1
|
Liu Z, He M, Yu Z, Ma L, Wang X, Ning F. TIFA enhances glycolysis through E2F1 and promotes the progression of glioma. Cell Signal 2024; 125:111498. [PMID: 39481822 DOI: 10.1016/j.cellsig.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE TRAF interacting protein with forkhead associated domain (TIFA) influence progression of many cancers. However, its role in glioma remains to be explored. This study investigated the function of TIFA in glioma. METHODS The TIFA expression in glioma and patient outcomes were analyzed using online database. Gene set enrichment analysis (GSEA) revealed related mechanisms of TIFA in glioma. TIFA's effects on glioma glycolysis and growth were assessed using in vitro and in vivo experiments. Moreover, luciferase reporter and ChIP were employed to explore the interactions among E2F1, GLUT1, HK2, and LDHA. The subcutaneous xenograft assay further elaborated the effects of TIFA in glioma. RESULTS We found overexpressed TIFA in glioma. Moreover, the high TIFA expression was associated with poor prognosis of glioma. Furthermore, GSEA indicated that overexpressed TIFA promoted E2F1 and glycolysis. Knockdown of TIFA decreased glioma development in cell and mice. TIFA knockdown down-regulated the expression of E2F1, GLUT1, HK2, and LDHA. CONCLUSIONS The study provides evidence that TIFA regulates E2F1 expression in glioma cells and promotes the proliferation, migration, and glycolysis. TIFA might be an advantageous therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Zhibing Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China; Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China
| | - Miaolong He
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeshun Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Longbo Ma
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xiuwen Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan 256600, Shandong, China.
| | - Fangling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| |
Collapse
|
2
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
3
|
Rong J, Wang Q, Li T, Qian J, Cheng J. Glucose metabolism in glioma: an emerging sight with ncRNAs. Cancer Cell Int 2024; 24:316. [PMID: 39272133 PMCID: PMC11395608 DOI: 10.1186/s12935-024-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Jun Rong
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China
| | - Qifu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), WuHu, People's Republic of China
| | - Tingzheng Li
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China
| | - Jin Qian
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China.
| | - Jinchao Cheng
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China.
| |
Collapse
|
4
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
5
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhang Y, Ma H, Li L, Sun C, Yu C, Wang L, Xu D, Song X, Yu R. Dual-Targeted Novel Temozolomide Nanocapsules Encapsulating siPKM2 Inhibit Aerobic Glycolysis to Sensitize Glioblastoma to Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400502. [PMID: 38651254 DOI: 10.1002/adma.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy of glioblastoma (GBM) has not yielded success due to inefficient blood-brain barrier (BBB) penetration and poor glioma tissue accumulation. Aerobic glycolysis, as the main mode of energy supply for GBM, safeguards the rapid growth of GBM while affecting the efficacy of radiotherapy and chemotherapy. Therefore, to effectively inhibit aerobic glycolysis, increase drug delivery efficiency and sensitivity, a novel temozolomide (TMZ) nanocapsule (ApoE-MT/siPKM2 NC) is successfully designed and prepared for the combined delivery of pyruvate kinase M2 siRNA (siPKM2) and TMZ. This drug delivery platform uses siPKM2 as the inner core and methacrylate-TMZ (MT) as the shell component to achieve inhibition of glioma energy metabolism while enhancing the killing effect of TMZ. By modifying apolipoprotein E (ApoE), dual targeting of the BBB and GBM is achieved in a "two birds with one stone" style. The glutathione (GSH) responsive crosslinker containing disulfide bonds ensures "directional blasting" cleavage of the nanocapsules to release MT and siPKM2 in the high GSH environment of glioma cells. In addition, in vivo experiments verify that ApoE-MT/siPKM2 NC has good targeting ability and prolongs the survival of tumor-bearing nude mice. In summary, this drug delivery system provides a new strategy for metabolic therapy sensitization chemotherapy.
Collapse
Affiliation(s)
- Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Hongwei Ma
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Linsen Li
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chen Sun
- Department of Nephrology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Changshui Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Duo Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xu Song
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
7
|
Zhou S, Xu J, Zhu Y. Phospholipid scramblase 1 acts through the IL-6/JAK/STAT3 pathway to promote the malignant progression of glioma. Arch Biochem Biophys 2024; 756:110002. [PMID: 38636689 DOI: 10.1016/j.abb.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- ShiZhen Zhou
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jun Xu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - YuFang Zhu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
8
|
Pagano C, Coppola L, Navarra G, Avilia G, Savarese B, Torelli G, Bruzzaniti S, Piemonte E, Galgani M, Laezza C, Bifulco M. N6-isopentenyladenosine inhibits aerobic glycolysis in glioblastoma cells by targeting PKM2 expression and activity. FEBS Open Bio 2024; 14:843-854. [PMID: 38514913 PMCID: PMC11073503 DOI: 10.1002/2211-5463.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect. N6-isopentenyladenosine (iPA), a natural cytokine modified with an isopentenyl moiety derived from the mevalonate pathway, has well-established anti-tumor activity. It inhibits cell proliferation in glioma cells, inducing cell death by apoptosis and/or necroptosis. In the present study, we found that iPA inhibits aerobic glycolysis in unmodified U87MG cells and in the same cell line engineered to over-express wild-type epidermal growth factor receptor (EGFR) or EGFR variant III (vIII), as well as in a primary GBM4 patient-derived cell line. The detection of glycolysis showed that iPA treatment suppressed ATP and lactate production. We also evaluated the response of iPA treatment in normal human astrocyte primary cells, healthy counterpart cells of the brain. Aerobic glycolysis in treated normal human astrocyte cells did not show significant changes compared to GBM cells. To determine the mechanism of iPA action on aerobic glycolysis, we investigated the expression of certain enzymes involved in this metabolic pathway. We observed that iPA reduced the expression of pyruvate kinase M2 (PKM2), which plays a key role in the regulation of aerobic glycolysis, promoting tumor cell proliferation. The reduction of PKM2 expression is a result of the inhibition of the inhibitor of nuclear factor kappa-B kinase subunit, beta/nuclear factor-kappa B pathway upon iPA treatment. In conclusion, these experimental results show that iPA may inhibit aerobic glycolysis of GBM in stabilized cell lines and primary GBM cells by targeting the expression and activity of PKM2.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Laura Coppola
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giovanni Torelli
- Neurosurgery Unit A.O. San Giovanni di Dio e Ruggi d' Aragona – Salerno's School of Medicine Largo Città di IppocrateSalernoItaly
| | - Sara Bruzzaniti
- Institute of Endocrinology and Experimental Oncology (IEOS)National Research Council (CNR)NaplesItaly
| | - Erica Piemonte
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Mario Galgani
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS)National Research Council (CNR)NaplesItaly
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| |
Collapse
|
9
|
Khorsand M, Mostafavi-Pour Z, Tahmasebi A, Omidvar Kordshouli S, Mousavi P. Construction of lncRNA/Pseudogene-miRNA Network Based on In Silico Approaches for Glycolysis Pathway to Identify Prostate Adenocarcinoma-Related Potential Biomarkers. Appl Biochem Biotechnol 2024; 196:2332-2355. [PMID: 37542606 DOI: 10.1007/s12010-023-04617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 08/07/2023]
Abstract
LncRNAs, pseudogenes, and miRNAs participate a fundamental function in tumorigenesis, metabolism, and invasion of cancer cells, although their regulation of tumor glycolysis in prostate adenocarcinoma (PRAD) is thoroughly not well studied. In this study, we applied transcriptomic, proteomic, and medical information to identify glycolysis-related key genes and modules associated with PRAD. Then, the glycolysis-related lncRNA/lncRNAs/pseudogenes-miRNA-mRNA network was constructed. Analysis of DNA methylation status and expression data determined a DNA methylation-dysregulated three-DE-mRNAs signature for predicting diagnosis, ANGPTL4, GNE, and HSPA in PRAD patients and healthy control. Several lncRNAs/pseudogenes, significantly correlated with the overall survival PVT1, CA5BP1, MIRLET7BHG, SNHG12, and ZNF37BP and disease-free survival status, MALAT1, GUSBP11, MIRLET7BHG, and SNHG1, of patients with PRAD were determined. The methylation profile of DE-lncRNA/pseudogenes was significantly proper for predicting PRAD prognostic model. The transcription level of 6 DE-mRNA ANGPTL4, QSOX1, BIK, CLDN3, DDIT4, and TFF3 was correlated with cancer-related fibroblast infiltration in PRAD. The mutated form of 7 mRNAs, COL5A1, IDH1, HK2, DDIT4, GNE, and QSOX1, was associated with PRAD. In addition to the glycolysis pathway, DE-RNAs play regulatory roles on several pathways, including DNA damage, RTK, cell cycle, RAS/MAPK, TSC/mTOR and PI3K/AKT, AR hormone, and EMT. Overall, our study improves our knowledge of the relation between lncRNAs/pseudogenes and miRNA related to glycolysis and PRAD pathogenesis.
Collapse
Affiliation(s)
- Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Laboratory Science, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
10
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Gómez-Pinedo U, Matías-Guiu JA, Ojeda-Hernandez D, de la Fuente-Martin S, Kamal OMF, Benito-Martin MS, Selma-Calvo B, Montero-Escribano P, Matías-Guiu J. In Vitro Effects of Methylprednisolone over Oligodendroglial Cells: Foresight to Future Cell Therapies. Cells 2023; 12:1515. [PMID: 37296635 PMCID: PMC10252523 DOI: 10.3390/cells12111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established. There is controversy around whether these cells may be implanted simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This study assesses the influence of corticosteroids on the capacity for proliferation and differentiation and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of cell transplantation.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Denise Ojeda-Hernandez
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Sarah de la Fuente-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Ola Mohamed-Fathy Kamal
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Maria Soledad Benito-Martin
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Belen Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.O.-H.); (S.d.l.F.-M.); (O.M.-F.K.); (M.S.B.-M.); (B.S.-C.); (J.M.-G.)
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.M.-G.); (P.M.-E.)
| |
Collapse
|
12
|
Batchu S, Diaz MJ, Kleinberg G, Lucke-Wold B. Spatial metabolic heterogeneity of oligodendrogliomas at single-cell resolution. Brain Tumor Pathol 2023; 40:101-108. [PMID: 37041322 DOI: 10.1007/s10014-023-00455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023]
Abstract
Oligodendrogliomas are a type of rare and incurable gliomas whose metabolic profiles have yet to be fully examined. The present study examined the spatial differences in metabolic landscapes underlying oligodendrogliomas and should provide unique insights into the metabolic characteristics of these uncommon tumors. Single-cell RNA-sequencing expression profiles from 4044 oligodendroglioma cells derived from tumors resected from four locations frontal, temporal, parietal, and frontotemporoinsular) and in which 1p/19q co-deletion and IDH1 or IDH2 mutations were confirmed were computationally analyzed through a robust workflow to elucidate relative differences in metabolic pathway activities among the different locations. Dimensionality reduction using metabolic expression profiles exhibited clustering corresponding to each location subgroup. From the 80 metabolic pathways examined, over 70 pathways had significantly different activity scores between location subgroups. Further analysis of metabolic heterogeneity suggests that mitochondrial oxidative phosphorylation accounts for considerable metabolic variation within the same locations. Steroid and fatty acid metabolism pathways were also found to be major contributors to heterogeneity. Oligodendrogliomas display distinct spatial metabolic differences in addition to intra-location metabolic heterogeneity.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ, USA
| | | | | | | |
Collapse
|
13
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022; 2022:9886044. [PMID: 36245971 PMCID: PMC9553508 DOI: 10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People's Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People's Hospital, Shangrao 334000, China
| |
Collapse
|
14
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022. [DOI: https:/doi.org/10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People’s Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| |
Collapse
|
15
|
Fan X, Nie X, Huang J, Zhang L, Wang X, Lu M. A Composite Bioinformatic Analysis to Explore Endoplasmic Reticulum Stress-Related Prognostic Marker and Potential Pathogenic Mechanisms in Glioma by Integrating Multiomics Data. JOURNAL OF ONCOLOGY 2022. [DOI: doi.org/10.1155/2022/9886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
In recent years, abnormal endoplasmic reticulum stress (ERS) response, as an important regulator of immunity, may play a vital role in the occurrence, development, and treatment of glioma. Weighted correlation network analysis (WGCNA) based on six glioma datasets was used to screen eight prognostic-related differentially expressed ERS-related genes (PR-DE-ERSGs) and to construct a prognostic model. BMP2 and HEY2 were identified as protective factors (HR < 1), and NUP107, DRAM1, F2R, PXDN, RNF19A, and SCG5 were identified as risk factors for glioma (HR > 1). QRT-PCR further supported significantly higher DRAM1 and lower SCG5 relative mRNA expression in gliomas. Our model has demonstrated excellent performance in predicting the prognosis of glioma patients from numerous datasets. In addition, the model shows good stability in multiple tests. Our model also shows broad clinical promise in predicting drug treatment effects. More immune cells/processes in the high-risk population with poor prognosis illustrate the importance of the tumor immunosuppressive environment in glioma. The potential role of the HEY2-based competitive endogenous RNA (ceRNA) regulatory network in glioma was validated and revealed the possible important role of glycolysis in glioma ERS. IDH1 and TP53 mutations with better prognosis were strongly associated with the risk score and PR-DE-ERSGs expression in the model. mDNAsi was also closely related to the risk score and clinical characteristics.
Collapse
Affiliation(s)
- Xin Fan
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiyi Nie
- Department of Neurosurgery, Yichun Hospital Affiliated to Nanchang University, Yichun People’s Hospital, Yichun 334000, China
| | - Junwen Huang
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Xifu Wang
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| | - Min Lu
- Department of Emergency, Shangrao Hospital Affiliated to Nanchang University, Shangrao People’s Hospital, Shangrao 334000, China
| |
Collapse
|
16
|
Wu L, Liu J, Li W. Prognostic significance of a 4-lncRNA glycolysis-related signature in oral squamous cell carcinoma. J Dent Sci 2022; 17:991-1000. [PMID: 35756768 PMCID: PMC9201629 DOI: 10.1016/j.jds.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/PURPOSE Oral squamous cell carcinoma (OSCC) is a highly malignant tumor, and the overall survival (OS) time of patients with OSCC varies considerably. This study aimed to identify reliable biomarkers for OSCC and construct a new prognostic signature, which may guide personalized precision treatment. MATERIALS AND METHODS Transcriptome array data of 317 patients with OSCC from The Cancer Genome Atlas Project (TCGA) cohort were retrospectively analyzed. Single-sample gene set enrichment analysis (ssGSEA) and univariate Cox regression were performed to identify the prognostic significance of the hallmarks of each tumor in OSCC. Subsequently, lncRNAs related to glycolysis were identified through co-expression analysis. A glycolysis-related prognostic signature was constructed by combining univariate Cox regression, least absolute shrinkage and selection operator (Lasso) regression, and multivariate Cox regression analyses. Additionally, the infiltration of immune cells in OSCC was evaluated based on data from ssGSEA and TIMER databases. RESULTS Glycolysis was identified as the main risk factor for OS in a variety of cancer hallmarks. The 4-lncRNA glycolysis prognostic signature could distinguish high and low-risk patients. This risk signature was found to be an independent prognostic risk factor for OSCC, showing good predictive power compared with other clinicopathological indicators. Immune correlation analysis showed that patients in the low-risk group exhibited higher levels of immune cell infiltration. CONCLUSION The novel 4-lncRNA prognostic signature can predict the clinical outcome of patients with OSCC well, and it is expected to become a promising prognostic biomarker as well as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Liangyin Wu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| | - Wenli Li
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- The Affiliated Yue Bei People's Hospital of Shantou University Medical College, 133 Huimin South Road, Shaoguan, 512026. China
| |
Collapse
|
17
|
Shen L, Li Y, Li N, Zhao Y, Zhou Q, Shen L, Li Z. Integrative analysis reveals the functional implications and clinical relevance of pyroptosis in low-grade glioma. Sci Rep 2022; 12:4527. [PMID: 35296768 PMCID: PMC8925295 DOI: 10.1038/s41598-022-08619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Using the Chinese Glioma Genome Atlas (training dataset) and The Cancer Genome Atlas (validation dataset), we found that low-grade gliomas can be divided into two molecular subclasses based on 30 pyroptosis genes. Cluster 1 presented higher immune cell and immune function scores and poorer prognosis than Cluster 2. We established a prognostic model based on 10 pyroptosis genes; the model could predict overall survival in glioma and was well validated in an independent dataset. The high-risk group had relatively higher immune cell and immune function scores and lower DNA methylation levels in pyroptosis genes than the low-risk group. There were no marked differences in pyroptosis gene alterations between the high- and low-risk groups. The competing endogenous RNA (ceRNA) regulatory network uncovered the lncRNA-miRNA-mRNA regulation patterns of the different risk groups in low-grade glioma. Five pairs of target genes and drugs were identified. In vitro, CASP8 silencing inhibited the migration and invasion of glioma cells. The expression of pyroptosis genes can reflect the molecular biological and clinical features of low-grade glioma subclasses. The developed prognostic model can predict overall survival and distinguish molecular alterations in patients. Our integrated analyses could provide valuable guidelines for improving risk management and therapy for low-grade glioma patients.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Li C, Guan X, Jing H, Xiao X, Jin H, Xiong J, Ai S, Wang Y, Su T, Sun G, Fu T, Wang Y, Guo S, Liang P. Circular RNA circBFAR promotes glioblastoma progression by regulating a miR-548b/FoxM1 axis. FASEB J 2022; 36:e22183. [PMID: 35202487 DOI: 10.1096/fj.202101307r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of tumor of the primary nervous system. Treatment options for GBM include surgery, chemotherapy, and radiation therapy; however, the clinical outcomes are poor, with a high rate of recurrence. An increasing number of studies have shown that circular RNAs (circRNAs) serve important roles in several types of cancer. Gene Expression Omnibus (GEO) database was utilized to identify the differentially expressed circRNAs and their biological functions. Then, we detected the circular RNA bifunctional apoptosis regulator (circBFAR) was significantly increased in three GEO datasets. However, the role of circBFAR has not been reported in GBM. In this study, the expression of circBFAR was significantly increased both in GBM tissues or cell lines and was negatively correlated with overall survival in patients with GBM. Knockdown of circBFAR inhibited proliferation and invasion both in vitro and in vivo. Increased expression of circBFAR resulted in a reduction of miR-548b expression in glioma cells. A luciferase reporter and RIP assay indicated that miR-548b was a direct target of circBFAR, and miR-548b may negatively regulate the expression of FoxM1. Rescue experiments showed that overexpression of FoxM1 could counter the effect of circBFAR silencing on the proliferation and invasion of glioma cell lines. Moreover, we identified that circBFAR regulates FoxM1 by interacting with miR-548b in glioma cells. In conclusion, the present study demonstrated that a circBFAR/miR-548b/FoxM1 axis regulates the development of GBM and highlights potentially novel therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Guan
- Animal Laboratory Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanguang Jing
- Breast Surgery, Lin Yi Famous Doctor Studio, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xu Xiao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hua Jin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingjie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianqi Su
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouli Guo
- Animal Experiment Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
19
|
Kong D, Hong W, Yu M, Li Y, Zheng Y, Ying X. Multifunctional Targeting Liposomes of Epirubicin Plus Resveratrol Improved Therapeutic Effect on Brain Gliomas. Int J Nanomedicine 2022; 17:1087-1110. [PMID: 35313461 PMCID: PMC8933639 DOI: 10.2147/ijn.s346948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Dehua Kong
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Wenyu Hong
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Miao Yu
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Yanxia Li
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - YaXin Zheng
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Xue Ying
- Collaborative Innovation Center of Sichuan for Elderly Care and Health & Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
- Correspondence: Xue Ying; YaXin Zheng, School of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, People’s Republic of China, Tel +86 135-7945-5890; +86 173-8187-6167, Email ;
| |
Collapse
|
20
|
Zhu Y, Liu Z, Lv D, Cheng X, Wang J, Liu B, Han Z, Wang Y, Liu R, Gao Y. Identification of PYGL as a key prognostic gene of glioma by integrated bioinformatics analysis. Future Oncol 2022; 18:579-596. [PMID: 35037470 DOI: 10.2217/fon-2021-0759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: PYGL has been reported to have carcinogenic effects in a variety of tumors. This study is the first to reveal the relationship between PYGL and the prognosis of glioma. Materials & methods: Analyzing the Chinese Glioma Genome Atlas database, the authors revealed the expression status and prognostic value of PYGL in gliomas and used RT-qPCR to verify PYGL expression again. Subsequently, they used Gene Set Enrichment Analysis to explore the biological pathways that PYGL may participate in. The authors also used the tumor immune estimation resource database to explore the relationship between PYGL and tumor immune cells. Results: PYGL is involved in the malignant progression of glioma. Conclusions: PYGL can be used as a new biomarker and molecular target for evaluating the prognosis and immunotherapy of glioma.
Collapse
Affiliation(s)
- Yongjie Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Zhendong Liu
- Department Of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Dongbo Lv
- Department Of Orthopaedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin 150000, China
| | - Jialin Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Zhibin Han
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin 150000, China
| | - Yanbiao Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Runze Liu
- Henan University People's Hospital, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan 450003, China
| | - Yanzheng Gao
- Department of Surgery of Spine & Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation & Transformation, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, Zhengzhou 450003, China
| |
Collapse
|
21
|
Xu C, Yin H, Jiang X, Sun C. Silencing long noncoding RNA LINC01138 inhibits aerobic glycolysis to reduce glioma cell proliferation by regulating the microRNA‑375/SP1 axis. Mol Med Rep 2021; 24:846. [PMID: 34643249 PMCID: PMC8524433 DOI: 10.3892/mmr.2021.12486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is a primary cerebral neoplasm that originates from glial tissue and spreads to the central nervous system. Long noncoding RNAs are known to play a role in glioma cells by regulating cell proliferation, migration and invasion. The aim of the present study was to investigate the mechanism by which long intergenic non‑protein coding RNA (LINC) 01138 affects glycolysis and proliferation in glioma cells via the microRNA (miR)‑375/specificity protein 1 (SP1) axis. LINC01138 expression was assessed in glioma tissues and cells using reverse transcription‑quantitative PCR and the association between LINC01138 and patient clinicopathological features was analyzed. Glucose uptake, lactic acid secretion, cell proliferation, and glycolysis‑related enzyme levels were detected following LINC01138 silencing using CCK‑8, EDU assay and western blot analysis. miR‑375 and SP1 expression levels were also assessed, and the distribution of LINC01138 in the nucleus and cytoplasm was investigated using subcellular fractionation localization. Furthermore, the binding relationships between LINC01138 and miR‑375, and between miR‑375 and SP1 were assessed via dual‑luciferase experiment, RIP and RNA pull‑down assays. Finally, xenograft transplantation models were used to verify the in vitro results. LINC01138 was highly expressed in glioma, which was independent of patient sex or age but was significantly related to tumor diameter, the World Health Organization tumor grade and lymph node metastasis. Silencing LINC01138 significantly reduced glioma glycolysis and cell proliferation. Moreover, LINC01138 acted as a competing endogenous RNA to sponge miR‑375 and promote SP1 expression. miR‑375 inhibition significantly reversed the effect of LINC01138 silencing. In addition, silencing LINC01138 significantly reduced tumor growth in vivo. The present study demonstrated that silencing LINC01138 inhibited aerobic glycolysis and thus reduced glioma cell proliferation, potentially by modulating the miR‑375/SP1 axis.
Collapse
Affiliation(s)
- Chengning Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haoran Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunming Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
22
|
Wang L, Lang B, Zhou Y, Ma J, Hu K. Up-regulation of miR-663a inhibits the cancer stem cell-like properties of glioma via repressing the KDM2A-mediated TGF-β/SMAD signaling pathway. Cell Cycle 2021; 20:1935-1952. [PMID: 34424812 DOI: 10.1080/15384101.2021.1966962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emerging reports have shown that microRNAs (miRNAs) function as vital regulators in tumor development via modulating gene expression at the posttranscriptional level. Here, we explored the role and underlying mechanism of miR-663a in the proliferation, migration, invasion, and cancer stem cell-like (CSC) properties of glioma cells. Quantitative reverse transcription PCR (qRT-PCR) was implemented to detect miR-663a expression in glioblastoma tissues and the adjacent normal tissues. Additionally, gain- and loss-of-function assays of miR-633a were performed on U-251 MG cells or human primary glioblastoma cancer cells (pGBMC1). Cell proliferation, migration, invasion, CSC properties, and profiles of stem cell markers (including CD133, CD44) were examined by the MTT assay, Transwell assay, tumorsphere experiment, and Western blotting, respectively. The dual-luciferase reporter gene assay was performed to testify the targeted relationship between miR-663a and lysine demethylase 2A (KDM2A). The results showed that miR-663a was down-regulated in glioblastoma tissues and cells. Overexpressing miR-663a repressed the proliferation, migration, invasion, CSC properties of U-251 MG cells and pGBMC1, while miR-663a knockdown had the opposite effects. The in-vivo experiment confirmed that miR-663a repressed the growth of U-251 MG cells in nude mice. When cocultured with THP1 cells, U-251 MG cells gained enhanced proliferation, migration, invasion, and CSC properties. MiR-633a overexpression reversed THP1-mediated effects on U-251 MG cells, and reduced the "M2" polarization of THP1 cells. What's more, Mechanistically, KDM2A was targeted by miR-663a. KDM2A knockdown suppressed the progression and CSC properties of U-251 MG cells in vitro, and dampened TGF-β. Overall, those data revealed that up-regulating miR-663a reduced glioma progression by inhibiting the KDM2A-mediated TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Bojuan Lang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Pathology, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Youdong Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jinyang Ma
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Keqi Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
23
|
Suzuki K, Kawai N, Ogawa T, Miyake K, Shinomiya A, Yamamoto Y, Nishiyama Y, Tamiya T. Hypoxia and glucose metabolism assessed by FMISO and FDG PET for predicting IDH1 mutation and 1p/19q codeletion status in newly diagnosed malignant gliomas. EJNMMI Res 2021; 11:67. [PMID: 34291337 PMCID: PMC8295439 DOI: 10.1186/s13550-021-00806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background Tumor hypoxia and glycolysis have been recognized as determinant factors characterizing tumor aggressiveness in malignant gliomas. To clarify in vivo hypoxia and glucose metabolism in relation to isocitrate dehydrogenase (IDH) mutation and chromosome 1p and 19q (1p/19q) codeletion status, we retrospectively analyzed hypoxia as assessed by positron emission tomography (PET) with [18F]-fluoromisonidazole (FMISO) and glucose metabolism as assessed by PET with [18F]-fluoro-2-deoxy-d-glucose (FDG) in newly diagnosed malignant gliomas. Methods In total, 87 patients with newly diagnosed supratentorial malignant (WHO grade III and IV) gliomas were enrolled in this study. They underwent PET studies with FMISO and FDG before surgery. The molecular features and histopathological diagnoses based on the 2016 WHO classification were determined using surgical specimens. Maximal tumor-to-normal ratio (TNR) was calculated for FDG PET, and maximal tumor-to-blood SUV ratio (TBR) was calculated for FMISO PET. The PET uptake values in relation to IDH mutation and 1p/19q codeletion status were statistically analyzed. Results In all tumors and malignant astrocytomas, the median FMISO TBR in IDH-wildtype tumors was significantly higher than that in IDH-mutant tumors (P < 0.001 and P < 0.01, respectively). In receiver operating characteristic (ROC) analysis, the area under the curve showed that the sensitivity for the discrimination was moderate (0.7–0.8) and the specificity was low (0.65–0.68). In the same population, the median FDG TNR in IDH-wildtype tumors tended to be higher than that in IDH-mutant tumors, but the difference was not statistically significant. In WHO grade III anaplastic astrocytomas, there were no significant differences in median FMISO TBR or FDG TNR between IDH-mutant and IDH-wildtype tumors. In IDH-mutant WHO grade III anaplastic gliomas, there were no significant differences in median FMISO TBR or FDG TNR between anaplastic astrocytomas and anaplastic oligodendrogliomas. Conclusions Tumor hypoxia as assessed by FMISO PET was informative for prediction of the IDH mutation status in newly diagnosed malignant gliomas. However, the accuracy of the discrimination was not satisfactory for clinical application. On the other hand, glucose metabolism as assessed by FDG PET could not differentiate the IDH-mutant status. Moreover, PET studies using FMISO and FDG could not predict IDH mutation and 1p/19q codeletion status in WHO grade III tumors.
Collapse
Affiliation(s)
- Kenta Suzuki
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Nobuyuki Kawai
- Department of Neurological Surgery, Kagawa Rehabilitation Hospital, 1114 Tamura-cho, Takamatsu-shi, Kagawa, 761-8057, Japan.
| | - Tomoya Ogawa
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Aya Shinomiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Diagnostic Radiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Diagnostic Radiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
24
|
A Prognostic Model for Brain Glioma Patients Based on 9 Signature Glycolytic Genes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6680066. [PMID: 34222480 PMCID: PMC8225435 DOI: 10.1155/2021/6680066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Objective To screen glycolytic genes linked to the glioma prognosis and construct the prognostic model. Methods The relevant data of glioma were downloaded from TCGA and GTEx databases. GSEA of glycolysis-related pathways was carried out, and enriched differential genes were extracted. Screening out prognostic-related genes with conspicuous significance and construction of the prognostic model were conducted by multivariate Cox regression analysis and Lasso regression analysis. The model was evaluated, and cBioPortal was used to analyze the mutation of the model gene. The expression of the model gene in tumor and normal colon tissue was analyzed. The model was used to evaluate the prognosis of patients in different groups to verify the applicability of the model. Results 339 differentially glycolytic-related genes were enriched in REACTOME_GLYCOLYSIS, GLYCOLYTIC_PROCESS, HALLMARK_GLYCOLYSIS, and other pathways. We obtained 9 key prognostic genes and constructed the prognostic evaluation model. The 3-year AUC values of the ROC curve display model are greater than 0.75, which indicates that the accuracy of the model is good. The relation of age and risk score to prognosis is shown by univariate and multivariate Cox analysis. The expression of SRD5A3, MDH2, and B3GAT3 genes was significantly upregulated in the tumor tissues, while the HDAC4 and G6PC2 genes were downregulated. The mutation rate of MDH2 and HDAC4 genes was the highest. This model could effectively distinguish the risk of poor prognosis of patients in any age stage. Conclusion The prognostic assessment models based on glycolysis-related nine-gene signature could accurately predict the prognosis of patients with GBM.
Collapse
|
25
|
Pan Z, Bao J, Zhang L, Wei S. UBE2D3 Activates SHP-2 Ubiquitination to Promote Glycolysis and Proliferation of Glioma via Regulating STAT3 Signaling Pathway. Front Oncol 2021; 11:674286. [PMID: 34195079 PMCID: PMC8236812 DOI: 10.3389/fonc.2021.674286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Glioma is a primary brain cancer with high malignancy and morbidity. Current management for glioma cannot reach optimal remission. Therefore, it is necessary to find novel targets for glioma treatment. Ubiquitin-conjugating enzyme E2 D3 (UBE2D3) is involved in the pathogenesis of various kinds of cancer. However, its role in glioma remains unclear. Our study aims to explore the function and underlying mechanism of UBE2D3 in the development of glioma. By analysis with The Cancer Genome Atlas-Glioblastoma multiforme (TCGA-GBM) dataset, we found that UBE2D3 was highly expressed in glioma and it is positive correlation with glycolysis, apoptosis, and STAT3 pathway. Then, we explore the effects of UBE2D3 knockdown in the biological functions of glioma cell lines. Cell proliferation and apoptosis were estimated by cell counting kit-8 assay and flow cytometry. Extracellular acidification rate and oxygen consumption rate were estimated to determine the level of cell glycolysis. Xenograft experiments were performed to identify in vivo function of UBE2D3. The results showed that the inhibition of UBE2D3 could suppress the proliferation, glycolysis, and STAT3 phosphorylation of GBM both in vitro and in vivo. UBE2D3 could interact with SHP-2 and promoted its ubiquitination, which elevated the activation of STAT3 pathway. Overexpressed SHP-2 could reverse the effect of UBE2D3 and they shared contrary expression patterns in glioma and normal brain tissues. In summary, our study revealed that UBE2D3 could promote the ubiquitination of SHP-2, which activated STAT3 pathway and promoted glioma proliferation as well as glycolysis. UBE2D3 could be a potential target for glioma treatment.
Collapse
Affiliation(s)
- Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital of Yangpu District in Shanghai, Shanghai, China
| | - Jing Bao
- Department of Neurosurgery, Shidong Hospital of Yangpu District in Shanghai, Shanghai, China
| | - Liujun Zhang
- Department of Neurosurgery, Shidong Hospital of Yangpu District in Shanghai, Shanghai, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital of Yangpu District in Shanghai, Shanghai, China
| |
Collapse
|
26
|
Li C, Liu Y, Lv Z, Zheng H, Li Z, Zhang J, Bao H, Zhang S, Xiong J, Jin H, Yu L, Ai S, Wang Y, Xiao X, Su T, Liang P. Circular RNA circHECTD1 facilitates glioma progression by regulating the miR-296-3p/SLC10A7 axis. J Cell Physiol 2021; 236:5953-5965. [PMID: 33561315 DOI: 10.1002/jcp.30277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Glioma is the most common type of primary brain tumor. Treatment options for recurrent gliomas include surgery, chemotherapy, and radiation therapy, but the clinical outcome is usually limited. In recent years, circular RNAs have been found to play a vital role in several human cancers. Gene Expression Omnibus database was utilized to verify the differentially expressed circRNAs. Then we detected that the expression of circular RNA circHECTD1 was significantly increased. The expression and function of circHECDT1 has not yet been reported in glioma. Then we confirmed that the level of circHECTD1 was significantly increased both in glioma tissues and cell lines, which is negatively correlated with the overall survival of patients. Knockdown of circHECTD1 inhibited proliferation and invasion in vitro, and also reduced the growth of tumor and prolonged the prognosis in vivo. Knockdown of circHECTD1 significantly elevated the miR-296-3p expression in LN229 and T98G cells. Luciferase reports and RNA immunoprecipitation data indicated that miR-296-3p was a direct target of circHECTD1 and that the miR-296-3p expression negatively regulated SLC10A7. Rescue experiments showed that the overexpression of SLC10A7 could impede the effects of circHECTD1 silencing on the proliferation and invasion of glioma cells. In this study, we identified that circHECTD1 regulates SLC10A7 by interacting with miR-296-3p in glioma cells. In conclusion, this study investigated a novel biomarker panel consisting of the circHECTD1/miR-296-3p/SLC10A7 axis, which is critical for glioma tumorigenesis and invasiveness and may represent a novel therapeutic target for intervening in glioma progression.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yan Liu
- Department of Medical Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongshan Zheng
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhenzhe Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jixing Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Sibin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hua Jin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Lei Yu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yingjie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xu Xiao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tianqi Su
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Shi X, Zhang W, Gu C, Ren H, Wang C, Yin N, Wang Z, Yu J, Liu F, Zhang H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic Biol Med 2021; 162:514-522. [PMID: 33197538 DOI: 10.1016/j.freeradbiomed.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Two-deoxy-d-glucose (2-DG) mediated glucose restriction (GR) has been applied as a potential therapeutic strategy for tumor clinical treatments. However, increasing evidences have indicated that 2-DG alone is inefficient in killing tumor cells, and the effect of 2-DG on modifying tumor radio-responses also remains controversial. In this study, we found that 2-DG triggered metabolic adaption in U87 glioma cells by up-regulating nicotinamide phosphoribosyltransferase (NAMPT) and cellular NAD+ content, which abolished 2-DG-induced potential radiosensitizing effect in glioma cells. Strikingly, NAD+ depletion evoked notable oxidative stress by NADPH reduction and hence re-radiosensitized 2-DG-treated glioma cells. Furthermore, isocitrate dehydrogenase-1 (IDH1) mutant U87 glioma cells with deficiency in the rate-limiting enzyme of Preiss-Handler pathway nicotinate phosphoribosyltransferase (Naprt1) revealed notable 2-DG-induced oxidative stress and radiosensitization. Our findings implied that targeting NAD+ could radiosensitize gliomas with GR, and 2-DG administration could be benefit for tumor patients with IDH1 mutation.
Collapse
Affiliation(s)
- Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gu
- Department of Radiation Oncology, Changzhou No.4 People's Hospital, Soochow University, Changzhou, 213001, China
| | - Huangge Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Chen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| |
Collapse
|