1
|
Wang S, Zhan C, Chen R, Li W, Song H, Zhao G, Wen M, Liang D, Qiao J. Achievements and perspectives of synthetic biology in botanical insecticides. J Cell Physiol 2024; 239:e30888. [PMID: 36183373 DOI: 10.1002/jcp.30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Weiguo Li
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Dongmei Liang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
2
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
3
|
Microbial Biopesticides against Bacterial, Fungal and Oomycete Pathogens of Tomato, Cabbage and Chickpea. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological control is an environmentally friendly approach that holds promise to complement or replace chemicals to effectively protect crop plants against pests and pathogens. Environmental samples with highly diverse and competitive microbiomes that harbor antagonistic microbes with diverse modes-of-action can provide a rich source of microbial biopesticides. In the current study, bacteria isolated from rhizosphere soil and food spoilage samples were subsequently screened against various plant fungal and oomycete pathogens in growth inhibition assays. These included the new potential biocontrol bacteria Corynebacterium flavescens, Sporosarcina aquimarina and Sporosarcina saromensis with anti-fungal and antioomycete activities. Potential candidates selected by preliminary screening in plant assays were then applied to tomato, cabbage and chickpea plants to control bacterial (Pseudomonas syringae pv. tomato), fungal (Alternaria brassicicola) and oomycete (Phytophtora medicaginis) phytopathogens. Ten potential microbial biopesticides were demonstrated to be effective against these diseases, and led to significant (p < 0.05) reductions in symptoms and/or pathogen DNA compared to mock-treated diseased plants. We conclude that new and effective microbial biopesticides to control crop pathogens can be rapidly isolated from biodiverse microbiomes, where bacteria may employ these features to effectively compete against each other.
Collapse
|
4
|
Krain A, Siupka P. Fungal Guttation, a Source of Bioactive Compounds, and Its Ecological Role-A Review. Biomolecules 2021; 11:biom11091270. [PMID: 34572483 PMCID: PMC8467351 DOI: 10.3390/biom11091270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Guttation is a common phenomenon in the fungal kingdom. Its occurrence and intensity depend largely on culture conditions, such as growth medium composition or incubation temperature. As filamentous fungi are a rich source of compounds, possessing various biological activities, guttation exudates could also contain bioactive substances. Among such molecules, researchers have already found numerous mycotoxins, antimicrobials, insecticides, bioherbicides, antiviral, and anticancer agents in exudate droplets. They belong to either secondary metabolites (SMs) or proteins and are secreted with different intensities. The background of guttation, in terms of its biological role, in vivo, and promoting factors, has been explored only partially. In this review, we describe the metabolites present in fungal exudates, their diversity, and bioactivities. Pointing to the significance of fungal ecology and natural products discovery, selected aspects of guttation in the fungi are discussed.
Collapse
|
5
|
Lemma T, Marques Ruiz GC, Oliveira ON, Constantino CJ. The pesticide picloram affects biomembrane models made with Langmuir monolayers. Colloids Surf B Biointerfaces 2019; 181:953-958. [DOI: 10.1016/j.colsurfb.2019.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022]
|
6
|
Yang W, Ruan L, Tao J, Peng D, Zheng J, Sun M. Single Amino Acid Substitution in Homogentisate Dioxygenase Affects Melanin Production in Bacillus thuringiensis. Front Microbiol 2018; 9:2242. [PMID: 30364256 PMCID: PMC6193087 DOI: 10.3389/fmicb.2018.02242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis formulation losing its activity under field conditions due to UV radiation and photoprotection of B. thuringiensis based on melanin has attracted the attention of researchers for many years. Here, a single amino acid substitution (G272E) in homogentisate 1,2-dioxygenase was found to be responsible for pigment overproduction in B. thuringiensis BMB181, a derivative of BMB171. Disrupting the gene encoding homogentisate dioxygenase in BMB171 induced the accumulation of the homogentisic acid and provoked an increased pigment formation. To gain insights into homogentisate 1,2-dioxygenase in B. thuringiensis, we constructed a total of 14 mutations with a single amino acid substitution, and six of the mutant proteins were found to affect the melanin production when substituted by alanine. This study provides a new way to construct pigment-overproducing strains by impairing the homogentisate dioxygenase with a single mutation in B. thuringiensis, and the findings will facilitate a better understanding of this enzyme.
Collapse
Affiliation(s)
- Wenjun Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangming Tao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests. Sci Rep 2018; 8:4837. [PMID: 29556063 PMCID: PMC5859112 DOI: 10.1038/s41598-018-23138-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/02/2018] [Indexed: 01/02/2023] Open
Abstract
Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.
Collapse
|
8
|
M T. Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.29328/journal.jpsp.1001004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
|
10
|
Vaziri ND, Liu S, Farzaneh SH, Nazertehrani S, Khazaeli M, Zhao YY. Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease. Free Radic Biol Med 2015; 86:374-81. [PMID: 25930007 DOI: 10.1016/j.freeradbiomed.2015.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
Oxidative stress and inflammation play a central role in the progression and complications of chronic kidney disease (CKD) and are, in part, due to impairment of the Nrf2 system, which regulates the expression of antioxidant and detoxifying molecules. Natural Nrf2-inducing phytochemicals have been shown to ameliorate kidney disease in experimental animals. However, owing to adverse outcomes a clinical trial of a synthetic Nrf2 activator, bardoxolone methyl (BARD), in CKD patients was terminated. BARD activates Nrf2 via covalent modification of reactive cysteine residues in the Nrf2 repressor molecule, Keap1. In addition to Nrf2, Keap1 suppresses IKKB, the positive regulator of NF-κB. Treatment with a BARD analog, dh404, at 5-20mg/kg/day in diabetic obese Zucker rats exacerbates, whereas its use at 2mg/kg/day in 5/6 nephrectomized rats attenuates, CKD progression. We, therefore, hypothesized that deleterious effects of high-dose BARD are mediated by the activation of NF-κB. CKD (5/6 nephrectomized) rats were randomized to receive dh404 (2 or 10mg/kg/day) or vehicle for 12 weeks. The vehicle-treated group exhibited glomerulosclerosis; interstitial fibrosis and inflammation; activation of NF-κB; upregulation of oxidative, inflammatory, and fibrotic pathways; and suppression of Nrf2 activity and its key target gene products. Treatment with low-dose dh404 restored Nrf2 activity and expression of its target genes, attenuated activation of NF-κB and fibrotic pathways, and reduced glomerulosclerosis, interstitial fibrosis, and inflammation. In contrast, treatment with a high dh404 dosage intensified proteinuria, renal dysfunction, and histological abnormalities; amplified upregulation of NF-κB and fibrotic pathways; and suppressed the Nrf2 system. Thus therapy with BARD analogs exerts a dose-dependent dimorphic impact on CKD progression.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA.
| | - Shuman Liu
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Seyed H Farzaneh
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Sohrab Nazertehrani
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Mahyar Khazaeli
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| | - Ying-Yong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California at Irvine, Irvine, CA 92868, USA
| |
Collapse
|
11
|
Yang J, Wang S, Lee JH. Photovoltaic Detection of Hydrogen Peroxide over a Wide Range of Concentrations for Agricultural Applications. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2015. [DOI: 10.1252/jcej.14we276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaechang Yang
- School of Mechatronics, Gwangju Institute of Science and Technology
| | - Semyung Wang
- School of Mechatronics, Gwangju Institute of Science and Technology
| | - Jong Hyun Lee
- School of Mechatronics, Gwangju Institute of Science and Technology
- Department of Medical System Engineering, Gwangju Institute of Science and Technology
| |
Collapse
|
12
|
Zolfaghari Emameh R, Barker H, Hytönen VP, Tolvanen MEE, Parkkila S. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit Vectors 2014; 7:403. [PMID: 25174433 PMCID: PMC4162934 DOI: 10.1186/1756-3305-7-403] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates. RESULTS Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| | - Harlan Barker
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
| | - Vesa P Hytönen
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| | - Martti E E Tolvanen
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Department of Information Technology, University of Turku, 20014 Turku, Finland
| | - Seppo Parkkila
- />School of Medicine, University of Tampere, 33520 Tampere, Finland
- />BioMediTech, University of Tampere, 33520 Tampere, Finland
- />Fimlab Laboratories Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland
| |
Collapse
|
13
|
Liu X, Ruan L, Peng D, Li L, Sun M, Yu Z. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins (Basel) 2014; 6:2229-38. [PMID: 25068925 PMCID: PMC4147579 DOI: 10.3390/toxins6082229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/16/2022] Open
Abstract
Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Arteaga M, Mancebo A, Molier T, Gómez D, González C, Bada A, González B, Rojas N, Rodríguez G. Dermal toxicity, eye and dermal irritation and skin sensitization evaluation of a new formulation of Bacillus thuringiensis var israelensis SH-14. Regul Toxicol Pharmacol 2014; 68:147-51. [DOI: 10.1016/j.yrtph.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/25/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
15
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Sun XQ, Zhang MX, Yu JY, Jin Y, Ling B, Du JP, Li GH, Qin QM, Cai QN. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PLoS One 2013; 8:e64026. [PMID: 23700450 PMCID: PMC3659104 DOI: 10.1371/journal.pone.0064026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved complex processes to ward off attacks by insects. In parallel, insects have evolved mechanisms to thwart these plant defenses. To gain insight into mechanisms that mediate this arms race between plants and herbivorous insects, we investigated the interactions between gramine, a toxin synthesized by plants of the family Gramineae, and glutathione S transferase (GST), an enzyme found in insects that is known to detoxify xenobiotics. Here, we demonstrate that rice (Oryza sativa), a hydrophytic plant, also produces gramine and that rice resistance to brown planthoppers (Nilaparvata lugens, BPHs) is highly associated with in planta gramine content. We also show that gramine is a toxicant that causes BPH mortality in vivo and that knockdown of BPH GST gene nlgst1-1 results in increased sensitivity to diets containing gramine. These results suggest that the knockdown of key detoxification genes in sap-sucking insects may provide an avenue for increasing their sensitivity to natural plant-associated defense mechanisms.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mao-Xin Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jing-Ya Yu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Jin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bing Ling
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jin-Ping Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qing-Ming Qin
- College of Plant Sciences, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Qing-Nian Cai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Jez JM. Toward protein engineering for phytoremediation: possibilities and challenges. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13 Suppl 1:77-89. [PMID: 22046752 DOI: 10.1080/15226514.2011.568537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of rational protein engineering and directed evolution techniques allow for the redesign of enzymes with tailored properties for use in environmental remediation. This review summarizes current molecular methods for either altering or improving protein function and highlights examples of how these methods can address bioremediation problems. Although much of the protein engineering applied to environmental clean-up employs microbial systems, there is great potential for and significant challenges to translating these approaches to plant systems for phytoremediation purposes. Protein engineering technologies combined with genomic information and metabolic engineering strategies hold promise for the design of plants and microbes to remediate organic and inorganic pollutants.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
18
|
Mancebo A, Molier T, González B, Lugo S, Riera L, Arteaga ME, Bada AM, González Y, Pupo M, Hernández Y, González C, Rojas NM, Rodríguez G. Acute oral, pulmonary and intravenous toxicity/pathogenicity testing of a new formulation of Bacillus thuringiensis var israelensis SH-14 in rats. Regul Toxicol Pharmacol 2010; 59:184-90. [PMID: 20946931 DOI: 10.1016/j.yrtph.2010.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/27/2022]
Abstract
During the last decades, efforts are being made to develop microbial insecticides as biological control agents. Bacillus thuringiensis has been one of the most consistent and significant biopesticides for using on crops as an insecticidal spray. The aim of this study was to assess and to compare the pathogenicity of a new formulation of B.thuringiensis var israelensis SH-14 in rats through oral, intranasal and intravenous single dosing. Through 21 days after administration, clinical examinations were performed daily, and body weight gain was evaluated. Clearance was estimated by means of collection of feces or examination of lungs and blood, and infectivity was evaluated enumerating microorganisms from organs of Bti SH-14 treated animals sacrificed at intervals. Gross necropsy of animals was performed at interim or final sacrifice. There were no treatment-related mortalities, and no evidence of pathogenicity or treatment related toxicity, although in the intravenous study, the microorganism was capable of achieving persistence in organs after administration, and the Bti SH-14 treated animals developed skin ulcerations and hemorrhages at the injection site. It could be concluded that the tested microorganism was not toxic or pathogenic to rats via oral or intranasal route, although it was capable of achieving persistence in organs after intravenous administration, eliciting local effects at the injection site.
Collapse
Affiliation(s)
- A Mancebo
- CETEX/CENPALAB, Bejucal, La Habana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M. Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 2010; 285:39191-200. [PMID: 20864531 DOI: 10.1074/jbc.m110.148387] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thuringiensin is a thermostable secondary metabolite in Bacillus thuringiensis and has insecticidal activity against a wide range of insects. Until now, the regulatory mechanisms and genetic determinants involved in thuringiensin production have remained unclear. Here, we successfully used heterologous expression-guided screening in an Escherichia coli-Bacillus thuringiensis shuttle bacterial artificial chromosome library, to clone the intact thuringiensin synthesis (thu) cluster. Then the thu cluster was located on a 110-kb endogenous plasmid bearing insecticide crystal protein gene cry1Ba in strain CT-43. Furthermore, the plasmid, named pBMB0558, was indirectly cloned and sequenced. The gene functions on pBMB0558 were annotated by BLAST based on the GenBank(TM) and KEGG databases. The genes on pBMB0558 could be classified into three functional modules: a thuringiensin synthesis cluster, a type IV secretion system-like module, and mobile genetic elements. By HPLC coupling mass spectrometer, atmospheric pressure ionization with ion trap, and TOF technologies, biosynthetic intermediates of thuringiensin were detected. The thuE gene is proved to be responsible for the phosphorylation of thuringiensin at the last step by vivo and vitro activity assays. The thuringiensin biosynthesis pathway was deduced and clarified. We propose that thuringiensin is an adenine nucleoside oligosaccharide rather than an adenine nucleotide analog, as is traditionally believed, based on the predicted functions of the key enzymes, glycosyltransferase (ThuF) and exopolysaccharide polymerization protein (Thu1).
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sezen K, Kati H, Muratoglu H, Demirbag Z. Characterisation and toxicity of Bacillus thuringiensis strains from hazelnut pests and fields. PEST MANAGEMENT SCIENCE 2010; 66:543-548. [PMID: 20024949 DOI: 10.1002/ps.1905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND In order to find and identify more toxic insecticidal Bacillus thuringiensis Berliner (Bt) strains, a survey was carried out of B. thuringiensis isolate pests belonging to Coleoptera, Lepidoptera and Diptera and from soils in hazelnut fields. Of 16 isolates having Bacillus cereus-B. thuringiensis morphology, eight were classified as B. thuringiensis because of the production of parasporal delta-endotoxin crystals. RESULTS In this study, eight isolates of B. thuringiensis from hazelnut pests (isolates Bn1, Mm2, Mnd and Xd3) and from hazelnut soils (isolates 6, 27, 40 and 46) have been characterised in detail. These isolates were compared with reference strains by electron microscopy, SDS-PAGE analysis, cry gene content, serological test and insecticidal activity. CONCLUSION Results indicate that Bn1 and MnD are B. thuringiensis subsp. kurstaki, and Mm2 and Xd3 are B. thuringiensis subsp. tenebrionis. In addition, isolate 6 is B. thuringiensis subsp. israelensis, isolates 27 and 46 are B. thuringiensis subsp. kumamotoensis and isolate 40 is B. thuringiensis subsp. indiana. The four B. thuringiensis isolates from hazelnut pests may be valuable as biological control agents against coleopteran and lepidopteran insects.
Collapse
Affiliation(s)
- Kazim Sezen
- Department of Biology, Karadeniz Technical University, Trabzon 61080, Turkey.
| | | | | | | |
Collapse
|
21
|
Timely awareness and prevention of emerging chemical and biochemical risks in foods: proposal for a strategy based on experience with recent cases. Food Chem Toxicol 2008; 47:992-1008. [PMID: 18790713 DOI: 10.1016/j.fct.2008.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 12/21/2022]
Abstract
A number of recent food safety incidents have involved chemical substances, while various activities aim at the early identification of emerging chemical risks. This review considers recent cases of chemical and biochemical risks, as a basis for recommendations for awareness and prevention of similar risks at an early stage. These cases include examples of unapproved genetically modified food crops, intoxications with botanical products containing unintentionally admixed toxic herbs, residues of unapproved antibiotics and contaminants in farmed aquaculture species such as shrimp and salmon; and adverse effects of chemical and biological pesticides of natural origin. Besides case-specific recommendations for mitigation of future incidents of the same nature, general inferences and recommendations are made. It is recommended, for example, to establish databases for contaminants potentially present within products. Pro-active reconnaissance can facilitate the identification of products potentially contaminated with hazardous substances. In international trade, prevention and early identification of hazards are aided by management systems for product quality and safety, rigorous legislation, and inspections of consignments destined for export. Cooperation with the private sector and foreign authorities may be required to achieve these goals. While food and feed safety are viewed from the European perspective, the outcomes also apply to other regions.
Collapse
|
22
|
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10:236-46. [PMID: 18543123 DOI: 10.1007/s12017-008-8037-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/06/2008] [Indexed: 01/23/2023]
Abstract
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Collapse
Affiliation(s)
- Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
23
|
Demidova TN, Hamblin MR. Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl Environ Microbiol 2005; 71:6918-25. [PMID: 16269726 PMCID: PMC1287731 DOI: 10.1128/aem.71.11.6918-6925.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation is a sophisticated mechanism by which some bacteria survive conditions of stress and starvation by producing a multilayered protective capsule enclosing their condensed DNA. Spores are highly resistant to damage by heat, radiation, and commonly employed antibacterial agents. Previously, spores have also been shown to be resistant to photodynamic inactivation using dyes and light that easily destroy the corresponding vegetative bacteria. We have discovered that Bacillus spores are susceptible to photoinactivation by phenothiazinium dyes and low doses of red light. Dimethylmethylene blue, methylene blue, new methylene blue, and toluidine blue O are all effective, while alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin, and a benzoporphyrin derivative, which easily kill vegetative cells, are ineffective. Spores of Bacillus cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, and B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores, showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores, for which conventional sporicides would have unacceptable tissue toxicity.
Collapse
Affiliation(s)
- Tatiana N Demidova
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Seo JH, Yeo JS, Cha HJ. Baculoviral polyhedrin-Bacillus thuringiensis toxin fusion protein: a protein-based bio-insecticide expressed in Escherichia coli. Biotechnol Bioeng 2005; 92:166-72. [PMID: 15981278 DOI: 10.1002/bit.20592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previously, we found that baculoviral polyhedrin (Polh) used as a fusion partner for recombinant expression in Escherichia coli showed almost the same characteristics (rapid solubilization under alkaline conditions and specific degradation by specific alkaline proteases in insect midgut) as the native baculoviral Polh, and formed easily isolatable inclusion bodies. Here, Polh derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) was fused with a Bacillus thuringiensis (Bt) toxin protein (truncated Cry1Ac having toxin region as a model Bt toxin) for the novel generation of a new bio-insecticide. The Polh-Cry1Ac fusion protein (approximately 99 kDa) was highly expressed (3.6-fold induction as compared to E. coli-derived single Cry1Ac (approximately 68 kDa)) as an insoluble inclusion body fraction in E. coli. Trypsin and alpha-chymotrypsin, which have similar properties to the insect midgut alkaline proteases, rapidly degraded the Polh portion in vitro, leaving only the toxic Cry1Ac protein behind. In vivo, the Polh-Cry1Ac fusion protein showed high insecticidal activity against the pest, Plutella xylostella. Because this novel bio-insecticide employs E. coli as the host, mass production at a low cost should be possible. Also, since this is a protein-based insecticide, living modified organism (LMO) issues such as environmental and ecological safety can be avoided.
Collapse
Affiliation(s)
- Jeong Hyun Seo
- Department of Chemical Engineering & Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | | |
Collapse
|