1
|
Amankwa CE, DebNath B, Pham JH, Johnson GA, Zhang W, Ranjan A, Stankowska DL, Acharya S. Optimized PLGA encapsulated SA-2 nanosuspension exhibits sustained intraocular pressure reduction in the mouse microbead occlusion model of ocular hypertension. Eur J Pharm Sci 2025; 206:107016. [PMID: 39827971 DOI: 10.1016/j.ejps.2025.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Elevated intraocular pressure (IOP) is implicated in the structural and functional damage to the retinal ganglion cells (RGCs) in primary open-angle glaucoma (POAG). Topical IOP lowering agents provide short-term relief, necessitating frequent dosing. Moreover, non-adherence to frequent eyedrops administration contributes significantly to visual field loss and worsens the disease outcome. We optimized the poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulation of hybrid antioxidant-nitric oxide donor SA-2 (SA-2NP), investigated its bioavailability, duration of IOP lowering efficacy, and effects on retinal function in the microbead model of ocular hypertension (OHT). SA-2 was bioavailable in the anterior and posterior segments after 1, 8, and 24 h post-single topical eyedrop administration. SA-2NP significantly lowered IOP (∼25-34%) and preserved the RGC function after weekly eyedrop administration for 3 weeks in C57BL/6J mice. In conclusion, the optimized SA-2NP formulation demonstrated optimal bioavailability, ocular safety, and prolonged IOP-lowering efficacy in the mouse microbead occlusion model of OHT.
Collapse
Affiliation(s)
- Charles E Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Biddut DebNath
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gretchen A Johnson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Wei Zhang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amalendu Ranjan
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
2
|
Menezes Ferreira AÁ, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa Dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio Átila Menezes Ferreira
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
3
|
Quillen SE, Kimball EC, Ritter-Gordy KA, Du L, Yuan Z, Pease ME, Madhoun S, Nguyen TD, Johnson TV, Quigley HA, Pitha IF. The Mechanisms of Neuroprotection by Topical Rho Kinase Inhibition in Experimental Mouse Glaucoma and Optic Neuropathy. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 39565302 PMCID: PMC11583991 DOI: 10.1167/iovs.65.13.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2024] Open
Abstract
Purpose The purpose of this study was to delineate the neuroprotective mechanisms of topical 2% ripasudil (Rip), a Rho kinase (ROCK) inhibitor. Methods In 340 mice, scheduled 2% Rip or balanced salt solution (BSS) saline drops were intermittently, unilaterally delivered. Intracameral microbead glaucoma (GL) injection increased intraocular pressure (IOP) from 1 day to 6 weeks (6W), whereas other mice underwent optic nerve (ON) crush. Retinal ganglion cell (RGC) loss was assessed using retinal wholemount anti-RNA Binding Protein with Multiple Splicing (RBPMS) labeling and ON axon counts. Axonal transport was quantified with β-amyloid precursor protein (APP) immunolocalization. Micro-Western (Wes) analysis quantified protein expression. Immunofluorescent expression of ROCK pathway molecules, quantitative astrocyte structural changes, and ON biomechanical strains (explanted eyes) were evaluated. ROCK activity assays were conducted in separate ON regions. Results At 6W GL, mean RGC axon loss was 6.6 ± 13.3% in Rip and 36.3 ± 30.9% in BSS (P = 0.04, n = 10/group). RGC soma loss after crush was lower with Rip (68.6 ± 8.2%) than BSS (80.5 ± 5.7%, P = 0.006, n = 10/group). After 6W GL, RGC soma loss was lower with Rip (34 ± 5.0%) than BSS (51 ± 8.1%, P = 0.03, n = 10/group). Axonal transport of APP within the unmyelinated ON (UON) was unaffected by Rip. Maximum principal mechanical strains increased similarly in Rip and BSS-treated mice. Retinal ROCK 1 and 2 activity was reduced by Rip in GL eyes. The pROCK2/ROCK2 protein ratio rose in the retina of BSS GL eyes, but not in Rip GL eyes. Conclusions Topical Rip reduced RGC loss in GL and ON crush, with suppression of ROCK signaling in the retina and ON. The neuroprotection mechanisms appear to involve effects on both RGC and astrocyte responses to IOP elevation.
Collapse
Affiliation(s)
- Sarah E Quillen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth C Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kelsey A Ritter-Gordy
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liya Du
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zhuochen Yuan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary E Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salaheddine Madhoun
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas V Johnson
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ian F Pitha
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Zhu M, Deng X, Zhang N, Zhang P, Lai C, Cai S, Huang J, Chen X, Liu Y, Zeng W, Ke M. Dexamethasone induces trabecular meshwork cell myofibroblast transdifferentiation through ARHGEF26. FASEB J 2024; 38:e23848. [PMID: 39092889 DOI: 10.1096/fj.202400400rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-β pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.
Collapse
Affiliation(s)
- Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Hsu CC, Lin FP, Tseng HC, Ho PK, Chen YH, Chen YG, Lu DW, Chen YH, Chou JL, Chen HC, Huang YC. Activation of the ROCK/MYLK Pathway Affects Complex Molecular and Morphological Changes of the Trabecular Meshwork Associated With Ocular Hypertension. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39115865 PMCID: PMC11314630 DOI: 10.1167/iovs.65.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024] Open
Abstract
Purpose The Rho-associated protein kinase and myosin light chain kinase (ROCK/MYLK) pathway undeniably plays a pivotal role in the pathophysiology of primary open-angle glaucoma (POAG). In our study, we utilized both ocular hypertension (OHT) rabbit models and clinical investigations to gain invaluable insights that propel the development of novel treatments targeting proteins and genes associated with the trabecular meshwork (TM), thereby offering promising avenues for the management of POAG. Methods Following microbead injections into the anterior chamber of the ocular cavity of rabbits, we observed elevated histiocyte numbers and immune scores for MYLK-4/ pMLC-2, alongside a reduction in the void space within the TM. Notably, treatment was performed with 0.1% ITRI-E-(S)-4046, a compound with dual kinase inhibitor (highly specific inhibitor of ROCK1/2 and MYLK4), significantly reduced intraocular pressure (IOP; P < 0.05) and expanded the void space within the TM (P < 0.0001) compared with OHT rabbits. In clinical investigations, we utilized whole transcriptome sequencing to analyze gene expression specifically related to the TM, obtained from patients (5 early-onset and 5 late-onset) undergoing trabeculectomy. Results Our findings revealed 103 differential expression genes (DEGs) out of 265 molecules associated with the Rho family GTPase pathway, exhibiting a P value of 1.25E-10 and a z-score of -2.524. These results underscore significant differences between the early-onset and late-onset POAG and highlight the involvement of the ROCK/MYLK pathway. Conclusions These findings underscore the critical involvement of the ROCK/MYLK pathway in both OHT-related and different onsets of POAG, providing valuable insights into the TM-related molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Pai Lin
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Hao-Chen Tseng
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Pin Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsun Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yann-Guang Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jian-Liang Chou
- Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chih Chen
- Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Yu Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Yao M, Zeng Z, Li S, Zou Z, Chen Z, Chen X, Gao Q, Zhao G, Chen A, Li Z, Wang Y, Ning R, McAlinden C, Zhou X, Huang J. CRISPR-CasRx-mediated disruption of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular pressure and retinal ganglion cell damage in mice. Nat Commun 2024; 15:6395. [PMID: 39080269 PMCID: PMC11289368 DOI: 10.1038/s41467-024-50050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Glaucoma affects approximately 80 million individuals worldwide, a condition for which current treatment options are inadequate. The primary risk factor for glaucoma is elevated intraocular pressure. Intraocular pressure is determined by the balance between the secretion and outflow of aqueous humor. Here we show that using the RNA interference tool CasRx based on shH10 adenovirus-associated virus can reduce the expression of the aqueous humor circulation related genes Rock1 and Rock2, as well as aquaporin 1 and β2 adrenergic receptor in female mice. This significantly reduced intraocular pressure in female mice and provided protection to the retina ganglion cells, ultimately delaying disease progression. In addition, we elucidated the mechanisms by which the knockdown of Rock1 and Rock2, or aquaporin 1 and β2 adrenergic receptor in female mice, reduces the intraocular pressure and secures the retina ganglion cells by single-cell sequencing.
Collapse
Affiliation(s)
- Mingyu Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Zhenhai Zeng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Siheng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhilin Zou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Xinyi Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingyi Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Guoli Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Aodong Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiran Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Rui Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Colm McAlinden
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Corneo Plastic Unit & Eye Bank, Queen Victoria Hospital, East Grinstead, UK
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
7
|
Vercammen H, Ondra M, Kotulova J, De La Hoz EC, Witters C, Jecmenova K, Le Compte M, Deben C, Ní Dhubhghaill S, Koppen C, Hajdúch M, Van den Bogerd B. "Keep on ROCKIn": Repurposed ROCK inhibitors to boost corneal endothelial regeneration. Biomed Pharmacother 2024; 174:116435. [PMID: 38513591 DOI: 10.1016/j.biopha.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The global shortage of corneal endothelial graft tissue necessitates the exploration of alternative therapeutic strategies. Rho-associated protein kinase inhibitors (ROCKi), recognized for their regenerative potential in cardiology, oncology, and neurology, have shown promise in corneal endothelial regeneration. This study investigates the repurposing potential of additional ROCKi compounds. Through screening a self-assembled library of ROCKi on B4G12 corneal endothelial cells, we evaluated their dose-dependent effects on proliferation, migration, and toxicity using live-cell imaging. Nine ROCKi candidates significantly enhanced B4G12 proliferation compared to the basal growth rate. These candidates were further assessed for their potential to accelerate wound closure as another indicator for tissue regeneration capacity, with most demonstrating notable efficacy. To assess the potential impact of candidate ROCKi on key corneal endothelial cell markers related to cell proliferation, leaky tight junctions and ion efflux capacity, we analyzed the protein expression of cyclin E1, CDK2, p16, ZO-1 and Na+/K+-ATPase, respectively. Immunocytochemistry and western blot analysis confirmed the preservation of corneal endothelial markers post-treatment with ROCKi hits. However, notable cytoplasm enlargement and nuclear fragmentation were detected after the treatment with SR-3677 and Thiazovivin, indicating possible cellular stress. In compared parameters, Chroman-1 at a concentration of 10 nM outperformed other ROCKi, requiring significantly 1000-fold lower effective concentration than established ROCKi Y-27632 and Fasudil. Altogether, this study underscores the potential of repurposing ROCKi for treating corneal endothelial dysfunctions, offering a viable alternative to conventional grafting methods, and highlights Chroman-1 as a promising candidate structure for hit-to-lead development.
Collapse
Affiliation(s)
- Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; DrugVision Lab, University of Antwerp, Wilrijk, Belgium.
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Kotulova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Charissa Witters
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; DrugVision Lab, University of Antwerp, Wilrijk, Belgium
| | - Katerina Jecmenova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | | | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic
| | - Bert Van den Bogerd
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Schehlein E, Robin A. Rho Kinase Inhibitors: Strategies in Glaucoma Treatment in Older Adults. Drugs Aging 2024; 41:399-406. [PMID: 38416395 DOI: 10.1007/s40266-024-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness which preferentially affects older individuals. No medications or therapies which are currently in our arsenal actually treat glaucoma itself. We know that intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma. The primary treatments for glaucoma include medications, laser therapies, and surgical therapies. The Rho kinase inhibitors are the newest class of medications currently on the market and in development for topical IOP-lowering therapy. Studies have shown their ability to lower eye pressure individually and in combination with other medications. Their ability to potentially provide neuroprotective effects for disease modification also gives this class exciting potential for glaucoma treatment.
Collapse
Affiliation(s)
| | - Alan Robin
- University of Michigan, Ann Arbor, MI, USA
- Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
10
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
11
|
Verma SS, Gudiseva HV, Chavali VRM, Salowe RJ, Bradford Y, Guare L, Lucas A, Collins DW, Vrathasha V, Nair RM, Rathi S, Zhao B, He J, Lee R, Zenebe-Gete S, Bowman AS, McHugh CP, Zody MC, Pistilli M, Khachatryan N, Daniel E, Murphy W, Henderer J, Kinzy TG, Iyengar SK, Peachey NS, Taylor KD, Guo X, Chen YDI, Zangwill L, Girkin C, Ayyagari R, Liebmann J, Chuka-Okosa CM, Williams SE, Akafo S, Budenz DL, Olawoye OO, Ramsay M, Ashaye A, Akpa OM, Aung T, Wiggs JL, Ross AG, Cui QN, Addis V, Lehman A, Miller-Ellis E, Sankar PS, Williams SM, Ying GS, Cooke Bailey J, Rotter JI, Weinreb R, Khor CC, Hauser MA, Ritchie MD, O'Brien JM. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell 2024; 187:464-480.e10. [PMID: 38242088 PMCID: PMC11844349 DOI: 10.1016/j.cell.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Collapse
Affiliation(s)
- Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca J Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vrathasha Vrathasha
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonika Rathi
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selam Zenebe-Gete
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita S Bowman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Maxwell Pistilli
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naira Khachatryan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebenezer Daniel
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Linda Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radha Ayyagari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey Liebmann
- Department of Ophthalmology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Donald L Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahmara G Ross
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Lehman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eydie Miller-Ellis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Pharmacology and Toxicology, Center for Health Disparities, Brody School of Medicine. East Carolina University, Greenville, NC, 27834, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|
12
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
13
|
Amankwa CE, Kodati B, Donkor N, Acharya S. Therapeutic Potential of Antioxidants and Hybrid TEMPOL Derivatives in Ocular Neurodegenerative Diseases: A Glimpse into the Future. Biomedicines 2023; 11:2959. [PMID: 38001960 PMCID: PMC10669210 DOI: 10.3390/biomedicines11112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Reactive oxygen species play a significant role in the pathogenesis of various ocular neurodegenerative diseases especially glaucoma, age-related macular degeneration (AMD), and ocular ischemic stroke. Increased oxidative stress and the accumulation of ROS have been implicated in the progression of these diseases. As a result, there has been growing interest in exploring potential therapeutic and prophylactic strategies involving exogenous antioxidants. In recent years, there have been significant advancements in the development of synthetic therapeutic antioxidants for targeting reactive oxygen species (ROS) in neurodegenerative diseases. One area of focus has been the development of hybrid TEMPOL derivatives. In the context of ocular diseases, the application of next-generation hybrid TEMPOL antioxidants may offer new avenues for neuroprotection. By targeting ROS and reducing oxidative stress in the retina and optic nerve, these compounds have the potential to preserve retinal ganglion cells and trabecular meshwork and protect against optic nerve damage, mitigating irreversible blindness associated with these diseases. This review seeks to highlight the potential impact of hybrid TEMPOL antioxidants and their derivatives on ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles E. Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nina Donkor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- Department of Pharmaceutical Science, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
14
|
Faralli JA, Filla MS, Peters DM. Role of integrins in the development of fibrosis in the trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1274797. [PMID: 38983065 PMCID: PMC11182094 DOI: 10.3389/fopht.2023.1274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 07/11/2024]
Abstract
Primary open angle glaucoma (POAG) is a progressive and chronic disease exhibiting many of the features of fibrosis. The extracellular matrix (ECM) in the trabecular meshwork (TM) undergoes extensive remodeling and enhanced rigidity, resembling fibrotic changes. In addition, there are changes associated with myofibroblast activation and cell contractility that further drives tissue fibrosis and stiffening. This review discusses what is known about the integrins in the TM and their involvement in fibrotic processes.
Collapse
Affiliation(s)
- Jennifer A Faralli
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mark S Filla
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
15
|
Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R. Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Exp Biol Med (Maywood) 2023; 248:1425-1436. [PMID: 37873757 PMCID: PMC10657592 DOI: 10.1177/15353702231199466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
Collapse
Affiliation(s)
| | - Norhafiza Razali
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Amy Suzana Abu Bakar
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Noor Fahitah Abu Hanipah
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University (IMU), 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Sharif NA, Odani-Kawabata N, Lu F, Pinchuk L. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma. Exp Eye Res 2023; 229:109415. [PMID: 36803996 DOI: 10.1016/j.exer.2023.109415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.
Collapse
Affiliation(s)
- Najam A Sharif
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Singapore Eye Research Institute, Singapore; Eye-ACP Duke-National University of Singapore Medical School, Singapore; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; Imperial College of Science and Technology, St. Mary's Campus, London, UK; Institute of Ophthalmology, University College London, London, UK.
| | | | - Fenghe Lu
- Product Development Division, Santen Inc., Emeryville, CA, USA
| | - Leonard Pinchuk
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Biomedical Engineering Department, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
Chen S, Huang Y, Liu R, Lin Z, Huang B, Ai W, He J, Gao Y, Xie P. Exosomal miR‑152‑5p/ARHGAP6/ROCK axis regulates apoptosis and fibrosis in cardiomyocytes. Exp Ther Med 2023; 25:165. [PMID: 36936709 PMCID: PMC10015317 DOI: 10.3892/etm.2023.11864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
Acute myocardial infarction (AMI) is a fatal cardiovascular disease with a high mortality rate. The discovery of effective biomarkers is crucial for the diagnosis and treatment of AMI. In the present study, miRNA sequencing and reverse transcription-quantitative polymerase chain reaction techniques revealed that the expression of exosome derived miR-152-5p was significantly downregulated in patients with AMI compared with healthy controls. A series of functional validation experiments were then performed using H9c2 cardiomyocytes. Following transfection of the cardiomyocytes using an miR-152-5p inhibitor, immunofluorescence staining of a-smooth muscle actin revealed a marked increase in fibrosis. Western blotting revealed that the expression levels of the apoptotic protein Bax, TNF-α and collagen-associated proteins were significantly increased, whereas those of the apoptosis-inhibiting factor Bcl-2 and vascular endothelial growth factor A were significantly decreased. Furthermore, the binding of Rho GTPase-activating protein 6 (ARHGAP6) to miR-152-5p was predicted using an online database and verified using a dual-luciferase reporter gene assay. The transfection of cardiomyocytes with miR-152-5p mimics was found to inhibit the activation of ARHGAP6 and Rho-associated coiled-coil containing kinase 2 (ROCK2). These results suggest that miR-152-5p targets ARHGAP6 through the ROCK signaling pathway to inhibit AMI, which implies that miR-152-5p may be a diagnostic indicator and potential target for treatment of myocardial infarction.
Collapse
Affiliation(s)
- Shaoyuan Chen
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Department of Cardiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
- Correspondence to: Dr Shaoyuan Chen, Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, 89 Taoyuan Road, Nanshan, Shenzhen, Guangdong 518052, P.R. China
| | - Yulang Huang
- Department of Cardiology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong 518067, P.R. China
| | - Rongzhi Liu
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Zixiang Lin
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Bihan Huang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Wen Ai
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
- Department of Cardiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Jianjun He
- First Clinical Department, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Yulan Gao
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Peiyi Xie
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
18
|
Sturdivant J, Williams SS, Ina M, Weksler M, McDougal A, Clancy D, deLong MA, Girouard N, Zaretskaia M, Brennan K, Glendenning A, Foley B, Lin CW, White JC, Kopczynski C, Kelly CR. Discovery and Preclinical Development of Novel Intraocular Pressure-Lowering Rho Kinase Inhibitor: Corticosteroid Conjugates. J Ocul Pharmacol Ther 2023; 39:117-127. [PMID: 36602977 DOI: 10.1089/jop.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Purpose: A new class of ocular steroids designed to mitigate steroid-induced intraocular pressure (IOP) elevation while maintaining anti-inflammatory activity was developed. Herein is described the discovery and preclinical characterization of ROCK'Ster compound 1. Methods: Codrugs consisting of a Rho kinase inhibitor (ROCKi) and a corticosteroid were synthesized. Compounds were initially screened in vitro for ROCKi activity and anti-inflammatory activity against the proinflammatory interleukin 23 and bacterial lipopolysaccharide (LPS) pathways. Selected compounds were then screened for solubility, chemical stability, and ex vivo corneal metabolism. Lead compound 1 was evaluated for IOP lowering in the Dutch Belted rabbit and for anti-inflammatory efficacy in both a postcataract surgery model and an allergic eye disease (AED) mouse model. Results: Several ROCK'Sters were found to be potent inhibitors of ROCK (Kis < 50 nM), have high anti-inflammatory activity in vitro (IC50s < 50 nM), display sufficient stability in topical ophthalmic formulations, and have a moderate rate of corneal metabolism. Compound 1 (0.1% and 0.25%, quater in die [QID]-4 times a day) demonstrated IOP-lowering capability without inducing hyperemia in our rabbit model. When compared with the marketed steroids, Durezol® and Pred Forte®, compound 1 (0.1%, 0.25%) demonstrated noninferiority in clinical scoring in a rabbit model of inflammation after surgery. In addition, anti-inflammatory outcomes were observed with compound 1 (0.1%) relative to Lotemax® or vehicle control in an AED mouse model. Conclusion: ROCK'Ster compound 1 is a novel compound suitable for topical ocular dosing that possesses IOP-lowering capability along with similar anti-inflammatory activity compared with marketed steroids.
Collapse
Affiliation(s)
- Jill Sturdivant
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Stuart S Williams
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Ina
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Meredith Weksler
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Alan McDougal
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Daphne Clancy
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Mitchell A deLong
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Natalie Girouard
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Maria Zaretskaia
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Karen Brennan
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Angela Glendenning
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Briana Foley
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Cheng-Wen Lin
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Jeffrey C White
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Casey Kopczynski
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| | - Curtis R Kelly
- Research & Development, Aerie Pharmaceuticals, Inc., Durham, North Carolina, USA
| |
Collapse
|
19
|
Wong JC, Shiuey EJ, Razeghinejad R, Shukla AG, Kolomeyer NN, Myers JS, Pro MJ, Lee D. The effectiveness and tolerability of fixed-dose combination netarsudil 0.02%/latanoprost 0.005% at a tertiary glaucoma center. Graefes Arch Clin Exp Ophthalmol 2023; 261:193-200. [PMID: 35904596 DOI: 10.1007/s00417-022-05780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To assess real-world effectiveness and tolerability of fixed-dose combination netarsudil 0.02%/latanoprost 0.005% (FCNL) in management of glaucoma patients in a tertiary eye care center. METHODS This retrospective cohort study included glaucoma patients initiated on FCNL from January 2018 to July 2021 with at least 1-month follow-up. Demographic and clinical data were collected at baseline and at follow-up visits through 12 months. Patient-solicited side effects were recorded at each visit. Maximum glaucoma pharmacotherapy was defined as surgery/laser being the next treatment option following an intensive pharmacotherapy regimen, or when pharmacotherapy could not be increased due to allergy/intolerance or all pharmacologic mechanisms already being in use. RESULTS Seventy-nine eyes of 47 patients were included. Mean age was 67.7 ± 14.7 years. Baseline IOP was 18.7 ± 4.9 mmHg; mean change in IOP (∆IOP) each study visit compared to baseline ranged from - 1.6 ± 3.5 to - 4.4 ± 4.1 mmHg (all p < 0.05). The eyes on maximum glaucoma pharmacotherapy (73.4%) had similar ∆IOP compared to those on non-maximal therapy at each visit (p > 0.2 for all). Forty-three (54.4%) eyes were switched from a prostaglandin analog alone, producing a 1-month IOP reduction of - 4.7 ± 3.9 mmHg at 1 month which remained significant at each visit for the 12-month study period (all p < 0.05). Across all study visits, conjunctival hyperemia was documented in 26 (32.9%) eyes. Subjective blurry vision was reported in 22 (27.8%) eyes without significant worsening of visual acuity at any visit (all p > 0.05). Six (7.6%) and 7 (8.9%) eyes required further medical or surgical/laser intervention, respectively. Kaplan-Meier analysis revealed no significant difference in the need for subsequent medical or surgical intervention between those on maximum and non-maximal pharmacotherapy (p > 0.4). CONCLUSION FCNL was well-tolerated and demonstrated a significant and sustained reduction in IOP, even as last-line therapy before incisional or laser surgery in those on maximum glaucoma pharmacotherapy. FCNL is a viable treatment option for glaucomatous eyes before consideration of surgical intervention.
Collapse
Affiliation(s)
- Jae-Chiang Wong
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Eric J Shiuey
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reza Razeghinejad
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aakriti G Shukla
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Natasha N Kolomeyer
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan S Myers
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael J Pro
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel Lee
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1100, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Vercammen H, Miron A, Oellerich S, Melles GRJ, Ní Dhubhghaill S, Koppen C, Van Den Bogerd B. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea. Transl Res 2022; 248:111-127. [PMID: 35609782 DOI: 10.1016/j.trsl.2022.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Currently, there are very few well-established treatments to stimulate corneal endothelial cell regeneration in vivo as a cure for corneal endothelial dysfunctions. The most frequently performed intervention for a damaged or dysfunctional corneal endothelium nowadays is corneal endothelial keratoplasty, also known as lamellar corneal transplantation surgery. Newer medical therapies are emerging and are targeting the regeneration of the corneal endothelium, helping the patients regain their vision without the need for donor tissue. Alternatives to donor tissues are needed as the aging population requiring transplants, has further exacerbated the pressure on the corneal eye banking system. Significant ongoing research efforts in the field of corneal regenerative medicine have been made to elucidate the underlying pathways and effector proteins involved in corneal endothelial regeneration. However, the literature offers little guidance and selective attention to the question of how to fully exploit these pathways. The purpose of this paper is to provide an overview of wound healing characteristics from a biochemical level in the lab to the regenerative features seen in the clinic. Studying the pathways involved in corneal wound healing together with their key effector proteins, can help explain the effect on the proliferation and migration capacity of the corneal endothelial cells.
Collapse
Affiliation(s)
- Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Gerrit R J Melles
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands; Melles Cornea Clinic Rotterdam, The Netherlands
| | - Sorcha Ní Dhubhghaill
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bert Van Den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
21
|
The Effects of Cannabidiol on Aqueous Humor Outflow and Trabecular Meshwork Cell Signaling. Cells 2022; 11:cells11193006. [PMID: 36230968 PMCID: PMC9564313 DOI: 10.3390/cells11193006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Intraocular pressure (IOP) is regulated primarily through aqueous humor production by ciliary body and drainage through uveoscleral and trabecular meshwork (TM) tissues. The goal of this study was to measure the effect of non-psychotropic cannabidiol (CBD) on aqueous humor outflow through TM and assess the effect of CBD on the TM cell signaling pathways that are important for regulating outflow. Perfused porcine eye anterior segment explants were used to investigate the effects of CBD on aqueous humor outflow. Cultured porcine TM cells were used to study the effects of CBD on TM cell contractility, myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation, and RhoA activation. In the anterior segment perfusion experiments, aqueous humor outflow was increased significantly within 1 h after adding 1 µM CBD and the effect was sustained over the 5 h of measurement. Treatment of TM cells with 1 µM CBD significantly decreased TM cell-mediated collagen contraction, inhibited phosphorylation of MLC and MYPT1, and reduced RhoA activation. Our data demonstrate, for the first time, that as a potential therapeutic agent for lowering intraocular pressure, CBD can enhance aqueous humor outflow and modify TM cell signaling.
Collapse
|
22
|
Michalak SR, Kim S, Park S, Casanova MI, Bowman MAW, Ferneding M, Leonard BC, Good KL, Li JY, Thomasy SM. Topical Ripasudil for the Treatment of Primary Corneal Endothelial Degeneration in Dogs. Transl Vis Sci Technol 2022; 11:2. [PMID: 36048012 PMCID: PMC9440609 DOI: 10.1167/tvst.11.9.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the tolerability and efficacy of topical rho-kinase inhibitor ripasudil in the treatment of primary corneal endothelial degeneration (PCED) in dogs. Methods Twenty-one eyes of 12 client-owned, PCED-affected dogs received topical ripasudil 4 times daily. Ophthalmic examination, ultrasonic pachymetry (USP), Fourier-domain optical coherence tomography (FD-OCT), and in vivo confocal microscopy were performed at baseline and 1, 3, 6, and 12 months. Effects of treatment on corneal thickness, corneal edema extent, and endothelial cell density (ECD) were evaluated by repeated-measures ANOVA or Friedman test. Individual eyes were classified as improved, progressed, or stable at 12 months using clinical response criteria. Kaplan-Meier curves and log-rank test were used to compare ripasudil-treated eyes to age-, breed/size-, and disease stage-matched historical controls. Results During treatment, 12 dogs developed conjunctival hyperemia, 4 demonstrated reticular bullous epithelial edema, and 2 developed corneal stromal hemorrhage. No adverse event necessitated permanent cessation of ripasudil. Central corneal thickness measured by USP significantly progressed from baseline to 12 months. Corneal thickness by FD-OCT, ECD, and edema extent did not differ over time. Considered individually, 5 eyes improved, 8 remained stable, and 8 progressed. The log-rank test found less edema progression in ripasudil-treated eyes compared to historical controls. Conclusions Ripasudil was well-tolerated in PCED-affected dogs. Response to therapy varied; 62% of eyes showed improved or stable disease whereas 38% progressed. Ripasudil-treated eyes progressed more slowly than historical controls. Translational Relevance Topical ripasudil offered a therapeutic benefit in a subset of patients using a canine model of endothelial degeneration, which may guide future trials in humans.
Collapse
Affiliation(s)
- Sarah R Michalak
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - M Isabel Casanova
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Morgan A W Bowman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Michelle Ferneding
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Kathryn L Good
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jennifer Y Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, California, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
23
|
De Ieso ML, Kuhn M, Bernatchez P, Elliott MH, Stamer WD. A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone. Front Cell Dev Biol 2022; 10:855097. [PMID: 35372369 PMCID: PMC8969750 DOI: 10.3389/fcell.2022.855097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in the CAV1/2 gene loci impart increased risk for primary open-angle glaucoma (POAG). CAV1 encodes caveolin-1 (Cav1), which is required for biosynthesis of plasma membrane invaginations called caveolae. Cav1 knockout mice exhibit elevated intraocular pressure (IOP) and decreased outflow facility, but the mechanistic role of Cav1 in IOP homeostasis is unknown. We hypothesized that caveolae sequester/inhibit RhoA, to regulate trabecular meshwork (TM) mechanosensing and contractile tone. Using phosphorylated myosin light chain (pMLC) as a surrogate indicator for Rho/ROCK activity and contractile tone, we found that pMLC was elevated in Cav1-deficient TM cells compared to control (131 ± 10%, n = 10, p = 0.016). Elevation of pMLC levels following Cav1 knockdown occurred in cells on a soft surface (137 ± 7%, n = 24, p < 0.0001), but not on a hard surface (122 ± 17%, n = 12, p = 0.22). In Cav1-deficient TM cells where pMLC was elevated, Rho activity was also increased (123 ± 7%, n = 6, p = 0.017), suggesting activation of the Rho/ROCK pathway. Cyclic stretch reduced pMLC/MLC levels in TM cells (69 ± 7% n = 9, p = 0.002) and in Cav1-deficient TM cells, although not significantly (77 ± 11% n = 10, p = 0.059). Treatment with the Cav1 scaffolding domain mimetic, cavtratin (1 μM) caused a reduction in pMLC (70 ± 5% n = 7, p = 0.001), as did treatment with the scaffolding domain mutant cavnoxin (1 μM) (82 ± 7% n = 7, p = 0.04). Data suggest that caveolae differentially regulate RhoA signaling, and that caveolae participate in TM mechanotransduction. Cav1 regulation of these key TM functions provide evidence for underlying mechanisms linking polymorphisms in the Cav1/2 gene loci with increased POAG risk.
Collapse
Affiliation(s)
- Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Heart + Lung Innovation Centre, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| |
Collapse
|
24
|
Frifelt LEW, Subhi Y, Holm LM, Singh A. Impact of tobacco use on corneal thickness and endothelial health: a systematic review with meta-analyses. Acta Ophthalmol 2022; 100:26-34. [PMID: 34021700 DOI: 10.1111/aos.14897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the impact of tobacco use on corneal thickness and corneal endothelial health. METHODS We searched the PubMed/MEDLINE, EMBASE, the Cochrane Central and all affiliated databases of the Web of Science on 20 July 2020. Two authors reviewed the studies and extracted the data in an independent fashion. Studies were reviewed qualitatively in the text, and central corneal thickness (CCT) and corneal endothelial characteristics (endothelial cell density, endothelial cell variability, average of endothelial cell size and endothelial cell hexagonality) were introduced for quantitative analyses. RESULTS Eighteen studies (2077 were smokers and 6429 non-smokers) were identified, of which 17 studies provided data eligible for one or more of the quantitative analyses. When compared to non-smokers, smokers had a higher CCT (+3.3 μm, 95% CI: +0.9 to +5.7 μm, p = 0.007) and a lower endothelial cell density (-140 cells/mm2 , 95% CI: -30 to -250 cells/mm2 , p = 0.01). Other corneal endothelial measures did not differ significantly. CONCLUSION Tobacco use is associated with a higher CCT and lower corneal endothelium cell density, but the clinical impact of these findings is small. Further studies are warranted on patients with a priori poor corneal health, where smoking may constitute an important risk of further progression, for example upon anterior segment surgery.
Collapse
Affiliation(s)
| | - Yousif Subhi
- Department of Ophthalmology Rigshospitalet‐Glostrup Copenhagen Denmark
| | - Lars Morten Holm
- Department of Ophthalmology Rigshospitalet‐Glostrup Copenhagen Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Amardeep Singh
- Department of Ophthalmology Rigshospitalet‐Glostrup Copenhagen Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
25
|
Liu Z, Li S, Qian X, Li L, Zhang H, Liu Z. RhoA/ROCK-YAP/TAZ Axis Regulates the Fibrotic Activity in Dexamethasone-Treated Human Trabecular Meshwork Cells. Front Mol Biosci 2021; 8:728932. [PMID: 34552960 PMCID: PMC8450533 DOI: 10.3389/fmolb.2021.728932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
High intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of irreversible blindness. Abnormal fibrotic activity in the human trabecular meshwork (HTM) cells is considered to be partly responsible for the increased resistance of aqueous humor outflow and IOP. This study aimed to identify the fibrotic pathways using integrated bioinformatics and further elucidate their mechanism of regulating fibrotic activity in dexamethasone (DEX)-treated HTM cells. Microarray datasets from the GEO database were obtained and analyzed by GEO2R. Bioinformatics analyses, including GO and KEGG analyses, were performed to explore biological functions and signaling pathways of differentially expressed genes (DEGs). The fibrotic pathways and targets were determined by western blot, RT-qPCR, or immunofluorescence staining. The cellular elastic modulus was measured using an atomic force microscope. A total of 204 DEGs, partly enriched in fibrotic activity (collagen-containing ECM, fibroblast activation) and Rap1, Ras, TGF-β, and Hippo pathways, were identified. Experimental results showed that DEX induced fibrotic activity and regulated the expression of RhoA/ROCK in HTM cells. Similarly, the constitutively active RhoA (RhoAG14V) also promoted the fibrotic activity of HTM cells. Mechanistically, RhoAG14V induced the expression and nuclear translocation of YAP/TAZ to produce CTGF. Moreover, inhibition of ROCK or YAP decreased the expression of Collagen I and α-SMA proteins induced by DEX or RhoAG14V in HTM cells. In conclusion, these results indicate that RhoA/ROCK-YAP/TAZ axis plays a crucial role in regulating the fibrotic activity of DEX-treated HTM cells.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Shanshan Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiuqing Qian
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Lin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Haixia Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Sun Y, Li Y, Miao Z, Yang R, Zhang Y, Wu M, Lin G, Li L. Discovery of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2021; 45:128138. [PMID: 34044123 DOI: 10.1016/j.bmcl.2021.128138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Rho-associated protein kinases (ROCKs) are associated with the pathology of glaucoma and discovery of ROCK inhibitors has attracted much attention in recent years. Herein, we report a series of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies led to the discovery of compound 12b, which showed potent activities against ROCK I and ROCK Ⅱ with IC50 values of 93 nM and 3 nM, respectively. 12b also displayed considerable selectivity for ROCKs. The mean IOP-lowering effect of 12b in an ocular normotensive model was 34.3%, and no obvious hyperemia was observed. Overall, this study provides a good starting point for ROCK-targeting drug discovery against glaucoma.
Collapse
Affiliation(s)
- Yumeng Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Rho kinase (ROCK) inhibitors are growing increasingly relevant in ophthalmology, and the goal of this review is to summarize their mechanisms of action and potential applications in the subspecialties of glaucoma, retina, and cornea. We will focus specifically on corneal endothelial wound healing, for which ROCK inhibition demonstrates particular promise. RECENT FINDINGS ROCK inhibition has been shown to promote corneal endothelial cell proliferation, increase intercellular adhesion, and suppress apoptosis. Topical ROCK inhibitor treatment has exhibited potential use in Fuchs endothelial dystrophy, corneal edema from acute surgical trauma and other etiologies, and tissue engineering therapy for the endothelial disease. Ripasudil and netarsudil, the two ROCK inhibitors available for ophthalmic use, are generally very well tolerated with mild and transient local side effects. SUMMARY ROCK inhibitors are revolutionizing the subspecialty of cornea, and further research is needed to compare long-term outcomes of ROCK inhibitor therapy to those of conventional endothelial keratoplasty, including visual acuity and endothelial cell density. Other possible avenues include the use of ROCK inhibitors to prolong corneal graft survival, and early data appears promising.
Collapse
|
28
|
De Ieso ML, Gurley JM, McClellan ME, Gu X, Navarro I, Li G, Gomez-Caraballo M, Enyong E, Stamer WD, Elliott MH. Physiologic Consequences of Caveolin-1 Ablation in Conventional Outflow Endothelia. Invest Ophthalmol Vis Sci 2021; 61:32. [PMID: 32940661 PMCID: PMC7500130 DOI: 10.1167/iovs.61.11.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Polymorphisms at the caveolin-1/2 locus are associated with glaucoma and IOP risk and deletion of caveolin-1 (Cav1) in mice elevates IOP and reduces outflow facility. However, the specific location/cell type responsible for Cav1-dependent regulation of IOP is unclear. We hypothesized that endothelial Cav1 in the conventional outflow (CO) pathway regulate IOP via endothelial nitric oxide synthase (eNOS) signaling. Methods We created a mouse with targeted deletion of Cav1 in endothelial cells (Cav1ΔEC) and evaluated IOP, outflow facility, outflow pathway distal vascular morphology, eNOS phosphorylation, and tyrosine nitration of iridocorneal angle tissues by Western blotting. Results Endothelial deletion of Cav1 resulted in significantly elevated IOP versus wild-type mice but not a concomitant decrease in outflow facility. Endothelial Cav1 deficiency did not alter the trabecular meshwork or Schlemm's canal morphology, suggesting that the effects observed were not due to developmental deformities. Endothelial Cav1 deletion resulted in eNOS hyperactivity, modestly increased protein nitration, and significant enlargement of the drainage vessels distal to Schlemm's canal. L-Nitro-arginine methyl ester treatment reduced outflow in Cav1ΔEC but not wild-type mice and had no effect on the size of drainage vessels. Endothelin-1 treatment decrease the outflow and drainage vessel size in both wild-type and Cav1ΔEC mice. Conclusions Our results suggest that hyperactive eNOS signaling in the CO pathway of both Cav1ΔEC and global Cav1 knockout mice results in chronic dilation of distal CO vessels and protein nitration, but that Cav1 expression in the trabecular meshwork is sufficient to rescue CO defects reported in global Cav1 knockout mice.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Jami M Gurley
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiaowu Gu
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Guorong Li
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Maria Gomez-Caraballo
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Eric Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Michael H Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
29
|
Luo LJ, Nguyen DD, Lai JY. Harnessing the tunable cavity of nanoceria for enhancing Y-27632-mediated alleviation of ocular hypertension. Theranostics 2021; 11:5447-5463. [PMID: 33859757 PMCID: PMC8039939 DOI: 10.7150/thno.54525] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Y-27632 is a potent ophthalmic drug for the treatment of ocular hypertension, a globally prevalent eye disease. However, the sustained delivery of Y-27632 by a therapeutic carrier to lesion sites located in the inner segments of the eye for effectively treating the ocular disorder still remains challenging. Methods: To realize the goal, a strategy based on solvothermal-assisted deposition/infiltration in combination with surface modification is utilized to synthesize hollow mesoporous ceria nanoparticles (HMCNs) with tailorable shell thicknesses and drug release profiles. The shell thickness of HMCNs is rationally exploited for achieving sustained drug release and advanced therapeutic benefits. Results: The shell thickness can regulate release profiles of Y-27632, displaying that thick and thin (~40 nm and ~10 nm) shelled HMCNs reveal burst release characteristics (within 2 days) or limited drug loading content (~10% for the 40 nm thick). As a compromise, the HMCNs with moderate shell thickness (~20 nm) possess the most sustained drug release over a period of 10 days. In a rabbit model of glaucoma, a single instillation of the optimized Y-27632-loaded HMCNs can effectively treat glaucoma for 10 days via simultaneously repairing the defected cornea (recovery of ~93% ATP1A1 mRNA levels), restoring the reduced thickness of outer nuclear layer to normal (~64 µm), and restoring ~86% of the impaired photoreceptor cells. Conclusion: A comprehensive study on the importance of HMCN shell thickness in developing long-acting nano eye drops for the efficient management of glaucoma is proposed. The findings suggest a central role of nanobiomaterial structural engineering in developing the long-life eye drops for pharmacological treatment of intraocular diseases.
Collapse
|
30
|
Clement Freiberg J, von Spreckelsen A, Khachatryan N, Kolko M, Azuara-Blanco A, Virgili G. Rho kinase inhibitor for primary open-angle glaucoma and ocular hypertension. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2020. [DOI: 10.1002/14651858.cd013817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Naira Khachatryan
- Department of Ophthalmology; University of Colorado School of Medicine; Aurora Colorado USA
| | - Miriam Kolko
- Department of Ophthalmology and Department of Drug Design and Pharmacology; Copenhagen University Hospital, University of Copenhagen; Copenhagen Denmark
| | | | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA); University of Florence; Florence Italy
| |
Collapse
|
31
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Zhou Y, Xia X, Yang E, Wang Y, Marra KG, Ethier CR, Schuman JS, Du Y. Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential. FASEB J 2020; 34:7160-7177. [PMID: 32259357 PMCID: PMC7254553 DOI: 10.1096/fj.201902326r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
The trabecular meshwork (TM) is an ocular tissue that maintains intraocular pressure (IOP) within a physiologic range. Glaucoma patients have reduced TM cellularity and, frequently, elevated IOP. To establish a stem cell-based approach to restoring TM function and normalizing IOP, human adipose-derived stem cells (ADSCs) were induced to differentiate to TM cells in vitro. These ADSC-TM cells displayed a TM cell-like genotypic profile, became phagocytic, and responded to dexamethasone stimulation, characteristic of TM cells. After transplantation into naive mouse eyes, ADSCs and ADSC-TM cells integrated into the TM tissue, expressed TM cell markers, and maintained normal IOP, outflow facility, and extracellular matrix. Cell migration and affinity results indicated that the chemokine pair CXCR4/SDF1 may play an important role in ADSC-TM cell homing. Our study demonstrates the possibility of applying autologous or allogeneic ADSCs and ADSC-TM cells as a potential treatment to restore TM structure and function in glaucoma.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Co-first author
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Co-first author
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yiwen Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Kacey G. Marra
- Departments of Plastic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - C. Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332
| | - Joel S. Schuman
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
33
|
Kang JH, Boumenna T, Stein JD, Khawaja A, Rosner BA, Wiggs JL, Pasquale LR. Association of Statin Use and High Serum Cholesterol Levels With Risk of Primary Open-Angle Glaucoma. JAMA Ophthalmol 2020; 137:756-765. [PMID: 31046067 DOI: 10.1001/jamaophthalmol.2019.0900] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Importance The use of statins (hydroxymethylglutaryl coenzyme A inhibitors) has been associated with a lower risk of primary open-angle glaucoma (POAG); however, results have been conflicting, and little is known about the association between high cholesterol levels and POAG. Objective To assess the association of elevated cholesterol levels and statin use with incident POAG. Design, Setting, and Participants This study used data collected biennially from participants aged 40 years or older who were free of glaucoma and reported eye examinations, within 3 population-based cohorts: the Nurses' Health Study (N = 50 710; followed up from 2000 to 2014), the Nurses' Health Study 2 (N = 62 992; 1999-2015), and the Health Professionals Follow-up Study (N = 23 080; 2000-2014). Incident cases of POAG were confirmed by medical record review. The analyses were performed in January 2019. Exposures Biennially updated self-reported information on elevated cholesterol level status, serum cholesterol levels, and duration of statin use. Main Outcomes and Measures Multivariable-adjusted relative risks (RRs) and 95% CIs were estimated using Cox proportional hazards regression models on pooled data, with stratification by cohort. Results Among the 136 782 participants in the 3 cohorts (113 702 women and 23 080 men), 886 incident cases of POAG were identified. Every 20-mg/dL increase in total serum cholesterol was associated with a 7% increase in risk of POAG (RR, 1.07 [95% CI, 1.02-1.11]; P = .004). Any self-reported history of elevated cholesterol was also associated with a higher risk of POAG (RR, 1.17 [95% CI, 1.00-1.37]). A history of any statin use was associated with a 15% lower risk of POAG (RR, 0.85 [95% CI, 0.73-0.99]). Use of statins for 5 or more years vs never use of statins was associated with a 21% lower risk of POAG (RR, 0.79 [95% CI, 0.65-0.97]; P = .02 for linear trend). The association between use of statins for 5 or more years vs never use of statins and risk of POAG was more inverse in those who were older (≥65 years: RR, 0.70 [95% CI, 0.56-0.87] vs <65 years: RR, 1.05 [95% CI, 0.68-1.63]; P = .01 for interaction). Conclusions and Relevance Among adults aged 40 years or older, higher serum cholesterol levels were associated with higher risk of POAG, while 5 or more years of statin use compared with never use of statins was associated with a lower risk of POAG.
Collapse
Affiliation(s)
- Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tahani Boumenna
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston
| | - Joshua D Stein
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor.,Center for Eye Policy and Innovation, University of Michigan, Ann Arbor.,Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
| | - Anthony Khawaja
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital National Health Service Foundation Trust, University College London Institute of Ophthalmology, London, United Kingdom
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston
| | - Louis R Pasquale
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston.,now with Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Mehran NA, Sinha S, Razeghinejad R. New glaucoma medications: latanoprostene bunod, netarsudil, and fixed combination netarsudil-latanoprost. Eye (Lond) 2020; 34:72-88. [PMID: 31695162 PMCID: PMC7002400 DOI: 10.1038/s41433-019-0671-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Reduction of intraocular pressure is the only proven method to treat glaucoma. Initial treatment of glaucoma commonly involves using anti-glaucoma medications either as monotherapy or combination therapy. Studies on aqueous humour dynamics have contributed to our understanding of aqueous outflow mechanisms that have led to the discovery of new drugs. Three new drugs (latanoprostene bunod 0.24%, netarsudil 0.02%, and fixed combination netarsudil 0.02% -latanoprost 0.005%) have been introduced recently in the market with novel mechanisms of action. Latanoprostene bunod 0.024% is a nitric oxide-donating prostaglandin F2α analogue which increases the aqueous outflow both by uveoscleral and trabecular pathways. Netarsudil 0.02% is a potent Rho kinase/norepinephrine transporter inhibitor acting by increasing the trabecular outflow, decreasing the aqueous production, and possibly decreasing the episcleral venous pressure. This review highlights the role of these drugs in the management of glaucoma, with an overview of the major clinical trials on their efficacy, safety, and tolerability.
Collapse
Affiliation(s)
- Nikki A Mehran
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Sapna Sinha
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States
| | - Reza Razeghinejad
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Aref AA, Geyman LS, Zakieh AR, Alotaibi HM. Netarsudil and latanoprost ophthalmic solution for the reduction of intraocular pressure in open-angle glaucoma or ocular hypertension. Expert Rev Clin Pharmacol 2019; 12:1073-1079. [PMID: 31842637 DOI: 10.1080/17512433.2019.1701435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
Introduction: Netarsudil and latanoprost ophthalmic solution (0.02%/0.005%) is indicated for intraocular pressure (IOP) lowering in open-angle glaucoma (OAG) or ocular hypertension (OHTN). The once-daily agent combines the mechanism of action for each of the individual components and provides a new avenue for long-term intraocular pressure control. This review aims to cover the agent's current efficacy and safety data and opine as to its role in glaucoma management.Areas covered: This article will cover Phase II-III clinical efficacy and safety data as well as basic science literature pertaining to the agent's mechanism of action and pharmacodynamics. In selecting articles for inclusion in this review, a literature search using the PubMed database was carried out. Cross-referencing was carried out where applicable. We did not use any date or language restrictions in electronic searches.Expert opinion: Netarsudil and latanoprost ophthalmic solution plays a pivotal role in management of individuals with OAG and OHTN. The agent may be used as first-line therapy to provide substantial IOP-lowering or when additional lowering is indicated and prostaglandins have provided insufficient IOP lowering. The once-daily dosing regimen decreases the risk of inadequate treatment due to nonadherence.
Collapse
Affiliation(s)
- Ahmad A Aref
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Lawrence S Geyman
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
36
|
Asrani S, Robin AL, Serle JB, Lewis RA, Usner DW, Kopczynski CC, Heah T, Ackerman SL, Alpern LM, Asrani S, Bashford K, Bluestein EC, Boyce JD, Branch JD, Brubaker JW, Christie WC, Cohen JS, Collins NM, Corin SM, Daynes TE, Depenbusch M, Dixon ER, Duzman E, Flowers BE, Flynn WJ, Fong R, Gira JP, Goldberg DF, Greene B, Han SB, Henderson TT, Jerkins G, Jong KY, Katzen LB, Khemsara V, Klugo KL, Kozlovsky JF, Leonardo D, Liu Y, LoBue TD, Luchs JI, Malhotra RP, Mays A, McLaurin EB, McMenemy MG, Modi S, Moroi S, Mulaney J, Nagi K, Nicolau J, Parikh M, Patel JR, Peplinski LS, Perez BR, Piltz-Seymour J, Sadri E, Saltzmann RM, Schenker HI, Swanic MJ, Tekwani N, Teymoorian S, Thomas JW, Tyson FC, Vold S, Weiss MJ, Zaman F. Netarsudil/Latanoprost Fixed-Dose Combination for Elevated Intraocular Pressure: Three-Month Data from a Randomized Phase 3 Trial. Am J Ophthalmol 2019; 207:248-257. [PMID: 31229466 DOI: 10.1016/j.ajo.2019.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To compare the ocular hypotensive efficacy and safety of a fixed-dose combination (FDC) of the Rho kinase inhibitor netarsudil and latanoprost vs monotherapy with netarsudil or latanoprost. DESIGN Three-month primary endpoint analysis of a randomized, double-masked, phase 3 clinical trial. METHODS Adults with open-angle glaucoma or ocular hypertension (unmedicated intraocular pressure [IOP] >20 and <36 mm Hg at 8:00 AM) were randomized to receive once-daily netarsudil/latanoprost FDC, netarsudil 0.02%, or latanoprost 0.005% for up to 12 months. The primary efficacy endpoint was mean IOP at 8:00 AM, 10:00 AM, and 4:00 PM at week 2, week 6, and month 3. RESULTS Mean treated IOP ranged from 14.8-16.2 mm Hg for netarsudil/latanoprost FDC, 17.2-19.0 mm Hg for netarsudil, and 16.7-17.8 mm Hg for latanoprost. Netarsudil/latanoprost FDC met the criteria for superiority to each active component at all 9 time points (all P < .0001), lowering IOP by an additional 1.8-3.0 mm Hg vs netarsudil and an additional 1.3-2.5 mm Hg vs latanoprost. At month 3, the proportion of patients achieving mean diurnal IOP ≤15 mm Hg was 43.5% for netarsudil/latanoprost FDC, 22.7% for netarsudil, and 24.7% for latanoprost. No treatment-related serious adverse events were reported; treatment-related systemic adverse events were minimal. The most frequent ocular adverse event was conjunctival hyperemia (netarsudil/latanoprost FDC, 53.4%; netarsudil, 41.0%; latanoprost, 14.0%), which led to treatment discontinuation in 7.1% (netarsudil/latanoprost FDC), 4.9% (netarsudil), and 0% (latanoprost) of patients. CONCLUSIONS Once-daily netarsudil/latanoprost FDC demonstrated IOP reductions that were statistically and clinically superior to netarsudil and latanoprost across all 9 time points through month 3, with acceptable ocular safety.
Collapse
|
37
|
Sinha S, Lee D, Kolomeyer NN, Myers JS, Razeghinejad R. Fixed combination netarsudil-latanoprost for the treatment of glaucoma and ocular hypertension. Expert Opin Pharmacother 2019; 21:39-45. [PMID: 31663782 DOI: 10.1080/14656566.2019.1685499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
Introduction: Reduction of intraocular pressure (IOP) is the only known modifiable risk factor for prevention and treatment of glaucoma. Rho-kinase (ROCK) inhibitors are a new class of glaucoma medications introduced recently with novel mechanisms of action and favorable safety profiles. Latanoprost, a common first line drug used for treatment of glaucoma, does not adequately control pressures in all cases. Addition of more than one anti-glaucoma medication affects patient compliance and adherence. Fixed-combination eye drops are combinations of two or more active drugs in a single dosage form, thus simplify dosing. New to this group is the fixed combination netarsudil- latanoprost (FCNL).Area covered: This review focuses on FCNL, its pharmacodynamics and pharmacokinetics. It also details the efficacy and safety of individual drugs compared to FCNL.Expert opinion: The combination of latanoprost and netarsudil is a potent medication and modulates all known targets for IOP reduction in a single drop and has been shown to be more effective than either drug alone. FCNL is an alternative for those with inadequately controlled IOP on a prostaglandin analog alone, as well as those for whom a simplified regimen is desirable, or those who are not good candidates for other classes of glaucoma medications.
Collapse
Affiliation(s)
- Sapna Sinha
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Daniel Lee
- Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
38
|
Walters TR, Ahmed IIK, Lewis RA, Usner DW, Lopez J, Kopczynski CC, Heah T. Once-Daily Netarsudil/Latanoprost Fixed-Dose Combination for Elevated Intraocular Pressure in the Randomized Phase 3 MERCURY-2 Study. ACTA ACUST UNITED AC 2019; 2:280-289. [DOI: 10.1016/j.ogla.2019.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
|
39
|
Berryman JD, Novack GD. Efficacy and safety of netarsudil 0.02% ophthalmic solution in patients with open-angle glaucoma and ocular hypertension. EXPERT REVIEW OF OPHTHALMOLOGY 2019. [DOI: 10.1080/17469899.2019.1645008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jefferson D. Berryman
- Department of Ophthalmology, School of Medicine, University of California, Davis, CA, USA
| | - Gary D. Novack
- Department of Ophthalmology, School of Medicine, University of California, Davis, CA, USA
- PharmaLogic Development, Inc., San Rafael, CA, USA
| |
Collapse
|
40
|
|
41
|
Abstract
Purpose In this review, we overview the pathophysiology of primary open-angle glaucoma as it relates to the trabecular meshwork (TM), exploring modes of TM dysfunction and regeneration via stem cell therapies. Recent Findings Stem cells from a variety of sources, including trabecular meshwork, mesenchymal, adipose and induced pluripotent stem cells, have shown the potential to differentiate into TM cells in vitro or in vivo and to regenerate the TM in vivo, lowering intraocular pressure (IOP) and reducing glaucomatous retinal ganglion cell damage. Summary Stem cell therapies for TM regeneration provide a robust and promising suite of treatments for eventual lowering of IOP and prevention of glaucomatous vision loss in humans in the future. Further investigation into stem cell homing mechanisms and the safety of introducing these cells into human anterior chamber, for instance, are required before clinical applications in treating glaucoma patients.
Collapse
Affiliation(s)
- Alexander Castro
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213.,University of Virginia, Charlottesville, VA 22904
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
42
|
Hsu CR, Chen YH, Liu CP, Chen CH, Huang KK, Huang JW, Lin MN, Lin CL, Chen WR, Hsu YL, Lee TC, Chou SH, Tu CM, Hwang CS, Huang YC, Lu DW. A Highly Selective Rho-Kinase Inhibitor (ITRI-E-212) Potentially Treats Glaucoma Upon Topical Administration With Low Incidence of Ocular Hyperemia. ACTA ACUST UNITED AC 2019; 60:624-633. [DOI: 10.1167/iovs.18-25252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Affiliation(s)
- Cherng-Ru Hsu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China
| | - Yi-Hsun Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Republic of China
| | - Chih-Peng Liu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Chih-Hung Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Kuo-Kuei Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
- Institue of Biotechnology, National Tsing Hua University, Hsinchu, Republic of China
| | - Jui-Wen Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Meng-Nan Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Chih-Lung Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Wan-Ru Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Yi-Ling Hsu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Tze-chung Lee
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Shuen-Hsiang Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Chia-Mu Tu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Chrong-Shiong Hwang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Republic of China
| | - Yu Chuan Huang
- Department of Research and Development, National Defense Medical Center, Taipei, Republic of China
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China
| |
Collapse
|
43
|
Wada Y, Higashide T, Nagata A, Sugiyama K. Effects of ripasudil, a rho kinase inhibitor, on blood flow in the optic nerve head of normal rats. Graefes Arch Clin Exp Ophthalmol 2019; 257:303-311. [PMID: 30474717 DOI: 10.1007/s00417-018-4191-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2018] [Revised: 10/21/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To evaluate the effect of topically administrated ripasudil, a rho kinase inhibitor, on blood flow in the optic nerve head (ONH) of normal rats. METHODS Ripasudil (0.4%) or placebo was administered in the right eye of normal Brown Norway rats in a double-blind manner. Laser speckle flowgraphy was measured in the ONH of the right eye 20 or 40 min after a single instillation and before and after 7 or 14 days of twice daily instillation. Mean blur rate was evaluated in the total area (MA), the vessel region (MV), and the tissue region (MT). Intraocular pressure (IOP), blood pressure, ocular perfusion pressure (OPP), and heart rate were also recorded at each time point. RESULTS After a single instillation, MV was significantly larger at 40 min than 20 min in the ripasudil group (P = 0.044) and was significantly lower in the placebo group (P = 0.023). MA and MV 40 min after instillation were significantly larger in the ripasudil group than in the placebo group (P = 0.022 and P = 0.006, respectively). After continuous instillation, MA and MV in the ripasudil group significantly increased from baseline after 7 and 14 days of treatment (both P < 0.05) and MA, MV, and MT were significantly higher than in the placebo group (MA: 7 and 14 days, P < 0.01; MV: 7 days, P = 0.003, and 14 days, P = 0.012; MT: 7 days, P = 0.046). There were no significant changes in IOP, blood pressure, or OPP after single or continuous instillation. CONCLUSIONS Topical instillation of ripasudil increased blood flow around the ONH in the eyes of normal rats.
Collapse
Affiliation(s)
- Yasushi Wada
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
- Ophthalmology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Tomomi Higashide
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Atsushi Nagata
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
- Ophthalmology, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | - Kazuhisa Sugiyama
- Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
44
|
Li H, Zhou X, Ye H, Sun X, Zhang P. Design, Synthesis, and Biological Evaluations of Several Fasudil Analogues. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang Li
- College of Food Science and BioengineeringTianjin Agricultural University Tianjin 300072 People's Republic of China
| | - Xueyong Zhou
- College of Food Science and BioengineeringTianjin Agricultural University Tianjin 300072 People's Republic of China
| | - Hang Ye
- R&D of Danfoss (Tianjin) Ltd. Tianjin 301700 People's Republic of China
| | - Xi Sun
- College of Food Science and BioengineeringTianjin Agricultural University Tianjin 300072 People's Republic of China
| | - Pingping Zhang
- College of Food Science and BioengineeringTianjin Agricultural University Tianjin 300072 People's Republic of China
| |
Collapse
|
45
|
Tanna AP, Johnson M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 2018; 125:1741-1756. [PMID: 30007591 PMCID: PMC6188806 DOI: 10.1016/j.ophtha.2018.04.040] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/11/2023] Open
Abstract
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells decreased outflow resistance placed a spotlight on the Rho kinase pathway that was known to regulate the cytoskeleton. Ultimately, a search for Rho kinase inhibitors led to the discovery of several molecules of therapeutic interest, leaving us today with 2 new ocular hypotensive agents approved for clinical use: ripasudil in Japan and netarsudil in the United States. These represent members of the first new class of clinically useful ocular hypotensive agents since the US Food and Drug Administration approval of latanoprost in 1996. The development of Rho kinase inhibitors as a class of medications to lower IOP in patients with glaucoma and ocular hypertension represents a triumph in translational research. Rho kinase inhibitors are effective alone or when combined with other known ocular hypotensive medications. They also offer the possibility of neuroprotective activity, a favorable impact on ocular blood flow, and even an antifibrotic effect that may prove useful in conventional glaucoma surgery. Local adverse effects, however, including conjunctival hyperemia, subconjunctival hemorrhages, and cornea verticillata, are common. Development of Rho kinase inhibitors targeted to the cells of the outflow pathway and the retina may allow these agents to have even greater clinical impact. The objectives of this review are to describe the basic science underlying the development of Rho kinase inhibitors as a therapy to lower IOP and to summarize the results of the clinical studies reported to date. The neuroprotective and vasoactive properties of Rho kinase inhibitors, as well as the antifibrotic properties, of these agents are reviewed in the context of their possible role in the medical and surgical treatment of glaucoma.
Collapse
Affiliation(s)
- Angelo P Tanna
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Mark Johnson
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
46
|
Ashwinbalaji S, Senthilkumari S, Gowripriya C, Krishnadas S, Gabelt BAT, Kaufman PL, Muthukkaruppan V. SB772077B, A New Rho Kinase Inhibitor Enhances Aqueous Humour Outflow Facility in Human Eyes. Sci Rep 2018; 8:15472. [PMID: 30341380 PMCID: PMC6195566 DOI: 10.1038/s41598-018-33932-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022] Open
Abstract
We investigated the effect of a new Rho kinase inhibitor, SB772077B (SB77) on aqueous outflow facility (OF) in human eyes using human organ-cultured anterior segment (HOCAS). IOP was monitored for 24 h post-treatment with either SB77 (0.1/10/50 µM) or vehicle after a stable baseline pressure. The hydrodynamic pattern of aqueous outflow was analysed by labelling outflow pathway with red fluorescent microspheres. The effect of SB77 on cell morphology, actin stress fibers, focal adhesions, ECM, status of RhoA activation and myosin light chain phosphorylation (p-MLC) were evaluated and compared with Y27632, by immunostaining using primary human trabecular meshwork (HTM) cells. Following 24 h treatment, SB77 increased OF by 16% at 0.1 µM (N = 6), 29% at 10 µM (N = 8; p = 0.018) and 39% at 50 µM (N = 8; p = 0.004) in human eyes. There was an overall increase in tracer quantity and in area along inner wall of Schlemm’s canal. Treatment with SB77 showed no evidence of cytotoxicity and caused a significant reduction in the expression of fibrotic markers compared to Y27632. The present findings indicate that SB77 treatment was effective in enhancing OF and reducing fibrotic markers in an ex vivo model. Thus SB77 may be a potential clinical candidate for the management of glaucoma.
Collapse
Affiliation(s)
- Soundararajan Ashwinbalaji
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, #1, Anna Nagar, Madurai-20, Tamilnadu, India
| | - Srinivasan Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, #1, Anna Nagar, Madurai-20, Tamilnadu, India.
| | - Chidambaranathan Gowripriya
- Department of Immunology & Stem Cell Biology, Aravind Medical Research Foundation, #1, Anna Nagar, Madurai-20, Tamilnadu, India
| | - Subbaiah Krishnadas
- Glaucoma Clinic, Aravind Eye Hospital, #1, Anna Nagar, Madurai-20, Tamilnadu, India
| | - B' Ann T Gabelt
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul L Kaufman
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
47
|
Dasso L, Al-Khaled T, Sonty S, Aref AA. Profile of netarsudil ophthalmic solution and its potential in the treatment of open-angle glaucoma: evidence to date. Clin Ophthalmol 2018; 12:1939-1944. [PMID: 30323550 PMCID: PMC6177382 DOI: 10.2147/opth.s154001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Netarsudil ophthalmic solution is a novel topical intraocular pressure (IOP)-lowering agent that has recently been approved by the US Food and Drug Administration (FDA) for the treatment of ocular hypertension and open-angle glaucoma. Its unique pharmacology allows for IOP lowering as a result of direct reduction in trabecular outflow resistance in addition to a decrease in episcleral venous pressure and aqueous humor production. The efficacy of netarsudil has been shown in animal studies and human clinical trials. It has been shown to be noninferior to the therapy with topical timolol in individuals with baseline IOP <25 mmHg. Importantly, netarsudil has been shown to reduce IOP to the same degree, regardless of baseline levels. There are no known systemic safety issues associated with netarsudil. The most common local adverse effects relate to conjunctival hyperemia. The once-daily dosing schedule is advantageous for individuals who have difficulties with medication adherence. Further studies of a combination of netarsudil and latanoprost agents are currently underway.
Collapse
Affiliation(s)
- Lily Dasso
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA,
| | - Tala Al-Khaled
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA,
| | - Sriram Sonty
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA,
| | - Ahmad A Aref
- Department of Ophthalmology and Visual Sciences, Illinois Eye & Ear Infirmary, University of Illinois at Chicago College of Medicine, Chicago, IL, USA,
| |
Collapse
|
48
|
Bandarage UK, Cao J, Come JH, Court JJ, Gao H, Jacobs MD, Marhefka C, Nanthakumar S, Green J. ROCK inhibitors 3: Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2018; 28:2622-2626. [PMID: 30082069 DOI: 10.1016/j.bmcl.2018.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/21/2023]
Abstract
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.
Collapse
Affiliation(s)
- Upul K Bandarage
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jingrong Cao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jon H Come
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - John J Court
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Huai Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Craig Marhefka
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | | | - Jeremy Green
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| |
Collapse
|
49
|
|
50
|
Efficacy of Topically Administered Rho-Kinase Inhibitor AR-12286 in Patients With Exfoliation Syndrome and Ocular Hypertension or Glaucoma. J Glaucoma 2017; 25:e807-14. [PMID: 27552517 DOI: 10.1097/ijg.0000000000000508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate the efficacy of rho-associated protein kinase inhibitor, AR-12286 topical solution, for its effect in eyes with exfoliation syndrome (XFS) and ocular hypertension (OHT) or exfoliative glaucoma (XFG) and examine any lasting effect on intraocular pressure (IOP) after discontinuation. METHODS Prospective, double-masked, randomized, interventional study. Patients with XFS and OHT or XFG were enrolled. The study eyes were treated once daily with AR-12286, randomized to 0.5% or 0.7% for 24 weeks. Visits included baseline, 1, 4, and 12 weeks after drug initiation; at 12 weeks AR-12286 was discontinued for 1 week and was resumed at week 13. At the week 24 visit, AR-12286 was discontinued, and a final reexamination was performed at week 25. RESULTS Ten patients were treated. Mean baseline IOP was 25±2.4 mm Hg, mean IOP was reduced to 19.1±2.3 mm Hg at 1 week (P<0.001), 17.5±3.6 mm Hg at 4 weeks (P<0.001), and 17.4±3.6 mm Hg at 12 weeks (P<0.001), yielding an average IOP reduction of 23.6%, 30%, and 30.4%, respectively. At the week 13 visit, 1 week after the drug was discontinued, mean IOP increased to 21.6±5.4 mm Hg (P=0.06 compared with baseline visit). At week 24, the mean IOP was 21.8±7.8 mm Hg (P=0.2, and AR-12286 was discontinued). At week 25, the mean IOP was 21.3±5.3 mm Hg (P=0.06). CONCLUSIONS AR-12286 was well tolerated and provided statistically significant reduction in IOP in patients with XFS and OHT or XFG. This drug may represent an additional therapeutic paradigm for the treatment of XFG.
Collapse
|