1
|
Alam T, Asif Ansari M. Comparison of the effectiveness of aliskiren and ramipril for the management of hypertension: A systematic review and meta-analysis. HIPERTENSION Y RIESGO VASCULAR 2024:S1889-1837(24)00114-4. [PMID: 39665939 DOI: 10.1016/j.hipert.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE Ramipril is an important option in the management of hypertension, while the role of aliskiren is still up for debate. We aim to meta-analyse and compare the effect of aliskiren with ramipril by measuring mean difference in systolic blood pressure (mdSBP) and mean difference in diastolic blood pressure (mdDBP). METHODS The search was conducted using the PubMed and Cochrane databases for eligible randomized clinical trials (RCTs) to perform a meta-analysis from January 2000 to May 2024. RCTs that included hypertensive patients who were under either aliskiren or ramipril treatment were included in the analysis. The risk of bias was evaluated using RoB 2.0. This study is registered with PROSPERO: CRD42024577105. RESULTS Four studies were included: two studies were carried out for 2 months, and two were carried out for 6 months, including 693 and 329 patients, respectively, with mild to moderate hypertension and a mean age of 55.2 years. After 2 months, mdDBP was found to be significant (mdDBP=0.85mmHg, 95% CI: 0.73-0.97, I2=0%), but mdSBP was found to be non-significant (mdSBP=0.0mmHg, 95% CI: -0.17-0.17, I2=0%). There was a significant difference in the mdSBP (mdSBP=3.15mmHg, 95% CI: 2.13-4.17, I2=84%) and mdDBP (mdDBP=1.2mmHg, 95% CI: 1.09-1.31, I2=0%) at 6 months. CONCLUSION Aliskiren provides, in the short term, a slight improvement in BP in non-elderly hypertensive patients without diabetes or previous cardio-cerebrovascular disease.
Collapse
Affiliation(s)
- T Alam
- School of Pharmaceutical Sciences, Lingaya's Vidyapeeth, Faridabad, Haryana 121002, India.
| | - M Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India
| |
Collapse
|
2
|
Govindsamy A, Singh S, Naicker T. Genetic Appraisal of RAAS-Associated SNPs: REN (rs16853055), AGT (rs3789678) and ACE (rs4305) in Preeclamptic Women Living with HIV Infection. Curr Hypertens Rep 2024; 26:213-224. [PMID: 38411777 PMCID: PMC11153260 DOI: 10.1007/s11906-023-01292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW The primary goal of this review article was to determine whether the three RAAS-associated SNPs, Renin-rs16853055, AGT-rs3789678 and ACE-rs4305 are genetically linked to the development of hypertension in preeclampsia. The secondary goal was to establish if there was a link between these SNPs and HIV infection. RECENT FINDINGS There is a paucity of findings related to the aforementioned SNPs and preeclampsia. There are no recent findings on the rs16853055 renin polymorphism. The rs3789678 angiotensinogen polymorphism correlated significantly with gestational hypertension. The rs4305 ACE polymorphism showed no significant association with the development of pregnancy-induced hypertension. There are conflicting findings when determining the relationship between ethnicity and the predisposition of preeclampsia and hypertension in relation to the discussed RAAS-associated SNPs. To date, the association between RAAS-associated SNPs and preeclamptic women co-morbid with HIV in South Africa has revealed that certain alleles of the AGT gene are more prominent in HIV-infected PE compared to normotensive pregnant HIV-infected women.
Collapse
Affiliation(s)
- Annelene Govindsamy
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Shoohana Singh
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Songür HS, Kaya SA, Altınışık YC, Abanoz R, Özçelebi E, Özmen F, Kösemehmetoğlu K, Soydan G. Alamandine treatment prevents LPS-induced acute renal and systemic dysfunction with multi-organ injury in rats via inhibiting iNOS expression. Eur J Pharmacol 2023; 960:176160. [PMID: 37923157 DOI: 10.1016/j.ejphar.2023.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Sepsis is defined as the dysregulated immune response leading to multi-organ dysfunction and injury. Sepsis-induced acute kidney injury is a significant contributor to morbidity and mortality. Alamandine (ALA) is a novel endogenous peptide of the renin-angiotensin-aldosterone system. It is known for its anti-inflammatory and anti-apoptotic effects, but its functional and vascular effects on sepsis remain unclear. We aimed to investigate the effects of ALA, as a pre- and post-treatment agent, on lipopolysaccharide (LPS)-induced systemic and renal dysfunction and injury in the LPS-induced endotoxemia model in rats via functional, hemodynamic, vascular, molecular, biochemical, and histopathological evaluation. 10 mg/kg intraperitoneal LPS injection caused both hepatic and renal injury, decreased blood flow in several organs, and renal dysfunction at 20 h in Sprague-Dawley rats. Our results showed that ALA treatment ameliorated systemic and renal inflammation, reduced inflammatory cytokines, prevented the enhancement of the mortality rate, reversed vascular dysfunction, corrected decreased blood flows in several organs, and reduced renal and hepatic injury via inhibiting iNOS (inducible nitric oxide synthase) and caspase expressions in the kidney. In addition, expressions of different ALA-related receptors showed alterations in this model, and ALA treatment reversed these alterations. These data suggest that ALA's systemic and renal protective effects are achieved through its anti-inflammatory, anti-pyroptotic, and anti-apoptotic effects on hemodynamic and vascular functions via reduced iNOS expression.
Collapse
Affiliation(s)
- H Saltuk Songür
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Sinan Alperen Kaya
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | | | - Rukiye Abanoz
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Esin Özçelebi
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | | | - Güray Soydan
- Department of Medical Pharmacology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
mRNA Metabolism and Hypertension. Biomedicines 2023; 11:biomedicines11010118. [PMID: 36672629 PMCID: PMC9855994 DOI: 10.3390/biomedicines11010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Hypertension is the most frequent cardiovascular risk factor all over the world. It remains a leading contributor to the risk of cardiovascular events and death. In the year 2015, about 1.5 billion of adult people worldwide had hypertension (as defined by office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg). Moreover, the number of hypertensive patients with age ranging from 30 to 79 years doubled in the last 30 years (from 317 million men and 331 million women in the year 1990 to 652 million men and 626 million women in 2019) despite stable age-standardized prevalence worldwide. Despite such impressive growth, the proportion of controlled hypertension is very low. A better understanding of the pathogenesis of hypertension may contribute to the development of innovative therapeutic strategies. In this context, alterations of the messenger RNA metabolism have been recently evaluated as contributors to the pathogenesis of hypertension, and pharmacological modulation of RNA metabolism is under investigation as potential and novel therapeutic armamentarium in hypertension.
Collapse
|
5
|
Devaux CA, Camoin-Jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022; 13:1042200. [PMID: 36519165 PMCID: PMC9742611 DOI: 10.3389/fmicb.2022.1042200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Center National de la Recherche Scientifique, Marseille, France
| | - Laurence Camoin-Jau
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|
6
|
Bild W, Vasincu A, Rusu RN, Ababei DC, Stana AB, Stanciu GD, Savu B, Bild V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules 2022; 12:1429. [PMID: 36291638 PMCID: PMC9599929 DOI: 10.3390/biom12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Brain neurodegenerative diseases (BND) are debilitating conditions that are especially characteristic of a certain period of life and considered major threats to human health. Current treatments are limited, meaning that there is a challenge in developing new options that can efficiently tackle the different components and pathophysiological processes of these conditions. The renin-angiotensin-aldosterone system (RAS) is an endocrine axis with important peripheral physiological functions such as blood pressure and cardiovascular homeostasis, as well as water and sodium balance and systemic vascular resistance-functions which are well-documented. However, recent work has highlighted the paracrine and autocrine functions of RAS in different tissues, including the central nervous system (CNS). It is known that RAS hyperactivation has pro-inflammatory and pro-oxidant effects, thus suggesting that its pharmacological modulation could be used in the management of these conditions. The present paper underlines the involvement of RAS and its components in the pathophysiology of BNDs such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), motor neuron disease (MND), and prion disease (PRD), as well as the identification of drugs and pharmacologically active substances that act upon RAS, which could alleviate their symptomatology or evolution, and thus, contribute to novel therapeutic approaches.
Collapse
Affiliation(s)
- Walther Bild
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Aurelian Bogdan Stana
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Savu
- Department of Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Bild
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
7
|
Gafane-Matemane LF, Kruger R, Van Rooyen JM, Gona PN, Schutte AE. Soluble (Pro)renin Receptor Is Adversely Associated with Indices of Left Ventricular Structure and Function: The African-PREDICT Study. J Cardiovasc Dev Dis 2022; 9:jcdd9050130. [PMID: 35621841 PMCID: PMC9144018 DOI: 10.3390/jcdd9050130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
This study aims to compare soluble (pro)renin receptor [s(P)RR] levels between black and white adults and to explore the associations of left ventricular (LV) structure and function with s(P)RR in the total and ethnicity-stratified groups. The study sample included 1172 apparently healthy black (n = 587) and white (n = 585) participants of the African-PREDICT study aged 20−30 years. Echocardiography was performed to determine relative wall thickness (RWT), LV mass index, LV ejection fraction and stroke volume index (SVi). s(P)RR was analyzed from serum samples, while plasma renin activity-surrogate (PRA-S) and eq angiotensin II were determined using the RAS™ Fingerprint. s(P)RR was higher in the white participants compared to the black participants (p < 0.001). In multivariable-adjusted linear regression analyses, we observed a positive association between RWT and s(P)RR (β = 0.141; p = 0.005) and negative associations of LV ejection fraction (β = −0.123; p = 0.016) and SVi (β = −0.144; p = 0.004) with s(P)RR only in white adults. Higher s(P)RR observed in white vs. black participants was associated with higher RWT and poorer LV function only in young white adults but not in their black counterparts. These results suggest that s(P)RR may contribute to LV remodeling and dysfunction in white populations due to its role in volume−pressure regulation and its proinflammatory as well as profibrotic effects.
Collapse
Affiliation(s)
- Lebo F. Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.K.); (J.M.V.R.); (A.E.S.)
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +27-18-299-2293
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.K.); (J.M.V.R.); (A.E.S.)
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Johannes M. Van Rooyen
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.K.); (J.M.V.R.); (A.E.S.)
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
| | - Philimon N. Gona
- College of Nursing & Health Sciences, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA;
| | - Aletta E. Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.K.); (J.M.V.R.); (A.E.S.)
- Medical Research Council: Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom 2520, South Africa
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney 2052, Australia
| |
Collapse
|
8
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
9
|
Miotto DS, Duchatsch F, Macedo AG, Ruiz TFR, Vicentini CA, Amaral SL. Perindopril Reduces Arterial Pressure and Does Not Inhibit Exercise-Induced Angiogenesis in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:519-528. [PMID: 33394824 DOI: 10.1097/fjc.0000000000000977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
ABSTRACT Sympathetic activity, arteriolar structure, and angiogenesis are important mechanisms modulating hypertension and this study aimed to analyze the effects of perindopril treatment, associated or not with exercise training, on the mechanisms that control blood pressure (BP) in hypertensive rats. Spontaneously hypertensive rats (SHR) were allocated into 4 groups: 1/sedentary (S); 2/perindopril (P, 3.0 mg/kg/d); 3/trained (T); and 4/trained + perindopril (TP). Wistar rats were used as normotensive sedentary control group. SHR were assigned to undergo a treadmill training (T) or were kept sedentary. Heart rate, BP, sympathetic activity to the vessels (LF-SBP), and skeletal muscle and myocardial morphometric analyses were performed. BP was significantly lower after all 3 strategies, compared with S and was accompanied by lower LF-SBP (-76%, -53%, and -44%, for P, T, and TP, respectively). Arteriolar vessel wall cross-sectional area was lower after treatments (-56%, -52%, and -56%, for P, T, and TP, respectively), and only TP presented higher arteriolar lumen area. Capillary rarefaction was present in soleus muscle and myocardium in S group and both trained groups presented higher vessel density, although perindopril attenuated this increase in soleus muscle. Although myocyte diameter was not different between groups, myocardial collagen deposition area, higher in S group, was lower after 3 strategies. In conclusion, we may suggest that perindopril could be an option for the hypertensive people who practice exercise and need a specific pharmacological treatment to reach a better BP control, mainly because training-induced angiogenesis is an important response to facilitate blood flow perfusion and oxygen uptake and perindopril did not attenuate this response.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Anderson G Macedo
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
| | - Thalles F R Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences- UNESP, School of Sciences, São José do Rio Preto/SP, Brazil; and
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos/SP, Brazil
- Physical Education, UNESP, School of Sciences, Bauru/SP, Brazil
| |
Collapse
|
10
|
A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su13063262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, microalgal research is predominantly centered on an industrial scale. In general, multipotent bioactive peptides are the advantages over focal points over utilitarian nourishment as well as nutraceuticals. Microalgal peptides are now profoundly connected with biological properties rather than nutritive. Numerous techniques are employed to purify active peptides from algal protein using enzymatic hydrolysis; it is broadly used for numerous favorable circumstances. There is a chance to utilize microalgal peptides for human well-being as nutritive enhancements. This exhaustive survey details the utilization of microalgal peptides as antioxidant, anti-cancerous, anti-hypersensitive, anti-atherosclerotic, and nutritional functional foods. It is also exploring the novel technologies for the production of active peptides, for instance, the use of algal peptides as food for human health discovered restrictions, where peptides are sensitive to hydrolysis protease degradation. This review emphasizes the issue of active peptides in gastrointestinal transit, which has to be solved in the future, and prompt impacts.
Collapse
|
11
|
Park E. Inhibition of the renin-angiotensin system during fetal kidney development. Clin Exp Pediatr 2021; 64:121-122. [PMID: 32972051 PMCID: PMC7940092 DOI: 10.3345/cep.2020.01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Amirfakhryan H, Safari F. Outbreak of SARS-CoV2: Pathogenesis of infection and cardiovascular involvement. Hellenic J Cardiol 2021; 62:13-23. [PMID: 32522617 PMCID: PMC7275139 DOI: 10.1016/j.hjc.2020.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Since the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has emerged from China, the infection (novel corona virus disease-2019, COVID-19) has affected many countries and led to many deaths worldwide. Like SARS-CoV, angiotencin converting enzyme (ACE)2 as a functional receptor for SARS-CoV2 is essential for the virus to make an entry into the cell. ACE2 is a part of Renin-Angiotensin-Aldosterone System, which is expressed in several organs that opposes the angiotensin (Ang) II functions by converting Ang II to Ang (1-7), the one with vasodilation effects. The death rate of COVID-19 is estimated to be approximately 3.4%; however, some comorbid conditions like underlying cardiovascular disease, hypertension, and diabetes increase the risk of mortality. In addition, cardiovascular involvement as a complication of SARS-CoV2 could be direct through either ACE2 receptors that are expressed tremendously in the heart, or by the surge of different cytokines or by acute respiratory distress syndrome-induced hypoxia. Traditional risk factors could aggravate the process of COVID-19 infection that urges the triage of these high-risk patients for SARS-CoV2. Currently, there is no effective, proven treatment or vaccination for COVID-19, but many investigators are struggling to find a treatment strategy as soon as possible. Some potential medications like chloroquine by itself or in combination with azithromycin and some protease inhibitors used for the treatment of COVID-19 have cardiovascular adverse effects, which should be kept in mind while the patients taking these medications are being closely monitored.
Collapse
Affiliation(s)
- Hamideh Amirfakhryan
- University of South Wales, Faculty of Health Science, Preventative Cardiovascular Medicine, UK.
| | - Fatemeh Safari
- University of Alberta, Edmonton, Faculty of Medicine, AB, Canada
| |
Collapse
|
13
|
Youssef MM, Abd El-Latif HA, El-Yamany MF, Georgy GS. Aliskiren and captopril improve cognitive deficits in poorly controlled STZ-induced diabetic rats via amelioration of the hippocampal P-ERK, GSK3β, P-GSK3β pathway. Toxicol Appl Pharmacol 2020; 394:114954. [PMID: 32171570 DOI: 10.1016/j.taap.2020.114954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Learning and memory deficits are obvious symptoms that develop over time in patients with poorly controlled diabetes. Hyperactivity of the renin-angiotensin system (RAS) is directly associated with β-cell dysfunction and diabetic complications, including cognitive impairment. Here, we investigated the protective and molecular effects of two RAS modifiers, aliskiren; renin inhibitor and captopril; angiotensin converting enzyme inhibitor, on cognitive deficits in the rat hippocampus. Injection of low dose streptozotocin for 4 days resulted in type 1 diabetes. Then, poorly controlled diabetes was mimicked with ineffective daily doses of insulin for 4 weeks. The hyperglycaemia and pancreatic atrophy caused memory disturbance that were identifiable in behavioural tests, hippocampal neurodegeneration, and the following significant changes in the hippocampus, increases in the inflammatory marker interleukin 1β, cholinesterase, the oxidative stress marker malondialdehyde and protein expression of phosphorylated extracellular-signal-regulated kinase and glycogen synthase kinase-3 beta versus decrease in the antioxidant reduced glutathione and protein expression of phosphorylated glycogen synthase kinase-3 beta. Blocking RAS with either drugs along with insulin amended all previously mentioned parameters. Aliskiren stabilized the blood glucose level and restored normal pancreatic integrity and hippocampal malondialdehyde level. Aliskiren showed superior protection against the hippocampal degeneration displayed in the earlier behavioural modification in the passive avoidance test, and the aliskiren group outperformed the control group in the novel object recognition test. We therefore conclude that aliskiren and captopril reversed the diabetic state and cognitive deficits in rats with poorly controlled STZ-induced diabetes through reducing oxidative stress and inflammation and modulating protein expression.
Collapse
Affiliation(s)
- Madonna M Youssef
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt.
| | - H A Abd El-Latif
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - M F El-Yamany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt
| |
Collapse
|
14
|
Zheng MH, Li FXZ, Xu F, Lin X, Wang Y, Xu QS, Guo B, Yuan LQ. The Interplay Between the Renin-Angiotensin-Aldosterone System and Parathyroid Hormone. Front Endocrinol (Lausanne) 2020; 11:539. [PMID: 32973674 PMCID: PMC7468498 DOI: 10.3389/fendo.2020.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is the regulatory system by which renin induces aldosterone production. Angiotensin II (Ang II) is the main effector substance of the RAAS. The RAAS regulates blood pressure and electrolyte balance by controlling blood volume and peripheral resistance. Excessive activation of the RAAS is an important factor in the onset of cardiovascular disease and the deterioration of this disease. The most common RAAS abnormality is primary aldosteronism (PA). Parathyroid hormone (PTH) is a peptide secreted by the main cells of the parathyroid gland, which promotes elevated blood calcium (Ca2+) levels and decreased blood phosphorus (Pi) levels. Excessive secretion of PTH can cause primary hyperparathyroidism (PHPT). Parathyroidism is highly prevalent in postmenopausal women and is often associated with secondary osteoporosis. PA and PHPT are common endocrine system diseases. However, studies have shown a link between the RAAS and PTH, indicating a positive relationship between them. In this review, we explore the complex bidirectional relationship between the RAAS and PTH. We also point out possible future treatment options for related diseases based on this relationship.
Collapse
Affiliation(s)
- Ming-Hui Zheng
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan
| |
Collapse
|
15
|
Assessment of Pregabalin-Induced Cardiotoxicity in Rats: Mechanistic Role of Angiotensin 1–7. Cardiovasc Toxicol 2019; 20:301-311. [DOI: 10.1007/s12012-019-09553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zhang Y, Wang Y, Zhou D, Zhang LS, Deng FX, Shu S, Wang LJ, Wu Y, Guo N, Zhou J, Yuan ZY. Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT1R/ROS/p38 MAPK/ADAM17 pathway. Am J Physiol Cell Physiol 2019; 317:C776-C787. [PMID: 31390228 DOI: 10.1152/ajpcell.00145.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vulnerable plaques in advanced atherosclerosis have defective efferocytosis. The role of ANG II in the progression of atherosclerosis is not fully understood. Herein, we investigated the effects and the underlying mechanisms of ANG II on macrophage efferocytosis in advanced atherosclerosis. ANG II decreased the surface expression of Mer tyrosine kinase (MerTK) in macrophages through a disintegrin and metalloproteinase17 (ADAM17)-mediated shedding of the soluble form of MerTK (sMer) in the medium, which led to efferocytosis suppression. ANG II-activated ADAM17 required reactive oxygen species (ROS) and p38 MAPK phosphorylation. Selective angiotensin II type 1 receptor (AT1R) blocker losartan suppressed ROS production, and ROS scavenger N-acetyl-l-cysteine (NAC) prevented p38 MAPK phosphorylation. In addition, mutant MERTKΔ483-488was resistant to ANG II-induced MerTK shedding and efferocytosis suppression. The advanced atherosclerosis model that is characterized by larger necrotic cores, and less collagen content was established by feeding apolipoprotein E knockout (ApoE−/−) mice with a high-fat diet for 16 wk. NAC and losartan oral administration prevented atherosclerotic lesion progression. Meanwhile, the inefficient efferocytosis represented by decreased macrophage-associated apoptotic cells and decreased MerTK+CD68+double-positive macrophages in advanced atherosclerosis were prevented by losartan and NAC. Additionally, the serum levels of sMer were increased and positively correlated with the upregulated levels of ANG II in acute coronary syndrome (ACS) patients. In conclusion, ANG II promotes MerTK shedding via AT1R/ROS/p38 MAPK/ADAM17 pathway in macrophages, which led to defective efferocytosis and atherosclerosis progression. Defining the molecular mechanisms of defective efferocytosis may provide a promising prognosis and therapy for ACS patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ying Wang
- Department of Critical Care Medicine, Xi’an No. 4 Hospital, Xi’an, China
| | - Dong Zhou
- Department of Cardiovascular Medicine, Hanzhong 3201 Hospital, Hanzhong, China
| | - Li-Sha Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Fu-Xue Deng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Li-Jun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Ning Guo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi’an, China
| |
Collapse
|
17
|
Kandemir-Cavas C, Pérez-Sanchez H, Mert-Ozupek N, Cavas L. In Silico Analysis of Bioactive Peptides in Invasive Sea Grass Halophila stipulacea. Cells 2019; 8:cells8060557. [PMID: 31181665 PMCID: PMC6628230 DOI: 10.3390/cells8060557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Halophila stipulacea is a well-known invasive marine sea grass in the Mediterranean Sea. Having been introduced into the Mediterranean Sea via the Suez Channel, it is considered a Lessepsian migrant. Although, unlike other invasive marine seaweeds, it has not demonstrated serious negative impacts on indigenous species, it does have remarkable invasive properties. The present in-silico study reveals the biotechnological features of H. stipulacea by showing bioactive peptides from its rubisc/o protein. These are features such as antioxidant and hypolipideamic activities, dipeptidyl peptidase-IV and angiotensin converting enzyme inhibitions. The reported data open up new applications for such bioactive peptides in the field of pharmacy, medicine and also the food industry.
Collapse
Affiliation(s)
- Cagin Kandemir-Cavas
- Department of Computer Science, Faculty of Science, Dokuz Eylül University, İzmir 35390, Turkey.
| | - Horacio Pérez-Sanchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain.
| | | | - Levent Cavas
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, İzmir 35390, Turkey.
| |
Collapse
|
18
|
Patel S, Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:91-100. [PMID: 30411285 DOI: 10.1007/s11356-018-3642-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The need to maximize agricultural productivity has made pesticides an indispensable part of current times. Farmers are unaware of the lurking consequences of the pesticide exposure, which endanger their health. It also puts the unsuspecting consumers in peril. The pesticides (from organophosphates, organochlorine, and carbamate class) disrupt the immune and hormonal signaling, causing recurrent inflammation, which leads to a wide array pathologies, including teratogenicity. Numerous farmers have fallen victim to neural disorders-driven suicides and lungs, prostate/breast cancer-caused untimely deaths. Green revolution which significantly escalated agricultural productivity is backfiring now. It is high time that environmental and agricultural authorities act to restrain the excessive usage of the detrimental chemicals and educate farmers regarding the crisis. This review discusses the biological mechanisms of pesticide-driven pathogenesis (such as the activation or inhibition of caspase, serine protease, acetylcholinesterase) and presents the pesticide-exposure-caused health deterioration in USA, India, and Africa. This holistic and critical review should be an eye-opener for general public, and a guide for researchers.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| | - Sushree Sangeeta
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
19
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
20
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
21
|
Yan K, Shen Y. Aliskiren has chondroprotective efficacy in a rat model of osteoarthritis through suppression of the local renin-angiotensin system. Mol Med Rep 2017; 16:3965-3973. [PMID: 28765966 PMCID: PMC5646976 DOI: 10.3892/mmr.2017.7110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
The local renin-angiotensin system (RAS) has been reported to have an important role in the pathogenesis and progression of metabolic bone diseases, including osteoarthritis (OA). Aliskiren is the first in a new class of orally effective direct renin inhibitors and is approved for the treatment of hypertension in humans. However, its efficacy in patients with OA is unknown. A rat model of OA was induced to investigate the potential efficacy of aliskiren. Effects of aliskiren on the cartilage structure were detected by safranin O staining and its effects on the widths of the proliferation zone and hypertrophic zone (HZ) of chondrocytes were analyzed by Masson's staining. Tartate-resistant acid phosphatase staining was used to evaluate the effects of aliskiren on osteoclasts in the chondrocytes. Relative histological analyses were performed. Additionally, the expression levels of factors associated with osteoclast differentiation (receptor activator of nuclear factor κB ligand and osteoprotegerin), articular cartilage destruction [tumor necrosis factor-α (TNF-α) and matrix metalloproteinase 9] and osteoblast differentiation [runt related transcription factor 2 (Runx2)], along with RAS components (renin, renin-receptor, angiotensin type 1 receptor (AT1R), AT2R, angiotensin converting enzyme (ACE) and angiotensin II (Ang II)] were detected in samples from the proximal tibias. Aliskiren did not fully suppress the inflammatory reaction in OA model animals and had marginal regulatory effects on biochemical bone markers induced by OA. However, aliskiren attenuated cartilage destruction, abnormal cartilage cellularity and the expansion of the HZ of chondrocytes, and significantly attenuated the expression of interleukin-1, TNF-α, Runx2 and procollagen type I N-terminal propeptide. These chondroprotective properties were accompanied by reductions in the levels of RAS components (renin, Ang II, ACE and AT1R), indicating that aliskiren exerts multiple effects of on bone formation, osteoblast differentiation and articular cartilage protection via the RAS. OA activates the local bone RAS, inhibits bone formation and stimulates bone resorption. Aliskiren, a renin inhibitor, demonstrated chondroprotective efficacy in a rat model of OA through suppression of the local RAS.
Collapse
Affiliation(s)
- Kaizhong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
22
|
Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017; 6:E33. [PMID: 28445408 PMCID: PMC5447909 DOI: 10.3390/foods6050033] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited "crops". Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, Dublin Institute of Technology, Kevin Street, Dublin D08 NF82, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
23
|
Pang X, Shimizu A, Kurita S, Zankov DP, Takeuchi K, Yasuda-Yamahara M, Kume S, Ishida T, Ogita H. Novel Therapeutic Role for Dipeptidyl Peptidase III in the Treatment of Hypertension. Hypertension 2016; 68:630-41. [PMID: 27456521 DOI: 10.1161/hypertensionaha.116.07357] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
Dipeptidyl peptidase III (DPP III) cleaves dipeptide residues from the N terminus of polypeptides ranging from 3 to 10 amino acids in length and is implicated in pathophysiological processes through the breakdown of certain oligopeptides or their fragments. In this study, we newly identified the biochemical properties of DPP III for angiotensin II (Ang II), which consists of 8 amino acids. DPP III quickly and effectively digested Ang II with Km = 3.7×10(-6) mol/L. In the in vivo experiments, DPP III remarkably reduced blood pressure in Ang II-infused hypertensive mice without alteration of heart rate. DPP III did not affect hemodynamics in noradrenalin-induced hypertensive mice or normotensive mice, suggesting specificity for Ang II. When DPP III was intravenously injected every other day for 4 weeks after Ang II osmotic minipump implantation in mice, Ang II-induced cardiac fibrosis and hypertrophy were significantly attenuated. This DPP III effect was at least similar to that caused by an angiotensin receptor blocker candesartan. Furthermore, administration of DPP III dramatically reduced the increase in urine albumin excretion and kidney injury and inflammation markers caused by Ang II infusion. Both DPP III and candesartan administration showed slight additive inhibition in the albumin excretion. These results reveal a novel potential use of DPP III in the treatment of hypertension and its protective effects on hypertension-sensitive organs, such as the heart and kidneys.
Collapse
Affiliation(s)
- Xiaoling Pang
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Akio Shimizu
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Souichi Kurita
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Dimitar P Zankov
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Keisuke Takeuchi
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Mako Yasuda-Yamahara
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Shinji Kume
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Tetsuo Ishida
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Hisakazu Ogita
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.).
| |
Collapse
|
24
|
Abstract
Hypertension is one of the most common causes of death across the globe. Many trials and drugs have been used for controlling the debilitating effects of hypertension. One such new class of drug is direct renin inhibitors (DRI), e.g., aliskiren, which block the renin-angiotensin system (RAS). It blocks the very first step in the RAS system. Multiple trials have been carried out debating the outcome of monotherapy and combination therapy with other classes of hypertensive drugs. Focus on compliance, adverse effects, and the cost have also been in the news. Extensive studies are still needed to justify the clinical use of a DRI in the effective treatment of hypertension.
Collapse
Affiliation(s)
- Adnan Bashir Bhatti
- Department of Medicine, Capital Development Authority Hospital, Islamabad, Pakistan
| | | |
Collapse
|
25
|
Genetic Variants of C-5312T REN Increased Renin Levels and Diastolic Blood Pressure Response to Angiotensin Receptor Blockers. Int J Hypertens 2015; 2015:930631. [PMID: 26495141 PMCID: PMC4606213 DOI: 10.1155/2015/930631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/04/2015] [Accepted: 07/05/2015] [Indexed: 12/17/2022] Open
Abstract
Renin catalyzes the cleavage of angiotensinogen into angiotensin I. Genetic variant C-5312T of renin enhancer has been reported to increase in vitro renin gene transcription. However, no obvious in vivo study was performed to see the renin level in C-5312T when treated with angiotensin receptor blockers (ARB). Therefore, this study aimed to investigate the serum renin level and blood pressure response in ARB treated hypertensive patients. Single nucleotide polymorphism (SNP) of C-5312T was identified in 55 hypertensive patients by using multiplex PCR and renin serum level was assayed by ELISA. The data showed that the increase of serum renin levels after 5 months of ARB treatment was significantly higher in patients with CT/TT genotype (10 pg/mL) than those with CC genotype (4.08 pg/mL) (P = 0.025). Hypertensive patients with CT/TT genotypes also showed less diastolic pressure reduction than CC genotypes in hypertensive patients with valsartan treatment (P = 0.04) or telmisartan treatment (P = 0.03). Finally, these findings suggested that SNP of C-5312T REN enhancer might contribute to higher increased renin serum levels and less diastolic blood pressure response to ARB treatment.
Collapse
|
26
|
Calixto AR, Brás NF, Fernandes PA, Ramos MJ. Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. ACS Catal 2014. [DOI: 10.1021/cs500497f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana R. Calixto
- REQUIMTE/Departamento
de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Natércia F. Brás
- REQUIMTE/Departamento
de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE/Departamento
de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE/Departamento
de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9211-22. [PMID: 25179496 DOI: 10.1021/jf502420h] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.
Collapse
Affiliation(s)
- Xiaodan Fan
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, China
| | | | | | | | | |
Collapse
|
28
|
Ripa P, Ornello R, Pistoia F, Carolei A, Sacco S. Spreading depolarization may link migraine, stroke, and other cardiovascular disease. Headache 2014; 55:180-2. [PMID: 25163584 DOI: 10.1111/head.12436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrizia Ripa
- Department of Neurology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | |
Collapse
|
29
|
Ripa P, Ornello R, Pistoia F, Carolei A, Sacco S. The renin-angiotensin system: a possible contributor to migraine pathogenesis and prophylaxis. Expert Rev Neurother 2014; 14:1043-55. [PMID: 25115162 DOI: 10.1586/14737175.2014.946408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of a tissue-based renin-angiotensin system, independent of the systemic one, has been identified in several organs including the brain. Experimental models have suggested the involvement of the renin-angiotensin system in neurogenic inflammation, susceptibility to oxidative stress, endothelial dysfunction, and neuromodulation of nociceptive transmission, thus potentially contributing to the pathogenesis of migraine. Genetic factors that increase susceptibility to migraine may include angiotensin-converting enzyme polymorphism, although available data are controversial. Clinical studies have suggested that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be effective in migraine prophylaxis. However, further research should clarify whether the postulated preventive effect is attributable to a pharmacological action over and above the antihypertensive effect and should test their tolerability in subjects with normal blood pressure values. In patients with contraindications or not responding to conventional prophylactic drugs and in patients with comorbid arterial hypertension, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be used for migraine prophylaxis.
Collapse
Affiliation(s)
- Patrizia Ripa
- Department of Biotechnological and Applied Clinical Sciences, Division of Clinical Neurology, University of L'Aquila, via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
30
|
Zhang W, Han Y, Meng G, Bai W, Xie L, Lu H, Shao Y, Wei L, Pan S, Zhou S, Chen Q, Ferro A, Ji Y. Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc 2014; 3:e000606. [PMID: 24473199 PMCID: PMC3959716 DOI: 10.1161/jaha.113.000606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We tested the hypothesis that direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion (I/R) injury in spontaneously hypertensive rats (SHR), and examined the mechanism by which this occurs. METHODS AND RESULTS Male SHR were treated (orally, 4 weeks) with saline or aliskiren (30 or 60 mg kg(-1) day(-1)) and subjected to 30 minutes of left anterior descending coronary artery occlusion followed by 6 or 24 hours of reperfusion. Only the higher dose significantly lowered systolic blood pressure, the lower dose causing a smaller apparent lowering that was nonsignificant. Despite this difference in blood pressure-lowering effect, both doses increased the ejection fraction and fractional shortening and reduced myocardial infarct size equally. I/R decreased cardiac expression of phosphatidylinositol 3-kinase (PI3K), phospho-Akt and phospho-endothelial nitric oxide synthase (phospho-eNOS), but increased expression of inducible nitric oxide synthase (iNOS); these changes were all abrogated by aliskiren. Moreover, aliskiren decreased superoxide anion generation and increased cyclic guanosine-3',5'-monophosphate, an index of bioactive nitric oxide, in myocardium. It also decreased the expression of myocardial matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 (TIMP-1) following I/R. In a Langendorff heart preparation, the detrimental cardiac effects of I/R were abrogated by aliskiren, and these protective effects were abolished by NOS or PI3K inhibition. In a parallel study, although specific iNOS inhibition reduced plasma malondialdehyde and myocardial superoxide anion generation, it did not affect the deleterious effects of I/R on myocardial structure and function. CONCLUSIONS Direct renin inhibition protects against myocardial I/R injury through activation of the PI3K-Akt-eNOS pathway.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on accumulation of aliskiren in the kidney. J Hypertens 2013; 31:659-60. [DOI: 10.1097/hjh.0b013e32835fd2ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Billecke SS, Marcovitz PA. Long-term safety and efficacy of telmisartan/amlodipine single pill combination in the treatment of hypertension. Vasc Health Risk Manag 2013; 9:95-104. [PMID: 23662062 PMCID: PMC3606043 DOI: 10.2147/vhrm.s40963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The use of multiple drug regimens is increasingly recognized as a tacit requirement for the management of hypertension, a necessity fueled in part by rising rates of metabolic syndrome and diabetes. By targeting complementary pathways, combinations of antihypertensive drugs can be applied to provide effective blood pressure control while minimizing side effects and reducing exposure to high doses of individual medications. In addition, combination therapies, including angiotensin converting enzyme (ACE) inhibitors and calcium channel blockers (CCBs), have the added benefit of reducing cardiovascular mortality and morbidity over other dual therapies while providing equivalent blood pressure control. It is possible that angiotensin receptor blockers (ARBs), which unlike ACE inhibitors are minimally affected by upregulation of alternative pathways for angiotensin II accumulation following long-term treatment, would also provide such outcome benefits. At issue, however, is maintaining patient compliance, as adding medications is known to reduce adherence to treatment regimens. The purpose of this review is to summarize existing trial data for the long-term safety and efficacy of a recent addition to the armamentarium of dual-antihypertensive therapeutic options, the telmisartan/amlodipine single pill combination. The areas where long-term data are lacking, notably clinical information regarding minorities and women, will also be discussed.
Collapse
Affiliation(s)
- Scott S Billecke
- Beaumont Health System, Ministrelli Women's Heart Center, Royal Oak, MI 48073, USA.
| | | |
Collapse
|
33
|
Wang Y, Zhang MS, Liu Y. Nebivolol treatment improves resistant arterial function and reduces ventricular hypertrophy and angiotensin II in spontaneously hypertension rats. J Renin Angiotensin Aldosterone Syst 2012; 14:146-55. [DOI: 10.1177/1470320312470580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yan Wang
- Department of Pharmacology, ShanXi Medical University, People’s Republic of China
| | - Ming Sheng Zhang
- Department of Pharmacology, ShanXi Medical University, People’s Republic of China
| | - Yu Liu
- Department of Pharmacology, ShanXi Medical University, People’s Republic of China
| |
Collapse
|
34
|
Angeli F, Reboldi G, Mazzotta G, Poltronieri C, Verdecchia P. Safety and efficacy of aliskiren in the treatment of hypertension: a systematic overview. Expert Opin Drug Saf 2012; 11:659-70. [PMID: 22724663 DOI: 10.1517/14740338.2012.696608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aliskiren is the first orally active direct renin inhibitor approved for the treatment of hypertension. Aliskiren's inhibitory effect on angiotensin I generation, through renin blockade, is highly specific and long-lasting (24 hours). This feature differentiates aliskiren from traditional antihypertensive drugs. AREAS COVERED This paper reviews the results of various clinical trials which investigate the safety and efficacy of aliskiren on blood pressure (BP) reduction and clinical end points. EXPERT OPINION Aliskiren is suitable for once-daily administration. Its antihypertensive effect is comparable or superior to that of other antihypertensive agents at recommended doses. The tolerability profile of aliskiren is placebo-like at the licensed doses of 150 and 300 mg. In particular, the discontinuation of therapy due to clinical adverse events occurs similarly among patients treated with either aliskiren or placebo. Aliskiren is not recommended in association with ACE-inhibitors or angiotensin II receptor blockers in patients with type 2 diabetes and renal impairment. Pending disclosure of full results, the early termination of the ALTITUDE seems to confirm previous concerns about the safety of the dual pharmacological blockade of the renin-angiotensin system in these patients. Aliskiren is a well-tolerated antihypertensive drug that may help to achieve the recommended targets of BP control.
Collapse
Affiliation(s)
- Fabio Angeli
- Hospital Media Valle del Tevere - Pantalla, AUSL 2 Umbria, Department of Cardiology, Section of Cardiology, Perugia, Italy.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Adipokines secreted by visceral, subcutaneous, and perivascular adipocytes are involved in the regulation of vascular tone by acting as circulatory hormones (leptin, adiponectin, omentin, visfatin, angiotensin II, resistin, tumor necrosis factor-α, interleukin-6, apelin) and/or via local paracrine factors (perivascular adipocyte-derived relaxing and contractile factors). Vascular tone regulation by adipokines is compromised in obesitas and obesity-related disorders. Hypoxia created in growing adipose tissue dysregulates synthesis of vasoactive adipokines in favor of harmful proinflammatory adipokines, while the levels of the cardioprotective adipokines adiponectin and omentin decrease. Considering the potential of the role of adipokines in obesity-related vascular diseases, strategies to counter these diseases by targeting the adipokines are discussed.
Collapse
|
36
|
|
37
|
Balti R, Bougatef A, Guillochon D, Dhulster P, Nasri M, Nedjar-Arroume N. Changes in arterial blood pressure after single oral administration of cuttlefish (Sepia officinalis) muscle derived peptides in spontaneously hypertensive rats. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
38
|
Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S. Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem 2012; 29:841-50. [PMID: 22613984 DOI: 10.1159/000178526] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In addition to hypertension control, direct renin inhibition has been shown to exert direct beneficial effects on the heart in post-infarction cardiac remodeling. This study elucidates the possible contribution of mitochondria to the anti-hypertrophic effects of the direct renin inhibitor aliskiren in post-infarction heart failure complicated with diabetes in rats. METHODS Diabetes was induced in male Sprague-Dawley rats by a single injection of streptozotocin (IP, 65 mg/kg body weight). After 7 days, the animals were randomly assigned to 4 groups: sham, heart failure, sham+aliskiren, and heart failure+aliskiren. Post-infarction HF was induced by coronary artery ligation for 4 weeks. RESULTS showed that heart failure reduced ejection fraction and cardiac output by 41% (P<0.01) and 42% (P<0.05), respectively, compared to sham-operated hearts. Cardiac dysfunction was associated with suppressed state 3 respiration rates and respiratory control index in mitochondria, and increased mitochondrial permeability transition pore (PTP) opening. In addition, heart failure reduced expression of the major mitochondrial sirtuin, SIRT3 and increased acetylation of cyclophilin D, a regulatory component of the PTP. Aliskiren significantly improved cardiac function and abrogated mitochondrial perturbations. CONCLUSION Our results demonstrate that aliskiren attenuates post-infarction remodeling which is associated with its beneficial effects on mitochondria.
Collapse
Affiliation(s)
- Rebecca Parodi-Rullan
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | | | | | | | | |
Collapse
|
39
|
Selective renin inhibition in obese hypertensive patients. J Hypertens 2012; 30:470-1. [DOI: 10.1097/hjh.0b013e32835014c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Moniwa N, Varagic J, Ahmad S, VonCannon JL, Ferrario CM. Restoration of the blood pressure circadian rhythm by direct renin inhibition and blockade of angiotensin II receptors in mRen2.Lewis hypertensive rats. Ther Adv Cardiovasc Dis 2012; 6:15-29. [PMID: 22222314 DOI: 10.1177/1753944711434039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Alterations in the circadian arterial pressure rhythm predict cardiovascular mortality. We examined the circadian arterial pressure rhythm and the effect of renin-angiotensin system blockade in congenic mRen2.Lewis hypertensive rats, a renin-dependent model of hypertension derived from the backcross of transgenic hypertensive [mRen-2]27 rats with Lewis normotensive ones. METHODS Twenty-nine mRen2.Lewis hypertensive rats were randomly assigned to drink tap water (vehicle; n = 9), valsartan (30 mg/kg/day; n = 10), or valsartan (30 mg/kg/day) combined with aliskiren given subcutaneously (50 mg/kg/day; n = 10) for 2 weeks. Arterial pressure, heart rate, and locomotive activity were recorded with chronically implanted radiotelemetry probes. The awake/asleep ratio was calculated as [awake mean arterial pressure (MAP) mean - asleep MAP mean)] / (awake MAP mean) x 100. Plasma renin activity (PRA) and concentration (PRC), and plasma and kidney angiotensin II (Ang II) were measured by radioimmunoassay (RIAs). RESULTS Untreated hypertensive rats showed an inverse arterial pressure rhythm, higher at day and lower at night, accompanied by normal rhythms of heart rate and locomotive activity. Treatment with valsartan or aliskiren and valsartan normalized the elevated arterial pressure and the arterial pressure rhythm, with the combination therapy being more effective in reducing MAP and in restoring the awake/asleep ratio. While PRA and PRC increased with the treatments, the addition of aliskiren to valsartan partially reversed the increases in plasma Ang II levels. Valsartan and the aliskiren and valsartan combination markedly reduced the renal cortical content of Ang II. CONCLUSION The altered circadian arterial pressure rhythm in this renin-dependent hypertension model uncovers a significant role of Ang II in the desynchronization of the circadian rhythm of arterial pressure, heart rate, and locomotive activity.
Collapse
Affiliation(s)
- Norihito Moniwa
- Division of Surgical Sciences, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Despite considerable advances in preventative treatment during the last two decades, the increasing burden of cardiovascular (CV) disease constitutes an urgent need for new therapeutic strategies to reduce CV mortality and morbidity in patients at high CV risk. Activation of the renin-angiotensin system (RAS) results in vasoconstrictive, proliferative and pro-inflammatory effects that contribute to the development of atherosclerosis. As a result, the RAS is implicated at all stages of the 'CV continuum' that links risk factors such as hypertension and dyslipidaemia with major CV events, congestive heart failure (CHF) and CV death. The RAS therefore represents a rational and ideal therapeutic target in CV risk reduction strategies. Both angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) have been shown to promote beneficial effects on end-organ damage, such as decreases in arterial stiffness and left ventricular hypertrophy (LVH). Several trials have shown that ACE inhibitors and ARBs reduce CV risk in patients with specific risk factors. Furthermore, the HOPE study and, more recently, the ONTARGET® study have shown that ramipril and telmisartan reduce CV risk in patients with a high CV risk profile across the 'CV continuum'. Telmisartan is the first ARB to demonstrate CV prevention in patients at high CV risk, similar to that of the gold-standard ACE inhibitor, ramipril. This extensive clinical trial evidence suggests that ACE inhibitors or ARBs should be part of the standard treatment for patients at risk of CV events. ARBs may represent a preferred option due to their unsurpassed tolerability.
Collapse
Affiliation(s)
- M Volpe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Via di Grottarossa 1035-9, 00189 Rome, Italy.
| |
Collapse
|
42
|
Rashikh A, Ahmad SJ, Pillai KK, Najmi AK. Aliskiren as a novel therapeutic agent for hypertension and cardio-renal diseases. J Pharm Pharmacol 2011; 64:470-81. [DOI: 10.1111/j.2042-7158.2011.01414.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Objectives
High blood pressure (BP) is a major risk factor for cardiovascular and renal complications. A majority of treated hypertensive patients still complain of high BP. The renin-angiotensin aldosterone system (RAAS) has been a centre-stage target for all the cardiovascular and cardio-renal complications. Aliskiren, is the first direct renin inhibitor (DRI) to be approved by the US FDA. Renin controls the rate-limiting step in the RAAS cascade and hence is the most favorable target for RAAS suppression.
Key findings
This review article strives to summarize the pharmacokinetic, preclinical and clinical studies done so far pertaining to the efficacy of aliskiren. Further, the pharmacology of aliskiren has been comprehensively dealt with to enhance understanding so as to further research in this unfathomed area in the multitude of cardiovascular disorders and renal diseases.
Summary
Aliskiren has been shown to have comparable BP-lowering effects to other RAAS inhibitors. Recent clinical trials have indicated that it might contribute significantly in combination with other agents for the protection of end-organ diseases.
Collapse
Affiliation(s)
- Azhar Rashikh
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Shibli Jameel Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Krishna Kolappa Pillai
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
43
|
Wu JG, Tang H, Liu ZJ, Ma ZF, Tang AL, Zhang XJ, Gao XR, Ma H. Angiotensin-(1–7) Inhibits Vascular Remodelling in Rat Jugular Vein Grafts via Reduced ERK1/2 and p38 MAPK Activity. J Int Med Res 2011; 39:2158-68. [PMID: 22289531 DOI: 10.1177/147323001103900612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the effect of angiotensin (Ang)-(1–7) on vascular remodelling in a rat autologous jugular vein graft model in which rats underwent autologous jugular vein graft transplantation (Ang-[1–7] and control groups) or sham surgery (sham group). The animals received continuous jugular infusion of Ang-(1–7) at 25 μg/kg per h (Ang-[1–7] group) or normal saline (control and sham groups) starting 3 days after surgery. Ang-(1–7) infusion reduced venous graft hyperplasia, vascular remodelling, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, p38 mitogen-activated protein kinase (MAPK) activation and levels of proliferating cell nuclear antigen and α-smooth muscle actin compared with control animals. The vascular tissue Ang II level was higher in Ang-(1–7) and control rats than in sham animals. These findings suggest that Ang-(1–7) acts by inhibiting the activation of ERK1/2 and p38 MAPK in vascular tissue. The use of exogenous Ang-(1–7) could improve the outcome of vein grafting through the attenuation of vascular remodelling.
Collapse
Affiliation(s)
- J-G Wu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H Tang
- Department of General Internal Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Z-J Liu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Z-F Ma
- Department of General Internal Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - A-L Tang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X-J Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - X-R Gao
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H Ma
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Van der Merwe E, Carboni A. Strategies to improve blood pressure control and cardiovascular outcomes in hypertensive patients. S Afr Fam Pract (2004) 2011. [DOI: 10.1080/20786204.2011.10874146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Howard CG, Mitchell KD. Renal functional responses to selective intrarenal renin inhibition in Cyp1a1-Ren2 transgenic rats with ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol 2011; 302:F52-9. [PMID: 21993885 DOI: 10.1152/ajprenal.00187.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin (ANG) II-dependent hypertension is characterized by increases in intrarenal ANG II levels, derangement in renal hemodynamics, and augmented tubular sodium reabsorptive capability. Increased nephron expression of renin-angiotensin system components, such as angiotensinogen by proximal tubule cells and renin by collecting duct principal cells, has been associated with an augmented ability of the kidney to form ANG II in hypertensive states. However, the contribution of de novo intrarenal ANG II production to the development and maintenance of ANG II-dependent hypertension remains unclear. The present study was performed to determine the effects of selective intrarenal renin inhibition on whole kidney hemodynamics and renal excretory function in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension in the absence of the confounding influence of associated reductions in mean arterial pressure (MAP). Male Cyp1a1-Ren2 transgenic rats were induced to develop malignant hypertension, anesthetized, and surgically prepared for intrarenal administration of the direct renin inhibitor aliskiren (0.01 mg/kg). Following acute aliskiren treatment, urine flow and sodium excretion increased (10.5 ± 1.1 to 15.9 ± 1.9 μl/min, P < 0.001; 550 ± 160 to 1,370 ± 320 neq/min, P < 0.001, respectively) and ANG II excretion decreased (120 ± 30 to 63 ± 17 fmol/h, P < 0.05). There were no significant changes in MAP, glomerular filtration rate, estimated renal plasma flow, plasma ANG II levels, or protein excretion. The present findings demonstrate that selective renal renin inhibition elicits diuretic and natriuretic responses in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension. Elevated intraluminal ANG II levels likely act to augment tubular reabsorptive function and, thereby, contribute to the elevated blood pressure in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension.
Collapse
Affiliation(s)
- Catherine G Howard
- Dept. of Physiology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA
| | | |
Collapse
|
46
|
Measuring and targeting aldosterone and renin in atherosclerosis-a review of clinical data. Am Heart J 2011; 162:585-96. [PMID: 21982648 DOI: 10.1016/j.ahj.2011.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 06/21/2011] [Indexed: 01/13/2023]
Abstract
Our understanding of the development and progression of atherosclerosis has increased substantially over the past decades. A significant role for the renin-angiotensin-aldosterone system (RAAS) in this process has gained appreciation in recent years. Preclinical and clinical studies have associated components of the RAAS with various cardiovascular disease conditions. Classically known for its contribution to hypertension, dysregulation of the system is now also believed to promote vascular inflammation, fibrosis, remodeling, and endothelial dysfunction, all intimately related to atherosclerosis. The reduction in cardiovascular mortality and morbidity, as seen with the use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, supports the concept that RAAS is involved in the pathogenesis of atherosclerotic disease. However, the underlying molecular mechanisms of the pathophysiology remain to be completely understood. Evidence points toward additional benefit from therapeutic approaches aiming at more complete inhibition of the system and the possible utility of renin or aldosterone in the prediction of cardiovascular outcome. This review will summarize the current knowledge from clinical studies regarding the presumptive role of renin and aldosterone in the prediction and management of patients with atherosclerosis. For this purpose, a literature search was performed, focusing on available clinical data regarding renin or aldosterone and cardiovascular outcome.
Collapse
|
47
|
Finding a place for aliskiren in the wide spectrum of blood pressure lowering agents. Hypertens Res 2011; 35:17-9. [DOI: 10.1038/hr.2011.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Rodríguez-Penas D, Feijóo-Bandín S, Lear PV, Mosquera-Leal A, García-Rúa V, Otero MF, Rivera M, Gualillo O, González-Juanatey JR, Lago F. Aliskiren affects fatty-acid uptake and lipid-related genes in rodent and human cardiomyocytes. Biochem Pharmacol 2011; 82:491-504. [DOI: 10.1016/j.bcp.2011.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 12/13/2022]
|
49
|
Fitzgerald C, Gallagher E, Tasdemir D, Hayes M. Heart health peptides from macroalgae and their potential use in functional foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6829-6836. [PMID: 21574559 DOI: 10.1021/jf201114d] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Macroalgae have for centuries been consumed whole among the East Asian populations of China, Korea, and Japan. Due to the environment in which they grow, macroalgae produce unique and interesting biologically active compounds. Protein can account for up to 47% of the dry weight of macroalgae depending on species and time of cultivation and harvest. Peptides derived from marcoalgae are proven to have hypotensive effects in the human circulatory system. Hypertension is one of the major, yet controllable, risk factors in cardiovascular disease (CVD). CVD is the main cause of death in Europe, accounting for over 4.3 million deaths each year. In the United States it affects one in three individuals. Hypotensive peptides derived from marine and other sources have already been incorporated into functional foods such as beverages and soups. The purpose of this review is to highlight the potential of heart health peptides from macroalgae and to discuss the feasibility of expanding the variety of foods these peptides may be used in.
Collapse
Affiliation(s)
- Ciaran Fitzgerald
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | | | | |
Collapse
|
50
|
Brunetti ND, De Gennaro L, Pellegrino PL, Cuculo A, Ziccardi L, Gaglione A, Di Biase M. Direct renin inhibition: update on clinical investigations with aliskiren. ACTA ACUST UNITED AC 2011; 18:424-37. [PMID: 21450645 DOI: 10.1177/1741826710389387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The renin–angiotensin–aldosterone system (RAAS) plays a pivotal role in regulating blood pressure, volume, and electrolytes. The final product of RAAS cascade is angiotensin II, which exerts diverse biological activities via binding to one of three known receptor types, with different binding consequences. Despite the success with conventional strategies to limit angiotensin II production and action, these agents promote a reflex rise in plasma renin activity, which is thought to be associated with an increased incidence of cardiovascular events. Several renin inhibitors have been synthesized in order to counteract deleterious consequences of renin activity and RAAS activation; aliskiren is the first of these new non-peptide direct renin inhibitors to be approved for the treatment of hypertension. The paper reviews pharmacokinetics of aliskiren and its role in hypertension, with particular regard to those studies that compared clinical efficacy of aliskiren in comparison and in addition to other antihypertensive drug strategies.
Collapse
|