1
|
He M, Wang Y, Zhang X, Zhang L. Exploration of the potential neuroprotective compounds targeting GluN1-GluN2B NMDA receptors. J Biomol Struct Dyn 2023; 41:10900-10908. [PMID: 36591642 DOI: 10.1080/07391102.2022.2159527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
The N-methyl-d-aspartic acid (NMDA) receptors belongs to the family of ionotropic glutamate receptors, which could mediate most excitatory synaptic transmission in the brain. It is interesting to know if some available drugs have regulatory effects on the NMDARs. Herein, the present study reports the discovery of drugs targeting NMDAR using virtual screening. In this study, talniflumate with the EC50 value at 61.49 nM was successfully screened. The interaction analysis of this compound was further explored through molecular dynamics simulation. It is indicated that talniflumate could form stable interactions with GluN1-GluN2B NMDA receptors. In particular, H-bond interactions with high occupancies between GluN1-GluN2B NMDA receptors and talniflumate were observed. Compared to de novo drug discovery, this approach could be an alternative choice for development of safety and efficiency NMDAR inhibitors from available drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meixi He
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
2
|
Agostini A, Guerriero I, Piro G, Quero G, Roberto L, Esposito A, Caggiano A, Priori L, Scaglione G, De Sanctis F, Sistigu A, Musella M, Larghi A, Rizzatti G, Lucchetti D, Alfieri S, Sgambato A, Bria E, Bizzozero L, Arena S, Ugel S, Corbo V, Tortora G, Carbone C. Talniflumate abrogates mucin immune suppressive barrier improving efficacy of gemcitabine and nab-paclitaxel treatment in pancreatic cancer. J Transl Med 2023; 21:843. [PMID: 37996891 PMCID: PMC10668479 DOI: 10.1186/s12967-023-04733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. This is due to its aggressive course, late diagnosis and its intrinsic drugs resistance. The complexity of the tumor, in terms of cell components and heterogeneity, has led to the approval of few therapies with limited efficacy. The study of the early stages of carcinogenesis provides the opportunity for the identification of actionable pathways that underpin therapeutic resistance. METHODS We analyzed 43 Intraductal papillary mucinous neoplasms (IPMN) (12 Low-grade and 31 High-grade) by Spatial Transcriptomics. Mouse and human pancreatic cancer organoids and T cells interaction platforms were established to test the role of mucins expression on T cells activity. Syngeneic mouse model of PDAC was used to explore the impact of mucins downregulation on standard therapy efficacy. RESULTS Spatial transcriptomics showed that mucin O-glycosylation pathway is increased in the progression from low-grade to high-grade IPMN. We identified GCNT3, a master regulator of mucins expression, as an actionable target of this pathway by talniflumate. We showed that talniflumate impaired mucins expression increasing T cell activation and recognition using both mouse and human organoid interaction platforms. In vivo experiments showed that talniflumate was able to increase the efficacy of the chemotherapy by boosting immune infiltration. CONCLUSIONS Finally, we demonstrated that combination of talniflumate, an anti-inflammatory drug, with chemotherapy effectively improves anti-tumor effect in PDAC.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy.
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Roberto
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Annachiara Esposito
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Alessia Caggiano
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Priori
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Scaglione
- Department of Anatomic Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco De Sanctis
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Antonella Sistigu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Musella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Center for Endoscopic Research, Therapeutics and Training, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianenrico Rizzatti
- Digestive Endoscopy Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Center for Endoscopic Research, Therapeutics and Training, Catholic University of the Sacred Heart, Rome, Italy
| | - Donatella Lucchetti
- General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- General Pathology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sergio Alfieri
- Digestive Surgery Unit, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandro Sgambato
- General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- General Pathology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Emilio Bria
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Bizzozero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Torino, Candiolo, TO, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
- Department of Oncology, University of Torino, Candiolo, TO, Italy
| | - Stefano Ugel
- University Hospital and Department of Medicine, Immunology Section, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
3
|
Sengupta S, Abhinav N, Singh S, Dutta J, Mabalirajan U, Kaliyamurthy K, Mukherjee PK, Jaisankar P, Bandyopadhyay A. Standardised Sonneratia apetala Buch.-Ham. fruit extract inhibits human neutrophil elastase and attenuates elastase-induced lung injury in mice. Front Pharmacol 2022; 13:1011216. [PMID: 36569308 PMCID: PMC9768866 DOI: 10.3389/fphar.2022.1011216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) along with asthma is a major and increasing global health problem. Smoking contributes to about 80%-90% of total COPD cases in the world. COPD leads to the narrowing of small airways and destruction of lung tissue leading to emphysema primarily caused by neutrophil elastase. Neutrophil elastase plays an important role in disease progression in COPD patients and has emerged as an important target for drug discovery. Sonneratia apetala Buch.-Ham. is a mangrove plant belonging to family Sonneratiaceae. It is widely found in the Sundarban regions of India. While the fruits of this plant have antibacterial, antifungal, antioxidant and astringent activities, fruit and leaf extracts have been shown to reduce the symptoms of asthma and cough. The aim of this study is to find whether hydro alcoholic fruit extracts of S. apetala inhibit neutrophil elastase and thus prevent the progression of neutrophil elastase-driven lung emphysema. The hydroalcoholic extract, ethanol: water (90:10), of the S. apetala Buch.-Ham. fresh fruits (SAM) were used for neutrophil elastase enzyme kinetic assay and IC50 of the extract was determined. The novel HPLC method has been developed and the extract was standardized with gallic acid and ellagic acid as standards. The extract was further subjected to LC-MS2 profiling to identify key phytochemicals. The standardized SAM extract contains 53 μg/mg of gallic acid and 95 μg/mg of ellagic acid, based on the HPLC calibration curve. SAM also reversed the elastase-induced morphological change of human epithelial cells and prevented the release of ICAM-1 in vitro and an MTT assay was conducted to assess the viability. Further, 10 mg/kg SAM had reduced alveolar collapse induced by neutrophil elastase in the mice model. Thus, in this study, we reported for the first time that S. apetala fruit extract has the potential to inhibit human neutrophil elastase in vitro and in vivo.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthigeyan Kaliyamurthy
- Central National Herbarium, Botanical Survey of India, A.J.C.B. Indian Botanic Garden, Howrah, India
| | | | - Parasuraman Jaisankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| | - Arun Bandyopadhyay
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| |
Collapse
|
4
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
5
|
Sengupta S, Reddy JR, Rajesh N, Jaiswal A, Mabalirajan U, Palakodety RK, Mukherjee P, Bandyopadhyay A. Novel benzoxazinone derivative as potent human neutrophil elastase inhibitor: Potential implications in lung injury. Eur J Pharmacol 2022; 931:175187. [PMID: 35952844 DOI: 10.1016/j.ejphar.2022.175187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Neutrophil elastase, a powerful physiological defence tool, may serve as drug target for diverse diseases due to its bystander effect on host cells like chronic obstructive pulmonary disease (COPD). Here, we synthesised seven novel benzoxazinone derivatives and identified that these synthetic compounds are human neutrophil elastase inhibitor that was demonstrated by enzyme substrate kinetic assay. One such compound, PD05, emerged as the most potent inhibitor with lower IC50 as compared to control drug sivelestat. While this inhibition is competitive based on substrate dilution assay, PD05 showed a high binding affinity for human neutrophil elastase (Kd = 1.63 nM) with faster association and dissociation rate compared to notable elastase inhibitors like ONO 6818 and AZD9668, and its interaction with human neutrophil elastase was fully reversible.Preclinical pharmacokinetic studies were performed in vitro where protein binding was found to be 72% with a high recovery rate, aqueous solubility of 194.7 μM, low permeability along with a favourable hERG. Experiments with cell line revealed that the molecule successfully prevented elastase induced rounding and retracted cell morphology and cell cytotoxicity. In mouse model PD05 is able to reduce the alveolar collapse induced by neutrophil elastase. In summary, we demonstrate the in situ, in vitro and in vivo anti-elastase potential of the newly synthesised benzoxazinone derivative PD05 and thus this could be promising candidate for further investigation as a drug for the treatment of COPD.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease & Respiratory Disorders Laboratory, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jala Ranjith Reddy
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Nomula Rajesh
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Radha Krishna Palakodety
- Division of Organic and Biomolecular Medicine, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pulok Mukherjee
- Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Arun Bandyopadhyay
- Cardiovascular Disease & Respiratory Disorders Laboratory, Department of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
6
|
Keir HR, Chalmers JD. IL-6 trans-signalling: how Haemophilus surfs the NET to amplify inflammation in COPD. Eur Respir J 2021; 58:58/4/2102143. [PMID: 34649972 DOI: 10.1183/13993003.02143-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Holly R Keir
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
7
|
Zhu Y, Ke KB, Xia ZK, Li HJ, Su R, Dong C, Zhou FM, Wang L, Chen R, Wu SG, Zhao H, Gu P, Leung KS, Wong MH, Lu G, Zhang JY, Jiang BH, Qiu JG, Shi XN, Lin MCM. Discovery of vanoxerine dihydrochloride as a CDK2/4/6 triple-inhibitor for the treatment of human hepatocellular carcinoma. Mol Med 2021; 27:15. [PMID: 33579185 PMCID: PMC7879659 DOI: 10.1186/s10020-021-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cyclin-dependent kinases 2/4/6 (CDK2/4/6) play critical roles in cell cycle progression, and their deregulations are hallmarks of hepatocellular carcinoma (HCC). Methods We used the combination of computational and experimental approaches to discover a CDK2/4/6 triple-inhibitor from FDA approved small-molecule drugs for the treatment of HCC. Results We identified vanoxerine dihydrochloride as a new CDK2/4/6 inhibitor, and a strong cytotoxicdrugin human HCC QGY7703 and Huh7 cells (IC50: 3.79 μM for QGY7703and 4.04 μM for Huh7 cells). In QGY7703 and Huh7 cells, vanoxerine dihydrochloride treatment caused G1-arrest, induced apoptosis, and reduced the expressions of CDK2/4/6, cyclin D/E, retinoblastoma protein (Rb), as well as the phosphorylation of CDK2/4/6 and Rb. Drug combination study indicated that vanoxerine dihydrochloride and 5-Fu produced synergistic cytotoxicity in vitro in Huh7 cells. Finally, in vivo study in BALB/C nude mice subcutaneously xenografted with Huh7 cells, vanoxerine dihydrochloride (40 mg/kg, i.p.) injection for 21 days produced significant anti-tumor activity (p < 0.05), which was comparable to that achieved by 5-Fu (10 mg/kg, i.p.), with the combination treatment resulted in synergistic effect. Immunohistochemistry staining of the tumor tissues also revealed significantly reduced expressions of Rb and CDK2/4/6in vanoxerinedihydrochloride treatment group. Conclusions The present study isthe first report identifying a new CDK2/4/6 triple inhibitor vanoxerine dihydrochloride, and demonstrated that this drug represents a novel therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Ying Zhu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, Yunnan, China.,Department of Cadre Medical Branch, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Kun-Bin Ke
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Zhong-Kun Xia
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hong-Jian Li
- CUHK-SDU Joint Laboratory On Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Su
- Department of Geriatric Cardiology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650000, China
| | - Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Rong Chen
- Department of Physiology, Yunnan University of Chinese Medicine, Kunming, 650504, Yunnan, China
| | - Shi-Guo Wu
- Department of Teaching and Research of Formulas of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Hui Zhao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Peng Gu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Kwong-Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Man-Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory On Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Ying Zhang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xi-Nan Shi
- Department of Pathology, Yunnan University of Chinese Medicine, Kunming, 650504, Yunnan, China. .,Department ofMedicine, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, 562400, Guizhou, China.
| | - Marie Chia-Mi Lin
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
8
|
Weiss A, Porter S, Rozenberg D, O'Connor E, Lee T, Balter M, Wentlandt K. Chronic Obstructive Pulmonary Disease: A Palliative Medicine Review of the Disease, Its Therapies, and Drug Interactions. J Pain Symptom Manage 2020; 60:135-150. [PMID: 32004618 DOI: 10.1016/j.jpainsymman.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Despite significant advances in treatment, chronic obstructive pulmonary disease (COPD) remains a chronic and progressive disease that frequently leads to premature mortality. COPD is associated with a constellation of significant symptoms, including dyspnea, cough, wheezing, pain, fatigue, anxiety, depression, and insomnia, and is associated with increased morbidity. Palliative care is appropriate to support these patients. However, historically, palliative care has focused on supporting patients with malignant disease, rather than progressive chronic diseases such as COPD. Therapies for COPD often result in functional and symptomatic improvements, including health-related quality of life (HRQL), and palliative care may further improve symptoms and HRQL. Provision of usual palliative care therapies for this patient population requires understanding the pathogenesis of COPD and common disease-targeted pharmacotherapies, as well as an approach to balancing life-prolonging and HRQL care strategies. This review describes COPD and current targeted therapies and their effects on symptoms, exercise tolerance, HRQL, and survival. It is important to note that medications commonly used for symptom management in palliative care can interact with COPD medications resulting in increased risk of adverse effects, enhanced toxicity, or changes in clearance of medications. To address this, we review pharmacologic interactions with and precautions related to use of COPD therapies in conjunction with commonly used palliative care medications.
Collapse
Affiliation(s)
- Andrea Weiss
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Porter
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Dmitry Rozenberg
- Division of Respirology and Lung Transplantation, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erin O'Connor
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Emergency Medicine, Department of Medicine, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Tiffany Lee
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada
| | - Meyer Balter
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirsten Wentlandt
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Jeengar MK, Narendra SC, Thummuri D, Magnusson M, Naidu VGM, Uppugunduri S. Local administration of 4-Thiouridine, a novel molecule with potent anti-inflammatory properties, protects against experimental colitis and arthritis. Int Immunopharmacol 2020; 85:106598. [PMID: 32442901 DOI: 10.1016/j.intimp.2020.106598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/10/2023]
Abstract
Previous studies in a rat model of Sephadex induced lung inflammation showed that 4-Thiouridine (4SU), a thiol substituted nucleoside, was very effective in reducing edema, leukocyte influx and TNF levels in bronchoalvelolar lavage fluid. However, little is known about the factors and mechanisms underlying these effects. In the present study, we have used two separate mouse models of chronic inflammation, a model of dextran sulphate sodium (DSS) induced colitis and a model of antigen induced arthritis, to evaluate the anti-inflammatory effect of 4-thiouridine. We have analyzed a broad spectrum of inflammatory mediators in order to delineate the mechanisms behind a potential anti-inflammatory effect of 4SU. Colitis was induced in C57BL/6 mice by administration of 3.5% DSS in drinking water for 5 days and the potential anti-colitic effect of 4SU was assessed by monitoring the disease activity index (DAI), measurement of colon length and histopathological analysis of colon tissue. We analyzed tissue myeloperoxidase (MPO) activity, serum pro-inflammatory cytokines (IL-1β, IL-6 and TNF), mRNA and protein expression of pro-inflammatory cytokines, COX-2, and NF-κB activity in colitis tissue. Intracolonic administration of 4SU (5 mg/kg & 10 mg/kg.) significantly inhibited MPO activity and reduced the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF) as well as COX-2. Further, NF-κB activation was also blocked by attenuating the phosphorylation of IkB kinase (IKK α/β) in DSS-induced colitis tissues. Arthritis was induced by intra-articular injection of mBSA in the knee of NMRI mice pre-immunized with mBSA and 4SU was administered locally by direct injection into the knee joint. The antiarthritic potential of 4SU was calculated by histopathological scores and histochemical analysis of joint tissue. Further, immunohistochemistry was used to study inflammatory cell infiltration and expression of cytokines and adhesion molecules in the synovium. Local administration of 50-100 mg/kg 4SU at the time of arthritis onset clearly prevented development of joint inflammation and efficiently inhibited synovial expression of CD18, local cytokine production and recruitment of leukocytes to the synovium. Taken together, our data clearly demonstrates a potent anti-inflammatory effect of 4SU in two experimental models. In conclusion 4SU could be a new promising candidate for therapeutic modulation of chronic inflammatory diseases like ulcerative colitis and arthritis.
Collapse
Affiliation(s)
- Manish Kumar Jeengar
- Autoimmunity & Immune Regulation (AIR), Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Regional Cancer Center South East Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Sudeep Chenna Narendra
- Autoimmunity & Immune Regulation (AIR), Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Hyderabad 500037, Telangana, India
| | | | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Guwahati 781032, Assam, India
| | - Srinivas Uppugunduri
- Regional Cancer Center South East Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Gao ZG, Jacobson KA. Purinergic Signaling in Mast Cell Degranulation and Asthma. Front Pharmacol 2017; 8:947. [PMID: 29311944 PMCID: PMC5744008 DOI: 10.3389/fphar.2017.00947] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Hofbauer S, Brito JA, Mulchande J, Nogly P, Pessanha M, Moreira R, Archer M. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:1346-51. [PMID: 26457529 DOI: 10.1107/s2053230x15017045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022]
Abstract
Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, 2780-157 Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, 2780-157 Oeiras, Portugal
| | - Jalmira Mulchande
- Research Institute for Medicines (i-Med.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Przemyslaw Nogly
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, 2780-157 Oeiras, Portugal
| | - Miguel Pessanha
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, 2780-157 Oeiras, Portugal
| | - Rui Moreira
- Research Institute for Medicines (i-Med.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
12
|
Meyer M, Jaspers I. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1189-201. [PMID: 25888573 PMCID: PMC4587599 DOI: 10.1152/ajplung.00028.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The respiratory epithelium functions as a central orchestrator to initiate and organize responses to inhaled stimuli. Proteases and antiproteases are secreted from the respiratory epithelium and are involved in respiratory homeostasis. Modifications to the protease/antiprotease balance can lead to the development of lung diseases such as emphysema or chronic obstructive pulmonary disease. Furthermore, altered protease/antiprotease balance, in favor for increased protease activity, is associated with increased susceptibility to respiratory viral infections such as influenza virus. However, nutritional antioxidants induce antiprotease expression/secretion and decrease protease expression/activity, to protect against viral infection. As such, this review will elucidate the impact of this balance in the context of respiratory viral infection and lung disease, to further highlight the role epithelial cell-derived proteases and antiproteases contribute to respiratory immune function. Furthermore, this review will offer the use of nutritional antioxidants as possible therapeutics to boost respiratory mucosal responses and/or protect against infection.
Collapse
Affiliation(s)
- Megan Meyer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Song Y, Lu HZ, Xu JR, Wang XL, Zhou W, Hou LN, Zhu L, Yu ZH, Chen HZ, Cui YY. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner. Pharmacol Res 2015; 91:88-98. [PMID: 25500537 DOI: 10.1016/j.phrs.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
Abstract
Steroid insensitivity is commonly observed in patients with chronic obstructive pulmonary disease. Here, we report the effects and mechanisms of carbocysteine (S-CMC), a mucolytic agent, in cellular and animal models of oxidative stress-mediated steroid insensitivity. The following results were obtained: oxidative stress induced higher levels of interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α), which are insensitive to dexamethasone (DEX). The failure of DEX was improved by the addition of S-CMC by increasing histone deacetylase 2 (HDAC2) expression/activity. S-CMC also counteracted the oxidative stress-induced increase in reactive oxygen species (ROS) levels and decreases in glutathione (GSH) levels and superoxide dismutase (SOD) activity. Moreover, oxidative stress-induced events were decreased by the thiol-reducing agent dithiothreitol (DTT), enhanced by the thiol-oxidizing agent diamide, and the ability of DEX was strengthened by DTT. In addition, the oxidative stress-induced decrease in HDAC2 activity was counteracted by S-CMC by increasing thiol/GSH levels, which exhibited a direct interaction with HDAC2. S-CMC treatment increased HDAC2 recruitment and suppressed H4 acetylation of the IL-8 promoter, and this effect was further ablated by addition of buthionine sulfoximine, a specific inhibitor of GSH synthesis. Our results indicate that S-CMC restored steroid sensitivity by increasing HDAC2 expression/activity in a thiol/GSH-dependent manner and suggest that S-CMC may be useful in a combination therapy with glucocorticoids for treatment of steroid-insensitive pulmonary diseases.
Collapse
Affiliation(s)
- Yun Song
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao-Zhong Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian-Rong Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Lin Wang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Zhou
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Na Hou
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Zhu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Hua Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BLM, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 2012; 109:16354-9. [PMID: 22988107 PMCID: PMC3479591 DOI: 10.1073/pnas.1214596109] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.
Collapse
Affiliation(s)
- Fen Huang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Hongkang Zhang
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Huanghe Yang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Makoto Kudo
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanazawa, Yokohama 236-0004, Japan
| | - Christian J. Peters
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Owen D. Solberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | | | - Xiaozhu Huang
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Paul J. Wolters
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| | - Brigid L. M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | - Min Li
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Lily Yeh Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Jason R. Rock
- Departments of Anatomy
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| |
Collapse
|
15
|
Bezemer GFG, Sagar S, van Bergenhenegouwen J, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev 2012; 64:337-58. [PMID: 22407613 DOI: 10.1124/pr.111.004622] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the last decade, significant research has been focused on Toll-like receptors (TLRs) in the pathogenesis of airway diseases. TLRs are pattern recognition receptors that play pivotal roles in the detection of and response to pathogens. Because of the involvement of TLRs in innate and adaptive immunity, these receptors are currently being exploited as possible targets for drug development. Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory airway diseases in which innate and adaptive immunity play an important role. To date, asthma is the most common chronic disease in children aged 5 years and older. COPD is prevalent amongst the elderly and is currently the fifth-leading cause of death worldwide with still-growing prevalence. Both of these inflammatory diseases result in shortness of breath, which is treated, often ineffectively, with bronchodilators and glucocorticosteroids. Symptomatic treatment approaches are similar for both diseases; however, the underlying immunological mechanisms differ greatly. There is a clear need for improved treatment specific for asthma and for COPD. This review provides an update on the role of TLRs in asthma and in COPD and discusses the merits and difficulties of targeting these proteins as novel treatment strategies for airway diseases. TLR agonist, TLR adjuvant, and TLR antagonist therapies could all be argued to be effective in airway disease management. Because of a possible dual role of TLRs in airway diseases with shared symptoms and risk factors but different immunological mechanisms, caution should be taken while designing pulmonary TLR-based therapies.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2012; 17:61-82. [DOI: 10.1517/14728214.2012.660917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Lucas SD, Costa E, Guedes RC, Moreira R. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase. Med Res Rev 2011; 33 Suppl 1:E73-101. [PMID: 21681767 DOI: 10.1002/med.20247] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major increasing health problem and the World Health Organization (WHO) reports COPD as the fifth leading cause of death worldwide. COPD refers to a condition of inflammation and progressive weakening of the structure of the lung as well as irreversible narrowing of the airways. Current treatment is only palliative and no available drug halts the progression of the disease. Human neutrophil elastase (HNE) is a serine protease, which plays a major role in the COPD inflammatory process. The protease/anti-protease imbalance leads to an excess of extracellular HNE hydrolyzing elastin, the structural protein that confers elasticity to the lung tissue. Although HNE was identified as a therapeutic target for COPD more than 30 years ago, only Sivelestat (ONO-5046), an HNE inhibitor from Ono Pharmaceutical, has been approved for clinical use. Nevertheless, Sivelestat is only approved in Japan and its development in the USA was terminated in 2003. Other inhibitors in pre-clinical or phase I trials were discontinued for various reasons. Hence, there is an urgent need for low-molecular-weight synthetic elastase inhibitors and the present review discusses the recent advances on this field covering acylating agents, transition-state inhibitors, mechanism-based inhibitors, relevant natural products, and major patent disclosures.
Collapse
Affiliation(s)
- Susana D Lucas
- Research Institute for Medicines and Pharmaceutical Sciences, iMed UL, Faculty of Pharmacy, University of Lisbon, Av Prof Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | |
Collapse
|
18
|
Grandhi S, Donnelly LE, Rogers DF. Phytoceuticals: the new 'physic garden' for asthma and chronic obstructive pulmonary disease. Expert Rev Respir Med 2010; 1:227-46. [PMID: 20477187 DOI: 10.1586/17476348.1.2.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phytoceuticals (non-nutritional but beneficial plant chemicals) merit investigation as pharmacotherapy for asthma and chronic obstructive pulmonary disease (COPD). Although asthma is mostly treated adequately, COPD is not. Thus, there is a need for new drugs with improved therapeutic benefit, especially in COPD. Recent interest in herbal remedies has redirected attention towards plants as sources of improved treatments for lung disease. Phytoceuticals from a variety of plants and plant products, including butterbur, English ivy, apples, chocolate, green tea and red wine, demonstrate broad-spectrum pharmacotherapeutic activities that could be exploited in the clinic. Well-designed clinical trials are required to determine whether these beneficial activities are reproduced in patients, with the prospect that phytoceuticals are the new physic garden for asthma and COPD.
Collapse
Affiliation(s)
- Sumalatha Grandhi
- Airway Disease, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | | | | |
Collapse
|
19
|
Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Boeynaems JM, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. THE JOURNAL OF IMMUNOLOGY 2010; 185:688-97. [PMID: 20519655 DOI: 10.4049/jimmunol.0904042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y(2)R deficient ((-/-)) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y(2)R. Moreover, P2Y(2)R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y(2)R(-/-) and wild type chimera animals revealed that P2Y(2)R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y(2)R.
Collapse
Affiliation(s)
- Sanja Cicko
- Department of Pulmonary Medicine, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pasternak A, Goble SD, Struthers M, Vicario PP, Ayala JM, Di Salvo J, Kilburn R, Wisniewski T, DeMartino JA, Mills SG, Yang L. Discovery of a Potent and Orally Bioavailable CCR2 and CCR5 Dual Antagonist. ACS Med Chem Lett 2009. [DOI: 10.1021/ml900009d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Ruth Kilburn
- Merck Research Laboratories, Rahway, New Jersey 07065
| | | | | | | | - Lihu Yang
- Merck Research Laboratories, Rahway, New Jersey 07065
| |
Collapse
|
21
|
Onoue S, Misaka S, Kawabata Y, Yamada S. New treatments for chronic obstructive pulmonary disease and viable formulation/device options for inhalation therapy. Expert Opin Drug Deliv 2009; 6:793-811. [PMID: 19558334 DOI: 10.1517/17425240903089310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasingly important cause of morbidity and mortality, pathological features of which are pulmonary inflammation and irreversible airflow obstruction. Current therapies for COPD are aimed at improvement of clinical symptoms and reduction of inflammation in the respiratory systems. There is a pressing need for the development of new COPD medication, particularly as no existing treatment has been shown to reduce disease progression. In spite of a better understanding of the underlying disease process, there have been limited advances in the drug therapy of COPD, in contrast to the enormous advances in asthma management. Several new therapeutic targets and strategies have been proposed, and new drug candidates, including bronchodilators, protease inhibitors anti-inflammatory drugs and mediator antagonists, are now in clinical development for COPD treatment. New dry powder inhaler (DPI) systems for inhaled COPD therapy have also been developed to maximize drug concentrations in the airway systems, while minimizing systemic exposure and associated toxicity. This article aims to review recent developments in COPD drugs and the delivery systems for inhalation therapy, with particular emphasis on device options and formulations of DPI systems.
Collapse
Affiliation(s)
- Satomi Onoue
- University of Shizuoka, School of Pharmaceutical Sciences, Department of Pharmacokinetics and Pharmacodynamics, Global Center of Excellence (COE) Program, 52 - 1 Yada, Suruga-ku, Shizuoka 422 - 8526, Japan.
| | | | | | | |
Collapse
|
22
|
Finney-Hayward TK, Popa MO, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell REK, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE. Expression of transient receptor potential C6 channels in human lung macrophages. Am J Respir Cell Mol Biol 2009; 43:296-304. [PMID: 19843708 DOI: 10.1165/rcmb.2008-0373oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with pulmonary inflammation with increased numbers of macrophages located in the parenchyma. These macrophages have the capacity to mediate the underlying pathophysiology of COPD; therefore, a better understanding of their function in chronic inflammation associated with this disease is vital. Ion channels regulate many cellular functions; however, their role in macrophages is unclear. This study examined the expression and function of transient receptor potential (TRP) channels in human macrophages. Human alveolar macrophages and lung tissue macrophages expressed increased mRNA and protein for TRPC6 when compared with monocytes and monocyte-derived macrophages. Moreover, TRPC6 mRNA expression was significantly elevated in alveolar macrophages from patients with COPD compared with control subjects. There were no differences in mRNA for TRPC3 or TRPC7. Although mRNA for TRPM2 and TRPV1 was detected in these cells, protein expression could not be determined. Fractionation of lung-derived macrophages demonstrated that TRPC6 protein was more highly expressed by smaller macrophages compared with larger macrophages. Using whole-cell patch clamp electrophysiology, TRPC6-like currents were measured in both macrophage subpopulations with appropriate biophysical and basic pharmacological profiles. These currents were active under basal conditions in the small macrophages. These data suggest that TRPC6-like channels are functional on human lung macrophages, and may be associated with COPD.
Collapse
|
23
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
24
|
Aki C, Chao J, Ferreira JA, Dwyer MP, Yu Y, Chao J, Merritt RJ, Lai G, Wu M, Hipkin RW, Fan X, Gonsiorek W, Fosseta J, Rindgen D, Fine J, Lundell D, Taveras AG, Biju P. Diaminocyclobutenediones as potent and orally bioavailable CXCR2 receptor antagonists: SAR in the phenolic amide region. Bioorg Med Chem Lett 2009; 19:4446-9. [PMID: 19525110 DOI: 10.1016/j.bmcl.2009.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 11/19/2022]
Abstract
A series of potent and orally bioavailable 3,4-diaminocyclobutenediones with various amide modifications and substitution on the left side phenyl ring were prepared and found to show significant inhibitory activities towards both CXCR2 and CXCR1 receptors.
Collapse
Affiliation(s)
- Cynthia Aki
- Department of Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dou D, Talaty ER, Moore CE, Bullinger JC, Eichhorn DM, Groutas WC. Formation of an unusual product in the reaction of a 1,2,5-thiadiazolidine 1,1-dioxide-derived thioether with sulfuryl chloride. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Biju P, Taveras AG, Dwyer MP, Yu Y, Chao J, Hipkin RW, Fan X, Rindgen D, Fine J, Lundell D. Fluoroalkyl α side chain containing 3,4-diamino-cyclobutenediones as potent and orally bioavailable CXCR2–CXCR1 dual antagonists. Bioorg Med Chem Lett 2009; 19:1431-3. [DOI: 10.1016/j.bmcl.2009.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/06/2009] [Accepted: 01/12/2009] [Indexed: 11/28/2022]
|
27
|
Ivanenkov YA, Balakin KV, Tkachenko SE. New approaches to the treatment of inflammatory disease : focus on small-molecule inhibitors of signal transduction pathways. Drugs R D 2009; 9:397-434. [PMID: 18989991 DOI: 10.2165/0126839-200809060-00005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This 'state-of-the-art' review specifically focuses on alternative signalling pathways deeply involved in acute and chronic inflammatory responses initiated by various pathological stimuli. The accumulated scientific knowledge has already revealed key biological targets, such as COX-2, and related pro-inflammatory mediators (cytokines and chemokines, interleukins [ILs], tumour necrosis factor [TNF]-alpha, migration inhibition factor [MIF], interferon [IFN]-gamma and matrix metalloproteinases [MMPs]) implicated in uncontrolled, destructive inflammatory reaction. A number of physiologically active agents are currently approved for market or are under active investigation in different clinical trials. However, recent findings have exposed the fatal adverse effects directly associated with drug therapy based on COX-2 inhibition. Given these possible harmful outcomes, a range of novel therapeutically relevant biological targets that include nuclear transcription factor (NF-kappaB), p38 mitogen-activated protein kinases (MAPK) and Janus protein tyrosine kinases and signal transducers and activators of transcription (JAK/STAT) signalling pathways has received growing attention. Here we discuss recent progress in the identification and development of novel, clinically approved or evaluated small-molecule regulators of these signalling cascades as promising anti-inflammatory drugs.
Collapse
|
28
|
Evaldsson C, Rydén I, Rosén A, Uppugunduri S. 4-thiouridine induces dose-dependent reduction of oedema, leucocyte influx and tumour necrosis factor in lung inflammation. Clin Exp Immunol 2009; 155:330-8. [PMID: 19055686 PMCID: PMC2675265 DOI: 10.1111/j.1365-2249.2008.03795.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2008] [Indexed: 11/26/2022] Open
Abstract
Recent reports demonstrate a role for nucleotides as inflammatory modulators. Uridine, for example, reduces oedema formation and leucocyte infiltration in a Sephadex-induced lung inflammation model. Tumour necrosis factor (TNF) concentration was also reduced. Previous in vivo observations indicated that 4-thiouridine might have similar effects on leucocyte infiltration and TNF release. The aim of this study was thus to investigate the effects of 4-thiouridine in greater detail. We used a Sephadex-induced acute lung inflammation model in Sprague-Dawley rats. The dextran beads were instilled intratracheally into the lungs, which were excised and examined after 24 h. Sephadex alone led to massive oedema formation and infiltration of macrophages, neutrophils and eosinophils. Microgranulomas with giant cell formations were clearly visible around the partially degraded beads. A significant increase in bronchoalveolar lavage fluid (BALF) content of TNF and leukotrienes was also seen. 4-Thiouridine co-administration affected all variables investigated in this model, i.e. oedema, microscopic and macroscopic appearance of lung tissue, total leucocyte and differential leucocyte counts in BALF, TNF and leukotrienes C(4) (LTC(4)), LTD(4 )and LTE(4) in BALF, indicating a reproducible anti-inflammatory effect. In conclusion, we have demonstrated that 4-thiouridine has anti-inflammatory effects similar to those of uridine. To our knowledge, this is the first demonstration of pharmacological 4-thiouridine effects in vivo. The results suggest nucleoside/nucleotide involvement in inflammatory processes, warranting further studies on nucleoside analogues as attractive new alternatives in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- C Evaldsson
- Division of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
29
|
Biju P, Taveras AG, Yu Y, Zheng J, Hipkin RW, Fossetta J, Fan X, Fine J, Lundell D. 3,4-Diamino-1,2,5-thiadiazole as potent and selective CXCR2 antagonists. Bioorg Med Chem Lett 2009; 19:1434-7. [PMID: 19200721 DOI: 10.1016/j.bmcl.2009.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/06/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
A series of potent and selective 3,4-diamino-1,2,5-thiadiazoles were prepared and found to show excellent binding affinities towards CXCR2 receptor.
Collapse
Affiliation(s)
- Purakkattle Biju
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mulchande J, Guedes RC, Tsang WY, Page MI, Moreira R, Iley J. Azetidine-2,4-diones (4-Oxo-β-lactams) as Scaffolds for Designing Elastase Inhibitors. J Med Chem 2008; 51:1783-90. [DOI: 10.1021/jm701257h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jalmira Mulchande
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Rita C. Guedes
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Wing-Yin Tsang
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Michael I. Page
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Rui Moreira
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Jim Iley
- iMed.UL, CECF, Faculdade de Farmácia, Universidade de Lisboa, Av. Forças Armadas, 1600-083 Lisboa, Portugal, Department of Chemical & Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, U.K., and Department of Chemistry, The Open University, Milton Keynes, MK7 6AA, U.K
| |
Collapse
|
31
|
de Boer WI, Alagappan VKT, Sharma HS. Molecular mechanisms in chronic obstructive pulmonary disease: potential targets for therapy. Cell Biochem Biophys 2008; 47:131-48. [PMID: 17406066 DOI: 10.1385/cbb:47:1:131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, antiinflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-beta, tumor necrosis factor-alpha, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-kappaB, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases.
Collapse
|
32
|
Hanania NA, Sharafkhaneh A. Update on the pharmacologic therapy for chronic obstructive pulmonary disease. Clin Chest Med 2007; 28:589-607, vi-vii. [PMID: 17720046 DOI: 10.1016/j.ccm.2007.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic obstructive pulmonary disease is a treatable disease characterized by progressive airflow limitation. Prevention of disease progression; improvement of symptoms, exercise tolerance, and health status; and decrease in exacerbations and mortality are the goals of management. Inhaled short-acting bronchodilators are recommended for symptoms in mild disease, whereas inhaled long-acting bronchodilators are recommended for maintenance therapy of daily symptoms. When symptoms are not controlled using one bronchodilator, combining bronchodilators may be more effective. Combining a long-acting beta-agonist with an inhaled corticosteroid is more effective than either agent alone. Several novel therapies are in different stages of development.
Collapse
Affiliation(s)
- Nicola A Hanania
- Asthma Clinical Research Center, Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, 1504 Taub Loop, Houston, TX 77030, USA.
| | | |
Collapse
|
33
|
Xia M, Hou C, Pollack S, Brackley J, DeMong D, Pan M, Singer M, Matheis M, Olini G, Cavender D, Wachter M. Synthesis and biological evaluation of phenyl piperidine derivatives as CCR2 antagonists. Bioorg Med Chem Lett 2007; 17:5964-8. [PMID: 17869105 DOI: 10.1016/j.bmcl.2007.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 11/23/2022]
Abstract
A series of phenyl piperidine derivatives possessing potent and selective CCR2 antagonist activity is reported. Structure-activity relationship (SAR) studies have established that incorporation of a second ring system adjacent to the aryl piperidine plays an important role in determining the CCR2 potency. Both a second piperidine ring and a 1,3-substituted cyclopentylamine have been probed as linkers. For the cyclopentylamine series, the 1S,3R-configuration exhibits much higher affinity for hCCR2 than the 1R,3S-configuration. Compound 3g shows good selectivity over CCR1, CCR3, 5-HT and has an excellent P450 profile.
Collapse
Affiliation(s)
- Mingde Xia
- Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, LLC, 8 Clarke Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Biju P, Taveras A, Yu Y, Zheng J, Chao J, Rindgen D, Jakway J, Hipkin RW, Fossetta J, Fan X, Fine J, Qiu H, Merritt JR, Baldwin JJ. 3,4-Diamino-2,5-thiadiazole-1-oxides as potent CXCR2/CXCR1 antagonists. Bioorg Med Chem Lett 2007; 18:228-31. [PMID: 18006311 DOI: 10.1016/j.bmcl.2007.10.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
A series of novel and potent 3,4-diamino-2,5-thiadiazole-1-oxides were prepared and found to show excellent binding affinities for CXCR2 and CXCR1 receptors and excellent inhibitory activity of Gro-alpha and IL-8 mediated in vitro hPMN MPO release of CXCR2 and CXCR1 expressing cell lines. On the other hand, a closely related 3,4-diamino-2,5-thiadiazole-dioxide did not show functional activity despite its excellent binding affinities for CXCR2 and CXCR1 in membrane binding assays. A detailed SAR has been discussed in these two closely related structures.
Collapse
Affiliation(s)
- Purakkattle Biju
- Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Luker KA, Chalmers KI, Caress AL, Salmon MP. Smoking cessation interventions in chronic obstructive pulmonary disease and the role of the family: a systematic literature review. J Adv Nurs 2007; 59:559-68. [PMID: 17727400 DOI: 10.1111/j.1365-2648.2007.04379.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This paper is a report of a systematic review to assess the effectiveness of family-focused smoking cessation interventions for people with chronic obstructive pulmonary disease and to determine what data on families are documented in studies of smoking cessation interventions. BACKGROUND Chronic obstructive pulmonary disease is a major public health problem and cigarette smoking is the most important factor contributing to its development and progression. However, smoking cessation rates are low and relapse is common. The role of families in smoking cessation efforts has received little attention. METHODS All studies were included in the review that (i) addressed an evaluation of a psycho-social/educational smoking cessation intervention for people with chronic obstructive pulmonary disease, (ii) addressed some information on the family (i.e. living arrangements, marital status, smoking history of family members, support for quitting) and/or included the family as part of the intervention and (iii) were published between 1990 and 2006. Electronic data sources, existing systematic reviews of smoking cessation interventions and the grey literature were reviewed. RESULTS Seven studies were included. Six studies (11 papers) included data on marital status, smoking status of household members, support for quitting smoking and related variables. In two of the studies, the variable on the family was used to analyse smoking cessation outcomes. One additional study met the inclusion criterion of an evaluation of a smoking cessation intervention, which also included a family focus in the intervention. CONCLUSION No conclusions about the effectiveness of a family-focused smoking cessation intervention could be drawn from this review. Further research is needed to determine if a more family-focused intervention, in conjunction with pharmacological and counselling approaches, would lead to improved smoking cessation outcomes.
Collapse
Affiliation(s)
- Karen A Luker
- School of Nursing, Midwifery and Social Work, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
37
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
38
|
Meinke L, Chitkara R, Krishna G. Advances in the management of chronic obstructive pulmonary disease. Expert Opin Pharmacother 2007; 8:23-37. [PMID: 17163804 DOI: 10.1517/14656566.8.1.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), the fourth leading cause of death, seems to be increasing in worldwide prevalence, and carries with it a significant health and economic burden. Smoking cessation is the only available intervention proven to halt disease progression. The authors discuss the role of the newly approved agent, varenicline, in promotion of smoking cessation. The remainder of presently available therapies treat the symptoms of COPD, but do not impact progression of disease. As the understanding of the pathogenesis of COPD improves, new targets for therapies are emerging. Given the large number of potential targets and the results of recent studies, it seems unlikely that a single new agent will result in a cure. Rather, management of COPD should involve a multi-pronged approach including smoking cessation, bronchodilators, treatment of infection, and eventual targeting of inflammatory pathways and genetic predispositions. In this article, the authors discuss presently available therapies as well as agents under development.
Collapse
Affiliation(s)
- Laura Meinke
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
39
|
Rogers DF. The role of airway secretions in COPD: pathophysiology, epidemiology and pharmacotherapeutic options. COPD 2007; 2:341-53. [PMID: 17146999 DOI: 10.1080/15412550500218098] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Often considered an aggravating but otherwise benign component of chronic obstructive pulmonary disease (COPD), airway mucus hypersecretion is now recognised as a potential risk factor for an accelerated loss of lung function in COPD and is a key pathophysiological feature in many patients, particularly those prone to respiratory tract infection. Consequently, it is important to develop drugs that inhibit mucus hypersecretion in these susceptible patients. Conventional therapy including anticholinergics, beta2-adrenoceoptor agonists, alone or in combination with corticosteroids, mucolytics and macrolide antibiotics are not entirely or consistently effective in inhibiting airway mucus hypersecretion in COPD. Novel pharmacotherapeutic targets are being investigated, including inhibitors of nerve activity (e.g., BK(Ca) channel activators), tachykinin receptor antagonists, epoxygenase inducers (e.g., benzafibrate), inhibitors of mucin exocytosis (e.g., anti-MARCKS peptide and Munc-18B blockers), inhibitors of mucin synthesis and goblet cell hyperplasia (e.g., EGF receptor tyrosine kinase inhibitors, p38 MAP kinase inhibitors, MEK/ERK inhibitors, hCACL2 blockers and retinoic acid receptor-alpha antagonists), inducers of goblet cell apoptosis (e.g., Bax inducers or Bcl-2 inhibitors), and purinoceptor P(2Y2) antagonists to inhibit mucin secretion or P(2Y2) agonists to hydrate secretions. However, real and theoretical differences delineate the mucus hypersecretory phenotype in COPD from that in other hypersecretory diseases of the airways. More information is required on these differences to identify therapeutic targets pertinent to COPD which, in turn, should lead to rational design of anti-hypersecretory drugs for specific treatment of airway mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Duncan F Rogers
- Thoracic Medicine, National Heart and Lung Institute, Imperial College, London, Dovehouse St., London SW3 6LY, UK.
| |
Collapse
|
40
|
Merritt JR, Rokosz LL, Nelson KH, Kaiser B, Wang W, Stauffer TM, Ozgur LE, Schilling A, Li G, Baldwin JJ, Taveras AG, Dwyer MP, Chao J. Synthesis and structure-activity relationships of 3,4-diaminocyclobut-3-ene-1,2-dione CXCR2 antagonists. Bioorg Med Chem Lett 2006; 16:4107-10. [PMID: 16697193 DOI: 10.1016/j.bmcl.2006.04.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 11/28/2022]
Abstract
A novel series of 3,4-diaminocyclobut-3-ene-1,2-diones was prepared and found to show potent inhibitory activity of CXCR2 binding and IL-8-mediated chemotaxis of a CXCR2-expressing cell line. Microsome stability and Caco2 studies were subsequently used to show that compounds of this chemotype are predicted to have good oral bioavailability and are thus suitable for pharmaceutical development.
Collapse
Affiliation(s)
- J Robert Merritt
- Pharmacopeia Drug Discovery, Inc., 3000 Eastpark Blvd., Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Provins L, Christophe B, Danhaive P, Dulieu J, Durieu V, Gillard M, Lebon F, Lengelé S, Quéré L, van Keulen B. First dual M3 antagonists-PDE4 inhibitors: synthesis and SAR of 4,6-diaminopyrimidine derivatives. Bioorg Med Chem Lett 2006; 16:1834-9. [PMID: 16439121 DOI: 10.1016/j.bmcl.2006.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
SAR around 4,6-diaminopyrimidine derivatives allowed the discovery of the first potent dual M(3) antagonists and PDE4 inhibitors. Various chemical modulations around that scaffold led to the discovery of ucb-101333-3 which is characterized by the most interesting profile on both targets.
Collapse
Affiliation(s)
- Laurent Provins
- Global Chemistry, UCB, R&D, Chemin du Foriest, B-1420 Braine-L'Alleud, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Belvisi MG, Hele DJ, Birrell MA. New anti-inflammatory therapies and targets for asthma and chronic obstructive pulmonary disease. Expert Opin Ther Targets 2006; 8:265-85. [PMID: 15268623 DOI: 10.1517/14728222.8.4.265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are diseases of the airways with an underlying inflammatory component. The prevalence and healthcare burden of asthma and COPD is still rising and is predicted to continue to rise in the foreseeable future. Beta-agonists and corticosteroids form the basis of the therapies available to treat asthma. However, the treatments available for COPD, corticosteroids and anticholinergics, reduce the number and severity of exacerbations, but have a limited effect on slowing the progression of the disease. The inflammatory processes underlying the pathology of asthma have received a great deal of attention and more recently, those underlying COPD have begun to be elucidated. This has resulted in the identification of new targets that will allow the development of novel approaches by the pharmaceutical industry, which will be able to focus its efforts in an attempt to provide new and improved therapies to treat these debilitating diseases. The resultant therapies should impinge on the underlying development of these diseases rather than providing symptomatic relief or palliative treatment alone. This review will outline new targets and novel approaches currently under investigation, which may provide opportunities for novel anti-inflammatory therapeutic interventions that slow or halt disease progression in asthma and COPD.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, National Heart and Lung Institute, Faculty of Medicine, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| | | | | |
Collapse
|
43
|
Janelle MF, Doucet A, Bouchard D, Bourbonnais Y, Tremblay GM. Increased local levels of granulocyte colony-stimulating factor are associated with the beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in experimental emphysema. Biol Chem 2006; 387:903-9. [PMID: 16913840 DOI: 10.1515/bc.2006.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Few therapeutic options are offered to treat inflammation and alveolar wall destruction in emphysema. The effect of recombinant human pre-elafin, an elastase inhibitor, was evaluated in porcine pancreatic elastase (PPE)-induced emphysema in C57BL/6 mice. In a first protocol, mice received a single instillation of pre-elafin (17.5 pmol/mouse) at 1 h post-PPE and were sacrificed up to 72 h post-PPE. A single instillation of pre-elafin significantly reduced PPE-induced neutrophil accumulation in lungs, as assessed by bronchoalveolar lavage (BAL), by 51%, 71% and 67% at 24, 48 and 72 h, respectively. In a second protocol, mice also received a single dose of PPE, but pre-elafin three times a week for 2 weeks. After 2 weeks, pre-elafin significantly reduced the PPE-induced increase in BAL macrophage numbers, airspace dimensions and lung hysteresivity by 74%, 62% and 52%, respectively. Since G-CSF was previously shown to reduce emphysematous changes in mice, the BAL levels of this mediator were measured 6 h post-PPE in animals treated as described in the first protocol. Pre-elafin significantly increased G-CSF levels in PPE-exposed mice compared to sham- and PPE only-exposed animals. This suggests that the beneficial effects of pre-elafin could be mediated, at least in part, by its ability to increase G-CSF levels in the lung.
Collapse
Affiliation(s)
- Marie France Janelle
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Sainte-Foy G1V 4G5, Canada
| | | | | | | | | |
Collapse
|
44
|
Hanania NA, Ambrosino N, Calverley P, Cazzola M, Donner CF, Make B. Treatments for COPD. Respir Med 2005; 99 Suppl B:S28-40. [PMID: 16239101 DOI: 10.1016/j.rmed.2005.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 09/07/2005] [Indexed: 11/15/2022]
Abstract
The multicomponent nature of chronic obstructive pulmonary disease (COPD) has provided a challenging environment in which to develop successful treatments. A combination of pharmacological and non-pharmacological approaches is used to combat this problem, and an overview of these approaches and their possible future direction is given. Bronchodilators are the mainstay of COPD treatment and can be combined with inhaled corticosteroids for greater efficacy and fewer side effects. A new generation of pharmacotherapeutic agents, most notably phosphodiesterase-4 inhibitors, which are already in the advanced stages of clinical development, and leukotriene B4 inhibitors (in early clinical development), may shape future treatment as further insight is gained into the pathological mechanisms underlying COPD. Non-pharmacologic treatments for COPD include long-term oxygen therapy (LTOT), nasal positive pressure ventilation (nPPV), pulmonary rehabilitation and lung-volume-reduction surgery (LVRS). Apart from smoking cessation, LTOT is the only treatment to date which has been shown to modify survival rates in severe cases; thus its role in COPD is well defined. The roles of nPPV and LVRS are less clear, though recent progress is reported here. In the future, it will be important to establish the precise value of the different treatments available for COPD--evaluating both clinical and physiological endpoints and using the data to more accurately define candidate patients accordingly. The challenge will be to develop this base of knowledge in order to shape future research and allow clinicians to deliver tailored COPD management programmes for the growing number of patients afflicted with this disease.
Collapse
Affiliation(s)
- Nicola A Hanania
- Pulmonary and Critical Care Medicine, Baylor College of Medicine, 1504 Taub Loop, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
45
|
de Granda-Orive JI, Martínez-Albiach JM. Smoking Cessation in Patients With Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2005; 41:625-33. [PMID: 16324602 DOI: 10.1016/s1579-2129(06)60297-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J I de Granda-Orive
- Servicio de Neumología, Hospital Militar Central de la Defensa Gómez Ulla, Madrid, Spain.
| | | |
Collapse
|
46
|
|
47
|
Chen CY, Yang KY, Lee YC, Perng PP. Effect of Oral Aminophylline on Pulmonary Function Improvement and Tolerability in Different Age Groups of COPD Patients. Chest 2005; 128:2088-92. [PMID: 16236859 DOI: 10.1378/chest.128.4.2088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Aminophylline therapy in elderly patients with COPD is rarely studied. This study attempted to explore the symptoms, pulmonary function improvement, and adverse events related to aminophylline therapy in COPD patients of different age groups. METHODS AND RESULTS We designed a 10-week prospective study. Two groups of COPD patients were classified based on age (30 patients in group 1, 55 to 74 years old; 30 patients in group 2, 75 to 90 years old), with matched disease severity. After stopping all methylxanthines for 2 weeks in the washout period, therapy began with long-acting 225-mg aminophylline compounds bid po for 8 weeks. Pulmonary functions, respiratory symptoms, and laboratory examinations were checked at the initial visit and at every 4-week visit. After aminophylline therapy, the drug serum level showed no significant difference in either group (9.73 +/- 6.35 mg/dL [+/- SD] in group 1 and 7.82 +/- 6.68 mg/dL in group 2, p = 0.359). Improvements of FEV1 and FVC were noted in both groups; however, there was no significant difference. Peak expiratory flow rate (PEFR) was significantly improved in group 1 but not in group 2 (group 1, from 3.51 to 3.97 L/s, p < 0.05; group 2, from 2.78 to 3.08 L/s, p > 0.05). The degree of improvement in symptom scores was not different between the groups, except there was significantly less chest tightness in group 2 (from 0.79 +/- 0.74 to 0.40 +/- 0.50, p < 0.05). Electrolyte imbalance and arrhythmia did not appear in either group. CONCLUSIONS Our study demonstrated that the safety and drug concentration of aminophylline at a standard dose are not different in the sixth to ninth decades of COPD patients. Younger patients have more improvement in PEFR than older patients; however, older COPD patients have more symptoms relief in chest tightness after aminophylline therapy.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Institute of Emergency and Critical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
48
|
Tintinger G, Steel HC, Anderson R. Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin Exp Immunol 2005; 141:191-200. [PMID: 15996182 PMCID: PMC1809444 DOI: 10.1111/j.1365-2249.2005.02800.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are relatively insensitive to the anti-inflammatory actions of conventional chemotherapeutic agents, including corticosteroids, emphasizing the requirement for novel pharmacological strategies to control the potentially harmful proinflammatory activities of these cells. In the case of commonly-occurring inflammatory diseases of the airways, the neutrophil is the primary mediator of inflammation in conditions such as chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, bronchiectasis and non-eosinophilic bronchial asthma. Recent insights into the mechanisms utilized by neutrophils to restore Ca(2+) homeostasis following activation with Ca(2+)-mobilizing, proinflammatory stimuli have facilitated the identification of novel targets for anti-inflammatory chemotherapy in these cells. The most amenable of these from a chemotherapeutic perspective, is the cyclic AMP-dependent protein kinase-modulated endomembrane Ca(2+)-ATPase which promotes clearance of the cation from the cytosol of activated neutrophils. Second generation type 4 phosphodiesterase inhibitors and adenosine receptor agonists operative at the level of subtype A2A adenosine receptors, which are currently undergoing clinical and preclinical assessment respectively, hold promise as pharmacologic modulators during the restoration of Ca(2+) homeostasis. If this promise is realized, it may result in novel chemotherapeutic strategies for the control of hyperacute and chronic inflammatory conditions in which neutrophils are primary offenders. Alternative, potential future targets include the Na(+), Ca(2+)-exchanger and store-operated Ca(2+) channels, which cooperate in the refilling of intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- G Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | | | | |
Collapse
|
49
|
Tait A, Luppi A, Hatzelmann A, Fossa P, Mosti L. Synthesis, biological evaluation and molecular modelling studies on benzothiadiazine derivatives as PDE4 selective inhibitors. Bioorg Med Chem 2005; 13:1393-402. [PMID: 15670947 DOI: 10.1016/j.bmc.2004.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
A series of 2,1,3- and 1,2,4-benzothiadiazine derivatives (BTDs) were synthesized and evaluated for their inhibitory activity versus enzymatic isoforms PDE3, PDE4 and PDE7. The compounds characterized by the 3,5-di-tert-butyl-4-hydroxybenzyl moiety at N1 position of 2,1,3-benzothiadiazine core (8, 13, 18), were found active and selective at micromolar level versus PDE4 and could be studied as new leads for the treatment of asthma and COPD (Chronic Obstructive Pulmonary Disease). The antioxidant activity evaluation on the same compounds highlighted 13 as the most significative. Molecular modelling studies gave further support to biological results and suggested targeted modifications so as to improve their potency.
Collapse
Affiliation(s)
- Annalisa Tait
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy.
| | | | | | | | | |
Collapse
|
50
|
Thatcher TH, McHugh NA, Egan RW, Chapman RW, Hey JA, Turner CK, Redonnet MR, Seweryniak KE, Sime PJ, Phipps RP. Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2005; 289:L322-8. [PMID: 15833762 PMCID: PMC2491909 DOI: 10.1152/ajplung.00039.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.
Collapse
Affiliation(s)
- T H Thatcher
- Department of Medicine, Univ. of Rochester School of Medicine and Dentistry, Lung Biology and Disease Program, 601 Elmwood Ave., Box 850, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|