1
|
Andreakos E. Type I and type III interferons: From basic biology and genetics to clinical development for COVID-19 and beyond. Semin Immunol 2024; 72:101863. [PMID: 38271892 DOI: 10.1016/j.smim.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Type I and type III interferons (IFNs) constitute a key antiviral defense systems of the body, inducing viral resistance to cells and mediating diverse innate and adaptive immune functions. Defective type I and type III IFN responses have recently emerged as the 'Achilles heel' in COVID-19, with such patients developing severe disease and exhibiting a high risk for critical pneumonia and death. Here, we review the biology of type I and type III IFNs, their similarities and important functional differences, and their roles in SARS-CoV-2 infection. We also appraise the various mechanisms proposed to drive defective IFN responses in COVID-19 with particular emphasis to the ability of SARS-CoV-2 to suppress IFN production and activities, the genetic factors involved and the presence of autoantibodies neutralizing IFNs and accounting for a large proportion of individuals with severe COVID-19. Finally, we discuss the long history of the type I IFN therapeutics for the treatment of viral diseases, cancer and multiple sclerosis, the various efforts to use them in respiratory infections, and the newly emerging type III IFN therapeutics, with emphasis to the more recent studies on COVID-19 and their potential use as broad spectrum antivirals for future epidemics or pandemics.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece.
| |
Collapse
|
2
|
Saikh KU, Ranji CM. Cells Stimulated with More Than One Toll-Like Receptor-Ligand in the Presence of a MyD88 Inhibitor Augmented Interferon- β via MyD88-Independent Signaling Pathway. Viral Immunol 2021; 34:646-652. [PMID: 34287077 DOI: 10.1089/vim.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host exposure to pathogens engage multiple pathogen recognition receptors (PRRs) including toll-like receptors (TLRs); recruit intracellular signaling adaptor proteins primarily myeloid differentiation primary response protein 88 (MyD88) for activating downstream signaling cascades, which culminate in the production of type I interferons (IFNs), proinflammatory cytokines, and chemokines; and impede pathogen replication and dissemination. However, recent studies highlight that absence of MyD88 increased antiviral type I IFN induction, and MyD88-/- mice showed a higher survival rate compared with the low survival rate of the MyD88+/+ mice, implicating MyD88 limits antiviral type I IFN response. As a single infectious agent may harbor multiple PRR agonists, which trigger different sets of TLR-initiated immune signaling, we examined whether MyD88 inhibition during stimulation of cells with more than one TLR-ligand would augment type I IFN. We stimulated human U87- and TLR3-transfected HEK293-TLR7 cells with TLR-ligands, such as lipopolysaccharides (LPS) (TLR4-ligand) plus poly I:C (TLR3-ligand) or imiquimod (R837, TLR7-ligand) plus poly I:C, in the presence of compound 4210, a previously reported MyD88 inhibitor, and measured IFN-β response using an enzyme-linked immunosorbent assay. Our results showed that when U87- or TLR3-transfected HEK293-TLR7 cells were stimulated with TLR-ligands, such as poly I:C plus LPS or poly I:C plus R837, IFN-β production was significantly increased with MyD88 inhibition in a dose-dependent manner. Collectively, these results indicate that during more than one TLR-ligand-induced immune signaling event, impairment of antiviral type I IFN response was restored by inhibition of MyD88 through MyD88-independent pathway of type I IFN signaling, thus, offer a MyD88-targeted approach for type I IFN induction.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Cyra M Ranji
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
3
|
Nishio A, Bolte FJ, Takeda K, Park N, Yu ZX, Park H, Valdez K, Ghany MG, Rehermann B. Clearance of pegylated interferon by Kupffer cells limits NK cell activation and therapy response of patients with HBV infection. Sci Transl Med 2021; 13:13/587/eaba6322. [PMID: 33790025 DOI: 10.1126/scitranslmed.aba6322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Pegylated interferon-α (PEG-IFN-α), where IFN-α is attached to polyethylene glycol (PEG), is an approved treatment for chronic hepatitis B virus (HBV) infection, a disease that causes liver-related morbidity and mortality in 257 million people worldwide. It is unknown why only a minority of patients respond to PEG-IFN-α. Using sequential blood samples and liver biopsies of patients with chronic HBV infection before, during, and after PEG-IFN-α treatment, we find that patients with early natural killer (NK) cell activation after PEG-IFN-α injection experienced greater liver inflammation, lysis of HBV-infected hepatocytes, and hepatitis B surface antigen (HBsAg) decline than those without. NK cell activation was associated with induction of interferon-stimulated genes and determined by PEG-IFN-α pharmacokinetics. Patients with delayed increases in PEG-IFN-α concentrations had greater amounts of PEG-specific immunoglobulin M (IgM) immune complexes in the blood and more PEG and IgM detected in the liver than patients with rapid increase in PEG-IFN-α concentration. This was associated with reduced NK cell activation. These results indicate that the immunomodulatory functions of PEG-IFN-α, particularly activation of NK cells, play a pivotal role in the response to treatment and further demonstrate that these functions are affected by PEG-IFN-α pharmacokinetics. Accelerated clearance of antibody-complexed pegylated drugs by Kupffer cells may be important beyond the field of HBV therapeutics. Thus, these findings may contribute to improving the efficacy of pegylated drugs that are now being developed for other chronic diseases and cancer.
Collapse
Affiliation(s)
- Akira Nishio
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Fabian J Bolte
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Kazuyo Takeda
- Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Nana Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Heiyoung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Kristin Valdez
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Marc G Ghany
- Clinical Research Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Saikh KU, Morazzani EM, Piper AE, Bakken RR, Glass PJ. A small molecule inhibitor of MyD88 exhibits broad spectrum antiviral activity by up regulation of type I interferon. Antiviral Res 2020; 181:104854. [PMID: 32621945 DOI: 10.1016/j.antiviral.2020.104854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023]
Abstract
Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-β and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-β, whereas MyD88 inhibition rescued IFN-β production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-β response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 μM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| |
Collapse
|
5
|
Zhongyu Li, Shan P, Li D, Zou X. Synthesis of Branched Poly(ethylene glycol) by an Acetal Protection Method. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Asadi-Saghandi A, Shams A, Eslami G, Mirghanizadeh SA, Eskandari-Nasab E. Peginterferon Alfa-2a/Ribavirin treatment efficacy in chronic hepatitis C patients is related to natural killer group 2D gene rs1049174 GC polymorphism. Virusdisease 2016; 27:369-374. [PMID: 28004016 DOI: 10.1007/s13337-016-0349-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2D (NKG2D), as an activating receptor, plays pivotal role in viral infectious diseases. Several single nucleotide polymorphisms (SNPs) in the NKG2D gene have characterized that the rs1049174G/C SNP of NKG2D is in the spotlight of notice because of its role in activating of human T cells. This study aimed to investigate rs1049174G/C genetic polymorphism in Chronic Hepatitis C (CHC) patients. The study compromised 107 CHC patients with genotype 1a and 1b. All recruited patients were under treatment with Peginterferon Alfa-2a/Ribavirin according to standard protocol. After completing treatment, 67 patients showed sustained virologic response (SVR) and the rest of patients did not respond to the treatment and considered as non-responder (NR). Genotyping of NKG2D rs1049174G/C SNP was performed using PCR-RFLP method in SVR and NR patients. The NKG2D rs1049174 genotypes frequency for GG, GC and CC were 45, 41 and 14 % respectively. Genotypes distribution were significantly different between SVR and NR groups (p = 0.005). So that the patients with the homozygous GG genotype demonstrated a higher response to Peginterferon Alfa-2a/Ribavirin therapy against HCV infection (OR = 6.0, 95 %CI 1.71-21.08, p = 0.005). In conclusion, the rs1049174 GG genotype of NKG2D receptor is an effective factor in successfully treatment of CHC patients by Peginterferon Alfa-2a/Ribavirin.
Collapse
Affiliation(s)
- Abolghasem Asadi-Saghandi
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Shams
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Mirghanizadeh
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ebrahim Eskandari-Nasab
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
7
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
8
|
Dwyer MP, Keertikar KM, Chen L, Tong L, Selyutin O, Nair AG, Yu W, Zhou G, Lavey BJ, Yang DY, Wong M, Kim SH, Coburn CA, Rosenblum SB, Zeng Q, Jiang Y, Shankar BB, Rizvi R, Nomeir AA, Liu R, Agrawal S, Xia E, Kong R, Zhai Y, Ingravallo P, Asante-Appiah E, Kozlowski JA. Matched and mixed cap derivatives in the tetracyclic indole class of HCV NS5A inhibitors. Bioorg Med Chem Lett 2016; 26:4106-11. [PMID: 27423481 DOI: 10.1016/j.bmcl.2016.06.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/25/2023]
Abstract
A matched and mixed capping SAR study was conducted on the tetracyclic indole class of HCV NS5A inhibitors to examine the influence of modifications of this region on the overall HCV virologic resistance profiles.
Collapse
Affiliation(s)
- Michael P Dwyer
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA.
| | - Kerry M Keertikar
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Lei Chen
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Ling Tong
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Oleg Selyutin
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Anilkumar G Nair
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Wensheng Yu
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Guowei Zhou
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Brian J Lavey
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - De-Yi Yang
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Michael Wong
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Seong Heon Kim
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Craig A Coburn
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Stuart B Rosenblum
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Qingbei Zeng
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Yueheng Jiang
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Bandarpalle B Shankar
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Razia Rizvi
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Amin A Nomeir
- Drug Metabolism, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Rong Liu
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Sony Agrawal
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Ellen Xia
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Rong Kong
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Ying Zhai
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Paul Ingravallo
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Ernest Asante-Appiah
- Discovery Biology, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Joseph A Kozlowski
- Discovery Chemistry, Merck Research Laboratories, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| |
Collapse
|
9
|
Viral hepatitis C therapy: pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet 2014; 53:409-27. [PMID: 24723109 DOI: 10.1007/s40262-014-0142-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C is a global health problem. To prevent or reduce complications, the hepatitis C virus (HCV) infection needs to be eradicated. There have been several developments in treating these patients since the discovery of the virus. As of 1 January 2014, the drugs that are approved for treatment of chronic HCV infection are peginterferon-α, ribavirin, boceprevir, telaprevir, simeprevir and sofosbuvir. In this review we provide an overview of the clinical pharmacokinetic characteristics of these agents by describing their absorption, distribution, metabolism and excretion. In the pharmacodynamic part we summarize what is known about the relationships between the pharmacokinetics of each drug and efficacy or toxicity. We briefly discuss the pharmacokinetics and pharmacodynamics of chronic hepatitis C treatment in special patient populations, such as patients with liver cirrhosis, renal insufficiency or HCV/HIV coinfection, and children. With this knowledge, physicians, pharmacists, nurse practitioners, etc. should be educated to safely and effectively treat HCV-infected patients.
Collapse
|
10
|
Ferreirós N, Labocha S, El-Duweik J, Schlecker C, Lötsch J, Geisslinger G. Quantitation of ribavirin in human plasma and red blood cells using LC-MS/MS. J Sep Sci 2014; 37:476-83. [DOI: 10.1002/jssc.201301173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Affiliation(s)
- N. Ferreirós
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - S. Labocha
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - J. El-Duweik
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - C. Schlecker
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - J. Lötsch
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt Germany
| | - G. Geisslinger
- pharmazentrum frankfurt /ZAFES; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt Germany
| |
Collapse
|
11
|
Jackowiak P, Kuls K, Budzko L, Mania A, Figlerowicz M, Figlerowicz M. Phylogeny and molecular evolution of the hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2013; 21:67-82. [PMID: 24200590 DOI: 10.1016/j.meegid.2013.10.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a globally prevalent human pathogen that causes persistent liver infections in most infected individuals. HCV is classified into seven phylogenetically distinct genotypes, which have different geographical distributions and levels of genetic diversity. Some of these genotypes are endemic and highly divergent, whereas others disseminate rapidly on an epidemic scale but display lower variability. HCV phylogeny has an important impact on disease epidemiology and clinical practice because the viral genotype may determine the pathogenesis and severity of the resultant chronic liver disease. In addition, there is a clear association between the HCV genotype and its susceptibility to antiviral treatment. Similarly to other RNA viruses, in a single host, HCV exists as a combination of related but genetically different variants. The whole formation is the actual target of selection exerted by a host organism and antiviral therapeutics. The genetic structure of the viral population is largely shaped by mutations that are constantly introduced during an error-prone replication. However, it appears that genetic recombination may also contribute to this process. This heterogeneous collection of variants has a significant ability to evolve towards the fitness optimum. Interestingly, negative selection, which restricts diversity, emerges as an essential force that drives HCV evolution. It is becoming clear that HCV evolves to become stably adapted to the host environment. In this article we review the HCV phylogeny and molecular evolution in the context of host-virus interactions.
Collapse
Affiliation(s)
- Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Kuls
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland.
| |
Collapse
|
12
|
HCV NS5A replication complex inhibitors. Part 5: Discovery of potent and pan-genotypic glycinamide cap derivatives. Bioorg Med Chem Lett 2013; 23:4428-35. [DOI: 10.1016/j.bmcl.2013.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 01/11/2023]
|
13
|
Martínez-Gil L, Ayllon J, Ortigoza MB, García-Sastre A, Shaw ML, Palese P. Identification of small molecules with type I interferon inducing properties by high-throughput screening. PLoS One 2012; 7:e49049. [PMID: 23145065 PMCID: PMC3492183 DOI: 10.1371/journal.pone.0049049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023] Open
Abstract
The continuous emergence of virus that are resistant to current anti-viral drugs, combined with the introduction of new viral pathogens for which no therapeutics are available, creates an urgent need for the development of novel broad spectrum antivirals. Type I interferon (IFN) can, by modulating the cellular expression profile, stimulate a non-specific antiviral state. The antiviral and adjuvant properties of IFN have been extensively demonstrated; however, its clinical application has been so far limited. We have developed a human cell-based assay that monitors IFN-β production for use in a high throughput screen. Using this assay we screened 94,398 small molecules and identified 18 compounds with IFN-inducing properties. Among these, 3 small molecules (C3, E51 and L56) showed activity not only in human but also in murine and canine derived cells. We further characterized C3 and showed that this molecule is capable of stimulating an anti-viral state in human-derived lung epithelial cells. Furthermore, the IFN-induction by C3 is not diminished by the presence of influenza A virus NS1 protein or hepatitis C virus NS3/4A protease, which make this molecule an interesting candidate for the development of a new type of broad-spectrum antiviral. In addition, the IFN-inducing properties of C3 also suggest its potential use as vaccine adjuvant.
Collapse
Affiliation(s)
- Luis Martínez-Gil
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Juan Ayllon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Mila Brum Ortigoza
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Institute of Global Health and Emerging Pathogens, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Megan L. Shaw
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Peter Palese
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lipoprotein lipase inhibits hepatitis C virus (HCV) infection by blocking virus cell entry. PLoS One 2011; 6:e26637. [PMID: 22039521 PMCID: PMC3198807 DOI: 10.1371/journal.pone.0026637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022] Open
Abstract
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.
Collapse
|
15
|
Backus LI, Boothroyd DB, Phillips BR, Belperio P, Halloran J, Mole LA. A sustained virologic response reduces risk of all-cause mortality in patients with hepatitis C. Clin Gastroenterol Hepatol 2011; 9:509-516.e1. [PMID: 21397729 DOI: 10.1016/j.cgh.2011.03.004] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/14/2011] [Accepted: 03/03/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The effectiveness of hepatitis C virus (HCV) treatment with pegylated interferon and ribavirin usually is evaluated by the surrogate end point of sustained virologic response (SVR), although the ultimate goal of antiviral treatment is to reduce mortality. The impact of SVR on all-cause mortality is not well documented by HCV genotype or in populations in routine medical practice with substantial comorbidities. METHODS From the US Department of Veterans Affairs (VA), we identified all patients infected with HCV genotypes 1, 2, or 3, without human immunodeficiency virus co-infection or hepatocellular carcinoma before HCV treatment with pegylated interferon and ribavirin, who started HCV treatment from January 2001 to June 2007, stopped treatment by June 2008, and had a posttreatment HCV RNA test result of SVR or no SVR. Mortality data from VA and non-VA sources were available through 2009. RESULTS HCV genotypes 1, 2, or 3 cohorts consisted of 12,166, 2904, and 1794 patients, respectively, with SVR rates of 35%, 72%, and 62%, respectively. Each cohort had high rates of comorbidities. During a median follow-up period of approximately 3.8 years, 1119 genotype-1, 220 genotype-2, and 196 genotype-3 patients died. In genotype-specific multivariate survival models that controlled for demographic factors, comorbidities, laboratory characteristics, and treatment characteristics, an SVR was associated with substantially reduced mortality risk for each genotype (genotype-1 hazard ratio, 0.70; P < .0001; genotype-2 hazard ratio, 0.64; P = .006; genotype-3 hazard ratio, 0.51; P = .0002). CONCLUSIONS An SVR reduced mortality among patients infected with HCV of genotypes 1, 2, or 3 who were being treated by routine medical practice and had substantial comorbidities.
Collapse
Affiliation(s)
- Lisa I Backus
- Center for Quality Management in Public Health, Veterans Affairs Palo Alto Health Care System, California, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Tong Y, Zhu Y, Xia X, Liu Y, Feng Y, Hua X, Chen Z, Ding H, Gao L, Wang Y, Feitelson MA, Zhao P, Qi ZT. Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. J Virol 2011; 85:2793-802. [PMID: 21177818 PMCID: PMC3067968 DOI: 10.1128/jvi.01818-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.
Collapse
Affiliation(s)
- Yimin Tong
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Yongzhe Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Xueshan Xia
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Yuan Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Yue Feng
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Xian Hua
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Zhihui Chen
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Hui Ding
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Li Gao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Yongzhi Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Mark A. Feitelson
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, China, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650224, China, Department of Infectious Diseases, Affiliated Changhai Hospital, Second Military Medical University, Shanghai 200433, China, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Afzal S, Idrees M, Ali M, Ilyas M, Hussain A, Akram M, Butt S, Saleem S, Rehman IU, Ali L, Shahid M. Envelope 2 protein phosphorylation sites S75 & 277 of hepatitis C virus genotype 1a and interferon resistance: a sequence alignment approach. Virol J 2011; 8:71. [PMID: 21320352 PMCID: PMC3046929 DOI: 10.1186/1743-422x-8-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/15/2011] [Indexed: 01/09/2023] Open
Abstract
Background Hepatitis C is a major health problem affecting more than 200 million individuals in world including Pakistan. Current treatment regimen consisting of interferon alpha and ribavirin does not always succeed to eliminate virus completely from the patient's body. Results Interferon induced antiviral protein kinase R (PKR) has a role in the hepatitis C virus (HCV) treatment as dsRNA activated PKR has the capacity to phosphorylate the serine and threonine of E2 protein and dimerization viral RNA. E2 gene of hepatitis C virus (HCV) genotype 1 has an active role in IFN resistance. E2 protein inhibits and terminates the kinase activity of PKR by blocking it in protein synthesis and cell growth. This brings forward a possible relation of E2 and PKR through a mechanism via which HCV evades the antiviral effect of IFN. Conclusion A hybrid in-silico and wet laboratory approach of motif prediction, evolutionary and structural anlysis has pointed out serine 75 and 277 of the HCV E2 gene as a promising candidate for the serine phosphorylation. It is proposed that serine phosphorylation of HCV E2 gene has a significant role in interferon resistance.
Collapse
Affiliation(s)
- Samia Afzal
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore-53700, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li Z, Chau Y. A facile synthesis of branched poly(ethylene glycol) and its heterobifunctional derivatives. Polym Chem 2011. [DOI: 10.1039/c0py00339e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Mutations in the E2-PePHD region of hepatitis C virus genotype-3a and correlation with response to interferon and ribavirin combination therapy in Pakistani patients. Virol J 2010; 7:377. [PMID: 21194456 PMCID: PMC3019161 DOI: 10.1186/1743-422x-7-377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/31/2010] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C is a major health problem affecting more than 200 million individuals in the world. Current treatment regimen consisting of interferon alpha and ribavirin does not always succeed in eliminating the virus completely from patient's body. One of the mechanisms by which virus evades the antiviral effect of interferon alpha involves protein kinase (PKR) eukaryotic initiation factor 2 alpha (eIF2a) phosphorylation homology domain (PePHD). This domain in genotype 1 strains is reportedly homologous to PKR and its target eIF2a. By binding to PKR, PePHD inhibits its activity and therefore cause virus to evade antiviral activity of interferon (IFN). Many studies have correlated substitutions in this domain to the treatment response and lead to inconclusive results. Some studies suggested that substitutions favor response while others emphasized that no correlation exists. In the present study we therefore compared sequences of PePHD domain of thirty one variants of six hepatitis C virus patients of genotype 3. Three of our HCV 3a infected patients showed rapid virological response to interferon alpha and ribavirin combination therapy whereas the remaining three had breakthrough to the same combination therapy. It is found that PePHD domain is not entirely conserved and has substitutions in some isolates irrespective of the treatment response. However substitution of glutamine (Q) with Leucine (L) in one of the breakthrough responders made it more identical to HCV genotype 1a. These substitutions in the breakthrough responders also tended to increase average hydrophilic activity thus making binding of PePHD to PKR and inhibition of PKR more favorable.
Collapse
|
20
|
Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med 2010; 12:e39. [PMID: 21144091 DOI: 10.1017/s1462399410001705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Efficient human-to-human transmission is a necessary property for the generation of a pandemic influenza virus. To date, only influenza A viruses within the H1-H3 subtypes have achieved this capacity. However, sporadic cases of severe disease in individuals following infection with avian influenza A viruses over the past decade, and the emergence of a pandemic H1N1 swine-origin virus in 2009, underscore the need to better understand how influenza viruses acquire the ability to transmit efficiently. In this review, we discuss the biological constraints and molecular features known to affect virus transmissibility to and among humans. Factors influencing the behaviour of aerosols in the environment are described, and the mammalian models used to study virus transmission are presented. Recent progress in understanding the molecular determinants that confer efficient transmission has identified crucial roles for the haemagglutinin and polymerase proteins; nevertheless, influenza virus transmission remains a polygenic trait that is not completely understood. The clinical implications of this research, including methods currently under investigation to mitigate influenza virus human-to-human transmission, are discussed. A better understanding of the viral determinants necessary for efficient transmission will allow us to identify avian influenza viruses with pandemic potential.
Collapse
|
21
|
Influenza pathogenesis: lessons learned from animal studies with H5N1, H1N1 Spanish, and pandemic H1N1 2009 influenza. Crit Care Med 2010; 38:e21-9. [PMID: 19935414 DOI: 10.1097/ccm.0b013e3181c8b4d5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Because cases of highly pathogenic influenza are rare, no systematic clinical studies have evaluated different therapeutic approaches. Instead, treatment recommendations are aimed at the alleviation of clinical signs and symptoms, especially the restoration of respiratory function, and at the inhibition of virus replication, assuming viral load is responsible for disease phenotype. Studies of highly pathogenic influenza in different animal models, especially nonhuman primates and ferrets, reproduce many of the key observations from clinical cases. Host-response kinetics reveal a delayed but broad activation of genes involved in the innate and acquired immune responses (innate responses produce inflammatory responses), which continue after the virus has been cleared and may contribute importantly to the clinical signs observed. Experimental animal models point to an important role for immune dysregulation in the pathogenesis of highly pathogenic influenza. The use of these models to develop and validate therapeutic approaches is just beginning, but published studies reveal the importance of early treatment with antivirals and show the potential and limitations of approaches aimed at the host response.
Collapse
|
22
|
Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol 2010; 84:21-6. [PMID: 19828604 DOI: 10.1128/jvi.01732-09] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel swine-origin influenza viruses of the H1N1 subtype were first detected in humans in April 2009. As of 12 August 2009, 180,000 cases had been reported globally. Despite the fact that they are of the same antigenic subtype as seasonal influenza viruses circulating in humans since 1977, these viruses continue to spread and have caused the first influenza pandemic since 1968. Here we show that a pandemic H1N1 strain replicates in and transmits among guinea pigs with similar efficiency to that of a seasonal H3N2 influenza virus. This transmission was, however, partially disrupted when guinea pigs had preexisting immunity to recent human isolates of either the H1N1 or H3N2 subtype and was fully blocked through daily intranasal administration of interferon to either inoculated or exposed animals. Our results suggest that partial immunity resulting from prior exposure to conventional human strains may blunt the impact of pandemic H1N1 viruses in the human population. In addition, the use of interferon as an antiviral prophylaxis may be an effective way to limit spread in at-risk populations.
Collapse
|
23
|
Keam SJ, Cvetković RS. Spotlight on peginterferon-alpha-2a (40 kD) plus ribavirin in the management of chronic hepatitis C mono-infection. BioDrugs 2009; 23:63-8. [PMID: 19344193 DOI: 10.2165/00063030-200923010-00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peginterferon-alpha-2a (40 kD) [Pegasys(R)] is a conjugate of recombinant interferon-alpha-2a and a 40 kD branched polyethylene glycol (PEG) moiety that is highly active against hepatitis C virus (HCV). Ribavirin (Copegus) is a synthetic nucleoside analog that acts in synergy with the antiviral activity of peginterferon-alpha-2a (40 kD). The combination of subcutaneous peginterferon-alpha-2a (40 kD) once weekly plus oral ribavirin twice daily is widely approved for use in adult patients with chronic hepatitis C, including those with persistently 'normal' ALT activity or HIV-HCV co-infection, and is recommended as a first-line treatment option for patients with chronic hepatitis C and compensated liver disease. In randomized, phase III trials, the combination has consistently demonstrated good therapeutic efficacy (i.e. high sustained virologic response [SVR] rates) and has been generally well tolerated in both treatment-naïve and treatment-experienced patients with chronic hepatitis C, including those with compensated, advanced liver disease. Several baseline and dynamic (on-treatment) predictors of an SVR that can be used to guide and optimize therapy were also determined in these trials and in subsequent analyses. By utilizing these predictors, therapy with peginterferon-alpha-2a (40 kD) plus ribavirin can be individualized to achieve the optimal balance between efficacy and tolerability, further increasing the usefulness of this drug combination. Thus, peginterferon-alpha-2a (40 kD) plus ribavirin remains a valuable therapy in patients with chronic hepatitis C, as a first-line option in those with compensated liver disease and as a second-line therapy in those with advanced liver disease.
Collapse
Affiliation(s)
- Susan J Keam
- Wolters Kluwer Health
- Adis, 41 Centorian Drive, Mairangi Bay, North Shore 0754, Auckland, New Zealand
| | | |
Collapse
|
24
|
Burlone ME, Budkowska A. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol 2009; 90:1055-1070. [PMID: 19264629 DOI: 10.1099/vir.0.008300-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV), a major cause of chronic liver disease, is a single-stranded positive sense virus of the family Flaviviridae. HCV cell entry is a multi-step process, involving several viral and cellular factors that trigger virus uptake into the hepatocyte. Tetraspanin CD81, human scavenger receptor SR-BI, and tight junction molecules Claudin-1 and occludin are the main receptors that mediate HCV entry. In addition, the virus may use glycosaminoglycans and/or low density receptors on host cells as initial attachment factors. A unique feature of HCV is the dependence of virus replication and assembly on host cell lipid metabolism. Most notably, during HCV assembly and release from the infected cells, virus particles associate with lipids and very-low-density lipoproteins. Thus, infectious virus circulates in patient sera in the form of triglyceride-rich particles. Consequently, lipoproteins and lipoprotein receptors play an essential role in virus uptake and the initiation of infection. This review summarizes the current knowledge about HCV receptors, mechanisms of HCV cell entry and the role of lipoproteins in this process.
Collapse
Affiliation(s)
- Michela E Burlone
- University of Eastern Piedmont 'A. Avogadro', Department of Clinical and Experimental Medicine, Via Solaroli 17, 28100 Novara, Italy.,Pasteur Institute, Hepacivirus and Innate Immunity, 25/28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Agata Budkowska
- Pasteur Institute, Hepacivirus and Innate Immunity, 25/28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
25
|
Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol 2009; 83:2851-61. [PMID: 19144714 DOI: 10.1128/jvi.02174-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the increasing genetic diversity among these viruses and continued outbreaks in avian species underscore the need for more effective measures for the control and prevention of human H5N1 virus infection. Additional small animal models with which therapeutic approaches against virulent influenza viruses can be evaluated are needed. In this study, we used the guinea pig model to evaluate the relative virulence of selected avian and human influenza A viruses. We demonstrate that guinea pigs can be infected with avian and human influenza viruses, resulting in high titers of virus shedding in nasal washes for up to 5 days postinoculation (p.i.) and in lung tissue of inoculated animals. However, other physiologic indicators typically associated with virulent influenza virus strains were absent in this species. We evaluated the ability of intranasal treatment with human alpha interferon (alpha-IFN) to reduce lung and nasal wash titers in guinea pigs challenged with the reconstructed 1918 pandemic H1N1 virus or a contemporary H5N1 virus. IFN treatment initiated 1 day prior to challenge significantly reduced or prevented infection of guinea pigs by both viruses, as measured by virus titer determination and seroconversion. The expression of the antiviral Mx protein in lung tissue correlated with the reduction of virus titers. We propose that the guinea pig may serve as a useful small animal model for testing the efficacy of antiviral compounds and that alpha-IFN treatment may be a useful antiviral strategy against highly virulent strains with pandemic potential.
Collapse
|