ferroptosis via Nrf2/HMOX1 Pathway. Biomedicines 2024; 12:2728. [PMID: 39767635 PMCID: PMC11726887 DOI: 10.3390/biomedicines12122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic lipid accumulation, and echinacoside (ECH) has demonstrated antioxidant and anti-inflammatory effects across multiple conditions, it has demonstrated hepatoprotective effects. Ferroptosis represents a novel mechanism of cell demise, differing from apoptosis and autophagy. Emerging research indicates that ferroptosis in hepatocytes plays a role in the development of alcoholic liver disease. This study aimed to reveal the effect and potential mechanism of ECH on MASLD. Methods: The effect of ECH on the viability, lipid deposition, lipid peroxidation, mitochondrial of OA/PA-treated HepG2 cells were evaluated by Cell Counting Kit-8 assay, JC-1 and immunofluorescence assay. Meanwhile, the mechanism of ECH was assessed using transmission electron microscopy and immunofluorescence analysis. Moreover, db/db mice, a spontaneous type 2 diabetes mode, were intragastrically administered ECH by 300 mg/kg or an equivalent volume of saline. Body weight, lipids, and liver function were measured. liver pathology was performed. The mechanism of ECH in vivo was analyzed using Western blot and immunofluorescence analysis in db/db mice. Results: ECH attenuated lipid deposition, lipid peroxidation and ferroptosis induced by OA/PA in HepG2 cells. Mitochondrial morphology and function in HepG2 cells were also preserved by ECH. In db/db mice model of MASLD, ECH markedly ameliorated liver hepatocellular ballooning, inflammatory cell infiltration in the portal area, and fibrous tissue proliferation. ECH also increased the expression of Nrf2, HMOX-1, SLC7A11, and GPX4, and decreased the expression of ACSL4 in liver tissues. Mechanically, ECH repressed ferroptosis by activating the Nrf2/HO-1 signaling pathway. Conclusions: Our research revealed that ECH has the capability to modulate ferroptosis via the Nrf2-HMOX1pathway, consequently mitigating the progression of MASLD. This suggests that ECH has a potential role in the treatment of MASLD.
Collapse
Affiliation(s)
| | | | | | - Yarong Hao
- Department of Geriatric, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China; (Y.Y.); (N.Y.); (F.Q.)
| |
Collapse
|
48
|
Liu D, Zhu Y. Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion. Cells 2024; 13:1969. [PMID: 39682718 PMCID: PMC11639856 DOI: 10.3390/cells13231969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen-Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2's potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target.
Collapse
Affiliation(s)
- Daohang Liu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
| | - Yizhun Zhu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China;
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
49
|
Gao Q, Wang X, Zhang Y, Wen J, Wang F, Lin Z, Feng Y, Huang J, Li Q, Luo H, Liu X, Zhai X, Li L, He S, Mi Z, Zhang L, Niu T, Xu C, Zheng Y. Ferroptosis-related prognostic model of mantle cell lymphoma. Open Med (Wars) 2024; 19:20241090. [PMID: 39588389 PMCID: PMC11587922 DOI: 10.1515/med-2024-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Background Mantle cell lymphoma (MCL) is a B-cell non-Hodgkin's lymphoma. Ferroptosis, an iron-dependent programmed cell death, is closely related to cancer prognosis. In this study, we established a model of ferroptosis related genes for prognostic evaluation of patients with MCL. Methods Using the single-cell RNA sequencing datasets GSE184031 and mRNA sequencing data GSE32018 from the Gene Expression Omnibus, we identified 139 ferroptosis-related genes in MCL. Next a prognostic model was constructed by Cox regression and Least absolute selection and shrinkage Operator regression analysis. Finally, we used CIBERSORT to analyze the immune microenvironment and the "oncoPredict" package to predict potential drugs. Results In our model, the prognosis of MCL patients was assessed by risk scoring using 7 genes ANXA1, IL1B, YBX1, CCND1, MS4A1, MFHAS1, and RILPL2. The patients were divided into high-risk and low-risk groups based on our model, and the high-risk patients had inferior overall survival. Finally, according to our model and computational drug sensitivity analysis, four small molecule compounds, BMS-754807, SB216763, Doramapimod, and Trametinib, were identified as potential therapeutic agents for patients with MCL. Conclusion In summary, we provide a prognostic model with ferroptosis-related gene signature for MCL. This study provides a prognostic model with ferroptosis-related gene signature for MCL. The results show that the model helps predict prognosis in MCL.
Collapse
Affiliation(s)
- Qianwen Gao
- Department of Biology, School of Life Science, Sichuan University, Chengdu, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, Mian-yang Central Hospital, Mianyang, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siyao He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyue Mi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| |
Collapse
|
50
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|