1
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Parvanovova P, Hnilicova P, Kolisek M, Tatarkova Z, Halasova E, Kurca E, Holubcikova S, Koprusakova MT, Baranovicova E. Disturbances in Muscle Energy Metabolism in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2024; 14:356. [PMID: 39057679 PMCID: PMC11278632 DOI: 10.3390/metabo14070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease type of motor neuron disorder characterized by degeneration of the upper and lower motor neurons resulting in dysfunction of the somatic muscles of the body. The ALS condition is manifested in progressive skeletal muscle atrophy and spasticity. It leads to death, mostly due to respiratory failure. Within the pathophysiology of the disease, muscle energy metabolism seems to be an important part. In our study, we used blood plasma from 25 patients with ALS diagnosed by definitive El Escorial criteria according to ALSFR-R (Revised Amyotrophic Lateral Sclerosis Functional Rating Scale) criteria and 25 age and sex-matched subjects. Aside from standard clinical biochemical parameters, we used the NMR (nuclear magnetic resonance) metabolomics approach to determine relative plasma levels of metabolites. We observed a decrease in total protein level in blood; however, despite accelerated skeletal muscle catabolism characteristic for ALS patients, we did not detect changes in plasma levels of essential amino acids. When focused on alterations in energy metabolism within muscle, compromised creatine uptake was accompanied by decreased plasma creatinine. We did not observe changes in plasma levels of BCAAs (branched chain amino acids; leucine, isoleucine, valine); however, the observed decrease in plasma levels of all three BCKAs (branched chain alpha-keto acids derived from BCAAs) suggests enhanced utilization of BCKAs as energy substrate. Glutamine, found to be increased in blood plasma in ALS patients, besides serving for ammonia detoxification, could also be considered a potential TCA (tricarboxylic acid) cycle contributor in times of decreased pyruvate utilization. When analyzing the data by using a cross-validated Random Forest algorithm, it finished with an AUC of 0.92, oob error of 8%, and an MCC (Matthew's correlation coefficient) of 0.84 when relative plasma levels of metabolites were used as input variables. Although the discriminatory power of the system used was promising, additional features are needed to create a robust discriminatory model.
Collapse
Affiliation(s)
- Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Petra Hnilicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| | - Egon Kurca
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Simona Holubcikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.P.); (Z.T.); (S.H.)
| | - Monika Turcanova Koprusakova
- Department of Neurology, University Hospital Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia;
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (P.H.); (M.K.); (E.H.)
| |
Collapse
|
3
|
Hayden ME, Kim J, Arányi Z, Wolfe SW. Outcome of Tendon Transfer for Monomelic Amyotrophy (Hirayama Disease). J Hand Surg Am 2023; 48:90.e1-90.e5. [PMID: 35078694 DOI: 10.1016/j.jhsa.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
Hirayama disease is a motor neuron disease predominantly affecting adolescent males. The identifying feature of Hirayama disease is unilateral forearm and intrinsic muscle weakness that spares the brachioradialis, termed "oblique atrophy." Hirayama disease progresses slowly over several years, followed by an abrupt arrest. The pathognomonic finding is the anterior displacement of the cervical spinal cord with the detachment of the posterior dura. Systematic clinical evaluation and appropriate diagnostic studies are crucial to rule out a variety of compressive, immune-mediated, and genetic disorders. We present a patient with Hirayama disease whose hand function was improved dramatically by a tendon transfer after nearly 3 years without a definitive diagnosis and call attention to the hand surgeon's role in identifying this rare disease to enable timely functional restoration.
Collapse
Affiliation(s)
- Mallory E Hayden
- Department of Orthopedic Surgery, Hand and Upper Extremity, Hospital for Special Surgery, New York, NY
| | - Jinseong Kim
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zsuzsanna Arányi
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Scott W Wolfe
- Department of Orthopedic Surgery, Hand and Upper Extremity, Hospital for Special Surgery, New York, NY.
| |
Collapse
|
4
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
5
|
Zhang H, Li H, Huang B, Wang S, Gao Y, Meng F, Chen Y, Zhou F, Guan Y, Wang X. Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1 G93A ALS mouse model. BMC Neurosci 2022; 23:50. [PMID: 35945502 PMCID: PMC9364624 DOI: 10.1186/s12868-022-00733-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Background Evidences indicate that inflammasome compounds participate in amyotrophic lateral sclerosis (ALS), a fatal progressive motoneuron degenerative disease. Researchers have observed the expressions of nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) related inflammasome components in specific regions of the central nervous system in different ALS models, but the cellular spatiotemporal evolution of this canonical inflammasome pathway and pyroptosis during ALS progression are unclear. Methods The spinal cords of hSOD1G93A mice (ALS mice) and age-matched littermates (CON mice) were dissected at pre-symptomatic stage (60 d), early- symptomatic stage (95 d), symptomatic stage (108 d) and late-symptomatic stage (122 d) of the disease. By using Nissl staining, double immunofluorescence labelling, qRT-PCR or western blot, we detected morphology change and the expression, cellular location of GSDMD, NLRP3, caspase-1 and IL-1β in the ventral horn of lumbar spinal cords over the course of disease. Results Neural morphology changes and GSDMD+/NeuN+ double positive cells were observed in ventral horn from ALS mice even at 60 d of age, even though there were no changes of GSDMD mRNA and protein expressions at this stage compared with CON mice. With disease progression, compared with age-matched CON mice, increased expressions of GSDMD, NLRP3, activated caspase-1 and IL-1β were detected. Double immunofluorescence labeling revealed that NLRP3, caspase-1, IL-1β positive signals mainly localized in ventral horn neurons at pre- and early-symptomatic stages. From symptomatic stage to late-symptomatic stage, robust positive signals were co-expressed in reactive astrocytes and microglia. Conclusions Early activation of the canonical NLRP3 inflammasome induced pyroptosis in ventral horn neurons, which may participate in motor neuron degeneration and initiate neuroinflammatory processes during ALS progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00733-9.
Collapse
Affiliation(s)
- Haoyun Zhang
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Hao Li
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Bingkun Huang
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Shaoye Wang
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Ying Gao
- School of Life Science and Technology, Weifang Medical University, No.7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Fandi Meng
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Yanchun Chen
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Fenghua Zhou
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Yingjun Guan
- School of Basic Medical Sciences, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China. .,Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Sanfilippo MJ, Layshock ME, Keniston L. Exploring the association between outcome measures to guide clinical management in patients with amyotrophic lateral sclerosis. J Phys Ther Sci 2022; 34:532-539. [PMID: 35937622 PMCID: PMC9345750 DOI: 10.1589/jpts.34.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The usefulness and limitations of outcome measures changes throughout
functional decline of patients with Amyotrophic Lateral Sclerosis (ALS). This study aims
to describe associations between outcome measures in patients with ALS over time.
[Participants and Methods] Participant data was collected at a multidisciplinary ALS
clinic during regular clinic visits, including gait velocity, Timed Up and Go, the ALS
Functional Rating Scale-Revised, and it’s Gross Motor Subscale. [Results] All gait
velocity measures were <1.2 m/sec; average Timed Up and Go was >13.5 sec. There was
strong internal consistency between ALS Functional Rating Scale-Revised and its functional
mobility components and a strong, significant correlation between the Timed Up and Go and
the Gross Motor Subscale. [Conclusion] Patients with ALS are not community ambulators and
demonstrate risk for falls. We found concurrent validity between objective and
self-reported measures. The strong association between the Gross Motor Subscale and the
Timed Up and Go may allow PTs to utilize the self-reported Gross Motor Subscale to predict
fall risk. Clinically, when the Timed Up and Go and gait velocity are no longer
appropriate due to disease progression, the Gross Motor Subscale can provide insight into
functional decline.
Collapse
Affiliation(s)
- Michelle J Sanfilippo
- Department of Physical Therapy, University of Maryland Eastern Shore: 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - Mary E Layshock
- Department of Physical Therapy, University of Maryland Eastern Shore: 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - Leslie Keniston
- Department of Physical Therapy, University of Maryland Eastern Shore: 1 College Backbone Road, Princess Anne, MD 21853, USA
| |
Collapse
|
7
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Yoon SY, Kim HK, Kim MJ, Suh JH, Leigh JH. Factors associated with assisted ventilation use in amyotrophic lateral sclerosis: a nationwide population-based study in Korea. Sci Rep 2021; 11:19682. [PMID: 34608192 PMCID: PMC8490422 DOI: 10.1038/s41598-021-98990-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Few studies have investigated the factors associated with assisted ventilation use in amyotrophic lateral sclerosis (ALS) in western countries with a relatively small number of participants. This study aimed to evaluate the factors associated with assisted ventilation use using a large nationwide cohort covering the entire Korean population. We selected patients with primary or secondary diagnoses of ALS (ICD-10 code: G12.21) and a registration code for ALS (V123) in the rare intractable disease registration program. Covariates included in the analyses were age, sex, socioeconomic status and medical condition. Factors associated with non-invasive ventilation (NIV) and tracheostomy invasive ventilation (TIV) were evaluated. Logistic regression analyses were performed using odds ratios and 95% confidence intervals. In total, 3057 patients with ALS were enrolled. During the 6-year follow-up period, 1228 (40%) patients started using assisted ventilation: 956 with NIV and 272 with TIV. There was no significant difference in the assisted ventilation use according to sex, whereas different patterns of discrepancies were noted between the sexes: Females living in non-metropolitan areas showed decreased use of assisted ventilation, whereas high income levels showed a positive relationship with assisted ventilation use only in males. Patients aged ≥ 70 years showed decreased use of NIV. NIV use was more affected by socioeconomic status than TIV, whereas TIV showed a significant relationship with medical conditions such as nasogastric tube insertion and gastrostomy. We found that various factors, including age, socioeconomic status, and medical condition, were related with assisted ventilation use. Understanding the pattern of assisted ventilation use would help set optimal management strategies in patients with ALS.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Han-Kyoul Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea
| | - Mi Ji Kim
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yang-Pyeong, Republic of Korea. .,Department of Rehabilitation Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Post J, Schaffrath A, Gering I, Hartwig S, Lehr S, Shah NJ, Langen KJ, Willbold D, Kutzsche J, Willuweit A. Oral Treatment with RD2RD2 Impedes Development of Motoric Phenotype and Delays Symptom Onset in SOD1 G93A Transgenic Mice. Int J Mol Sci 2021; 22:ijms22137066. [PMID: 34209129 PMCID: PMC8269060 DOI: 10.3390/ijms22137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and plays a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been implicated as driver of disease progression and is observed in ALS patients, as well as in the transgenic SOD1G93A mouse model. Here, we explore and validate the therapeutic potential of the d-enantiomeric peptide RD2RD2 upon oral administration in SOD1G93A mice. Transgenic mice were treated daily with RD2RD2 or placebo for 10 weeks and phenotype progression was followed with several behavioural tests. At the end of the study, plasma cytokine levels and glia cell markers in brain and spinal cord were analysed. Treatment resulted in a significantly increased performance in behavioural and motor coordination tests and a decelerated neurodegenerative phenotype in RD2RD2-treated SOD1G93A mice. Additionally, we observed retardation of the average disease onset. Treatment of SOD1G93A mice led to significant reduction in glial cell activation and a rescue of neurons. Analysis of plasma revealed normalisation of several cytokines in samples of RD2RD2-treated SOD1G93A mice towards the levels of non-transgenic mice. In conclusion, these findings qualify RD2RD2 to be considered for further development and testing towards a disease modifying ALS treatment.
Collapse
Affiliation(s)
- Julia Post
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Anja Schaffrath
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Ian Gering
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (S.H.); (S.L.)
- German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (S.H.); (S.L.)
- German Center for Diabetes Research, Partner Düsseldorf, 85764 München-Neuherberg, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
- JARA-Brain-Translational Medicine, 52062 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (J.P.); (A.S.); (I.G.)
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425 Jülich, Germany; (N.J.S.); (K.-J.L.)
- Correspondence: (D.W.); (J.K.); (A.W.); Tel.: +49-2461-612100 (D.W.); +49-2461-619496 (J.K.); +49-2461-6196358 (A.W.); Fax: +49-2461-612023 (D.W.); +49-2461-619497 (J.K.); +49-2461-612302 (A.W.)
| |
Collapse
|
10
|
Baaken D, Dechent D, Blettner M, Drießen S, Merzenich H. Occupational Exposure to Extremely Low-Frequency Magnetic Fields and Risk of Amyotrophic Lateral Sclerosis: Results of a Feasibility Study for a Pooled Analysis of Original Data. Bioelectromagnetics 2021; 42:271-283. [PMID: 33764559 DOI: 10.1002/bem.22335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/05/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022]
Abstract
Previous meta-analyses have suggested an increased risk of amyotrophic lateral sclerosis (ALS) associated with occupational exposure to extremely low-frequency magnetic fields (ELF-MF). However, results should be interpreted with caution since studies were methodologically heterogeneous. Here, we assessed the feasibility of a pooling study to harmonize and re-analyze available original data. A systematic literature search was conducted. Published epidemiological studies were identified in PubMed and EMF-Portal from literature databases' inception dates until January 2019. The characteristics of all studies were described, including exposure metrics, exposure categories, and confounders. A survey among the principal investigators (PI) was carried out to assess their willingness to provide their original data. The statistical power of a pooling study was evaluated. We identified 15 articles published between 1997 and 2019. Studies differed in terms of outcome, study population, exposure assessment, and exposure metrics. Most studies assessed ELF-MF as average magnetic flux density per working day; however, exposure categories varied widely. The pattern of adjustment for confounders was heterogeneous between studies, with age, sex, and socioeconomic status being most frequent. Eight PI expressed their willingness to provide original data. A relative risk of ≥1.14 for ALS and occupational exposure to ELF-MF can be detected with a power of more than 80% in a pooled study. The pooling of original data is recommended and could contribute to a better understanding of ELF-MF in the etiology of ALS based on a large database and reduced heterogeneity due to a standardized analysis protocol with harmonized exposure metrics and exposure categories. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Dan Baaken
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu), Institute of Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH, Aachen, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sarah Drießen
- Research Center for Bioelectromagnetic Interaction (femu), Institute of Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH, Aachen, Germany
| | - Hiltrud Merzenich
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
11
|
Kotan D, Özözen Ayas Z, Tunca C, Gungen BD, Akçimen F, Başak AN. Phenotypic and genotypic features of patients diagnosed with ALS in the city of Sakarya, Turkey. Acta Neurol Belg 2020; 120:1411-1418. [PMID: 32671691 DOI: 10.1007/s13760-020-01441-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease leading to motor neuron damage. In this study, the clinical, demographic, and genetic features of ALS patients in the city of Sakarya, Turkey, were investigated. Patients with an established diagnosis of ALS according to the Awaji criteria were included. Age, sex, age at onset of ALS, initial complaints, consanguineous marriage, and genetic features were retrospectively investigated. Conventional genetic analysis and NGS were used for molecular evaluation of patients. A total of 55 probands (10 familial, 45 sporadic) in whom ALS was suspected due to their phenotypic features were included. Thirty-two patients were male (58.2%), and 23 were female (41.8%); their mean ages were 62.65 ± 13 years. The mean age of onset for 37 familial patients from 10 families was 49.9 years. Two cases had juvenile-onset. Fourteen (25.5%) bulbar-onset versus 40 (72.7%) limb-onset patients were detected; one patient had both. Six (10.9%) patients showed marked frontotemporal dementia. Twenty-nine (52.7%) patients died during the follow-up period. Genetic analysis identified causative variants in eleven cases, carrying variants in six different ALS genes (C9orf72, SOD1, VCP, SPG11, TBK1, and SH3TC2). Genetic investigations have revealed more than 40 genes to be involved in the pathogenesis of ALS. Our relatively small study cohort restricted to one province of Turkey, however, prone to migration, consists of 10/55 familial ALS cases, which harbor two rare (SH3TC2-p.Met523Thr and TBK1-p.Glu643del) and two novel (SPG11-p.Lys656Valfs*11 and VCP-p.Arg191Pro) mutations contributing to the literature.
Collapse
Affiliation(s)
- Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| | | | - Fulya Akçimen
- Department of Molecular Biology and Genetics, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| |
Collapse
|
12
|
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van Tellingen O, Maragakis NJ, Shefner J, Bunt T, Aronica E. Expression and Cellular Distribution of P-Glycoprotein and Breast Cancer Resistance Protein in Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 79:266-276. [PMID: 31999342 PMCID: PMC7036662 DOI: 10.1093/jnen/nlz142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.
Collapse
Affiliation(s)
- Erwin A van Vliet
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam
| | - Anand M Iyer
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Lucia Mesarosova
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Hilal Çolakoglu
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Jasper J Anink
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, Massachusetts
| | - Eleonora Aronica
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| |
Collapse
|
13
|
Maksymowicz S, Kukołowicz P, Siwek T, Rakowska A. Validation of the revised Amyotrophic Lateral Sclerosis Functional Rating Scale in Poland and its reliability in conditions of the medical experiment. Neurol Sci 2020; 42:943-949. [PMID: 32676760 PMCID: PMC7870618 DOI: 10.1007/s10072-020-04565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
Introduction Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) is a basic tool for monitoring disease progression in amyotrophic lateral sclerosis (ALS). This study analyses the reliability of the Polish version of the ALSFRS-R as a tool to assess the health condition of patients with ALS and presents experience related to the use of this tool in monitoring the effects of experimental medical therapy. Materials and methods The scale questionnaire was translated using the cross-translation method. The final tool was used by researcher, who was conducting the interview directly by telephone with patients and their caregivers and additionally compared with neurologopedic measurement. The health status of 60 patients was assessed between 4 and 7 times, which gives a total of 327 observations. Mean patient’s age was 57.5 ± 8.6. The division by sex was 23/35 (female/male). Patients’ health status and severity of symptoms varied. Statistical analysis was performed using explanatory factor analysis and Cronbach’s alpha. Result Validation of the Polish version of the ALSFRS-R supports the reliability and internal consistency of scale. The scale proved also to be a proper tool for monitoring the course of the experimental medical therapy for patients with ALS. However, a qualitative evaluation revealed certain weaknesses of the scale, resulting from a different understanding of the functional assessment by the patient and by the medical specialist and cultural differences. Discussion Although ALSFRS-R is a reliable enough for monitoring patient health, it seems reasonable to pay attention to some difficult points of the questionnaire and its improvement. Electronic supplementary material The online version of this article (10.1007/s10072-020-04565-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stanisław Maksymowicz
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, Collegium Medicum of the University of Warmia and Mazury, Olsztyn, Poland. .,Instytut Terapii Komórkowych S.A., Olsztyn, Poland.
| | | | - Tomasz Siwek
- Instytut Terapii Komórkowych S.A., Olsztyn, Poland.,Department of Neurology, School of Medicine, Collegium Medicum of the University of Warmia and Mazury, Olsztyn, Poland.,University Clinical Hospital, Olsztyn, Poland
| | - Agnieszka Rakowska
- Instytut Terapii Komórkowych S.A., Olsztyn, Poland.,University Clinical Hospital, Olsztyn, Poland
| |
Collapse
|
14
|
Local and Systemic Humoral Response to Autologous Lineage-Negative Cells Intrathecal Administration in ALS Patients. Int J Mol Sci 2020; 21:ijms21031070. [PMID: 32041109 PMCID: PMC7037134 DOI: 10.3390/ijms21031070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) remains a fatal disease with limited therapeutic options. Signaling via neurotrophins (NTs), neuroinflammation, and certain micro-RNAs are believed to play essential role in ALS pathogenesis. Lineage-negative stem/progenitor cells (Lin−) were obtained from bone marrow of 18 ALS patients and administered intrathecally. Clinical assessment was performed using ALS Functional Rating Scale (FRSr) and Norris scale. Protein concentrations were measured in plasma and cerebrospinal fluid (CSF) by multiplex fluorescent bead-based immunoassay. Gene expression in nucleated blood cells was assessed using gene microarray technique. Finally, miRNA expression was analyzed using qPCR in CSF and plasma samples. We observed a significant decrease of C-reactive protein (CRP) concentration in plasma on the seventh day from the application of cells. Gene array results revealed decreased expression of gene sets responsible for neutrophil activation. Further analysis revealed moderate negative correlation between CRP level in CSF and clinical outcome. Brain-derived neurotrophic factor (BDNF) concentrations in both plasma and CSF significantly correlated with the favorable clinical outcome. On a micro-RNA level, we observed significant increase of miR-16-5p expression one week after transplantation in both body fluids and significant increase of miR-206 expression in plasma. Administration of Lin− cells may decrease inflammatory response and prevent neurodegeneration. However, these issues require further investigations.
Collapse
|
15
|
Riera-Punet N, Martinez-Gomis J, Zamora-Olave C, Willaert E, Peraire M. Satisfaction of patients with amyotrophic lateral sclerosis with an oral appliance for managing oral self-biting injuries and alterations in their masticatory system: A case-series study. J Prosthet Dent 2019; 121:631-636. [DOI: 10.1016/j.prosdent.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
|
16
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Barczewska M, Grudniak M, Maksymowicz S, Siwek T, Ołdak T, Jezierska-Woźniak K, Gładysz D, Maksymowicz W. Safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy. Neural Regen Res 2019; 14:313-318. [PMID: 30531015 PMCID: PMC6301165 DOI: 10.4103/1673-5374.243723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have been shown to exhibit prospects in the treatment of amyotrophic lateral sclerosis. However, the safety of their clinical application needs to be validated. To investigate the safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy, 43 patients (16 females and 27 males, mean age of 57.3 years) received an average dose of 0.42 × 106 cells/kg through intrathecal administration at the cervical, thoracic or lumbar region depending on the clinical symptoms. There was a 2 month interval between two injections. The adverse events occurring during a 6-month treatment period were evaluated. No adverse events occurred. Headache occurred in one case only after first injection of stem cells. This suggests that intrathecal injection of Wharton's Jelly-derived mesenchymal stem cells is well tolerated in patients with amyotrophic lateral sclerosis. This study was approved by the Bioethical Committee of School of Medicine, University of Warmia and Mazury in Olsztyn, Poland (approval No. 36/2014 and approval No. 8/2016). This study was registered with the ClinicalTrials.gov (identifier: NCT02881476) on August 29, 2016.
Collapse
Affiliation(s)
- Monika Barczewska
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Mariusz Grudniak
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Stanisław Maksymowicz
- Department of Psychology, Clinical Logopedics and Social Science in Medicine, Faculty of Health Sciences, Collegium Medicum - University of Warmia and Mazury in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Tomasz Siwek
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn; Instytut Terapii Komórkowych w Olsztynie (Cell Therapies Institute, FamiCord Group), Olsztyn, Poland
| | - Tomasz Ołdak
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurology and Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum-University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dominika Gładysz
- Polski Bank Komórek Macierzystych (PBKM, FamiCord Group), Warszawa, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum - University of Warmia and Mazury in Olsztyn; University Clinical Hospital in Olsztyn, Olsztyn, Poland
| |
Collapse
|
18
|
Atlasi RS, Malik R, Corrales CI, Tzeplaeff L, Whitelegge JP, Cashman NR, Bitan G. Investigation of Anti-SOD1 Antibodies Yields New Structural Insight into SOD1 Misfolding and Surprising Behavior of the Antibodies Themselves. ACS Chem Biol 2018; 13:2794-2807. [PMID: 30110532 DOI: 10.1021/acschembio.8b00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase (SOD1) gene are linked to 10-20% of familial amyotrophic lateral sclerosis (fALS) cases. The mutations cause misfolding and self-assembly of SOD1 into toxic oligomers and aggregates, resulting in motor neuron degeneration. The molecular mechanisms underlying SOD1 aggregation and toxicity are unclear. Characterization of misfolded SOD1 is particularly challenging because of its metastable nature. Antibodies against misfolded SOD1 are useful tools for this purpose, provided their specificity and selectivity are well-characterized. Here, we characterized three recently introduced antimisfolded SOD1 antibodies and compared them with two commercial, antimisfolded SOD1 antibodies raised against the fALS-linked variant G93A-SOD1. As controls, we compared the reactivity of these antibodies to two polyclonal anti-SOD1 antibodies expected to be insensitive to misfolding. We asked to what extent the antibodies could distinguish between WT and variant SOD1 and between native and misfolded conformations. WT, G93A-SOD1, or E100K-SOD1 were incubated under aggregation-promoting conditions and monitored using thioflavin-T fluorescence, electron microscopy, and dot blots. WT and G93A-SOD1 also were analyzed using native-PAGE/Western blot. The new antimisfolded SOD1 and the commercial antibody B8H10 showed variable reactivity using dot blots but generally showed maximum reactivity at the time misfolded SOD1 oligomers were expected to be most abundant. In contrast, only B8H10 and the control antibodies were reactive in Western blots. Unexpectedly, the polyclonal antibodies showed strong preference for the misfolded form of G93A-SOD1 in dot blots. Surprisingly, antimisfolded SOD1 antibody C4F6 was specific for the apo form of G93A-SOD1 but insensitive to misfolding. Antibody 10C12 showed preference for early misfolded structures, whereas 3H1 bound preferentially to late structures. These new antibodies allow distinction between putative early- and late-forming prefibrillar SOD1 oligomers.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil R. Cashman
- Department of Neurology, University of British Columbia (UBC), Vancouver, British Columbia V6T 2B5, Canada
| | | |
Collapse
|
19
|
Transplantation of human bone marrow stem cells into symptomatic ALS mice enhances structural and functional blood-spinal cord barrier repair. Exp Neurol 2018; 310:33-47. [PMID: 30172620 DOI: 10.1016/j.expneurol.2018.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows alterations in the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) in ALS patients and in animal models of disease, mainly by endothelial cell (EC) damage. Repair of the altered barrier in the CNS by replacement of ECs via cell transplantation may be a new therapeutic approach for ALS. Recently, we demonstrated positive effects towards BSCB repair by intravenous administration of unmodified human bone marrow CD34+ (hBM34+) cells at different doses into symptomatic ALS mice. However, particular benefits of these transplanted cells on microvascular integrity in symptomatic ALS mice are still unclear. The aim of the present study was to determine the structural and functional spinal cord capillary integrity in symptomatic ALS mice after intravenous administration of hBM34+ cells. The G93A mice at 13 weeks of age intravenously received one of three different cell doses (5 × 104, 5 × 105, or 1 × 106) and were euthanized at 17 weeks of age (4 weeks post-transplant). Control groups were media-treated and non-carrier mutant SOD1 gene mice. Capillary ultrastructural (electron microscopy), immunohistochemical (laminin and HuNu), and histological (myelin and capillary density) analyses were performed in the cervical and lumbar spinal cords. Capillary permeability in the spinal cords was determined by Evans Blue (EB) injection. Results showed significant restoration of ultrastructural capillary morphology, improvement of basement membrane integrity, enhancement of axonal myelin coherence, and stabilization of capillary density in the spinal cords primarily of ALS mice receiving the high dose of 1 × 106 cells. Moreover, substantial reduction of parenchymal EB levels was determined in these mice, confirming our previous results on capillary permeability. Additionally, transplanted cells were detected in blood smears of sacrificed late symptomatic mice by HuNu marker. Altogether, these results provide novel evidence that unmodified bone marrow hematopoietic stem cell treatment at optimal dose might be beneficial for structural and functional repair of the damaged BSCB in advanced stage of ALS, potentially resulting in delayed disease progression by increased motor neuron survival.
Collapse
|
20
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
21
|
Yamamoto I, Azuma Y, Kushimura Y, Yoshida H, Mizuta I, Mizuno T, Ueyama M, Nagai Y, Tokuda T, Yamaguchi M. NPM-hMLF1 fusion protein suppresses defects of a Drosophila FTLD model expressing the human FUS gene. Sci Rep 2018; 8:11291. [PMID: 30050143 PMCID: PMC6062494 DOI: 10.1038/s41598-018-29716-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Fused in sarcoma (FUS) was identified as a component of typical inclusions in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In FTLD, both nuclear and cytoplasmic inclusions with wild-type FUS exist, while cytoplasmic inclusions with a mutant-form of FUS occur in many ALS cases. These observations imply that FUS plays a role across these two diseases. In this study, we examined the effect of several proteins including molecular chaperons on the aberrant eye morphology phenotype induced by overexpression of wild-type human FUS (hFUS) in Drosophila eye imaginal discs. By screening, we found that the co-expression of nucleophosmin–human myeloid leukemia factor 1 (NPM-hMLF1) fusion protein could suppress the aberrant eye morphology phenotype induced by hFUS. The driving of hFUS expression at 28 °C down-regulated levels of hFUS and endogenous cabeza, a Drosophila homolog of hFUS. The down-regulation was mediated by proteasome dependent degradation. Co-expression of NPM-hMLF1 suppressed this down-regulation. In addition, co-expression of NPM-hMLF1 partially rescued pharate adult lethal phenotype induced by hFUS in motor neurons. These findings with a Drosophila model that mimics FTLD provide clues for the development of novel FTLD therapies.
Collapse
Affiliation(s)
- Itaru Yamamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yumiko Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yukie Kushimura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiko Tokuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. .,The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
22
|
Pronin AV, Gogoleva IV, Torshin IY, Gromovа OA. [Neurotrophic effects of lithium stimulate the reduction of ischemic and neurodegenerative brain damage]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:99-108. [PMID: 27166488 DOI: 10.17116/jnevro20161162199-108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For over 60 years, high doses of lithium (hundreds of milligrams of elemental lithium) have being used to treat bipolar disorder. However, only during the past 20 years the relevant basic and clinical studies have shown that neuroprotective and neurotrophic effects of lithium are possible in much smaller doses ( hundreds of micrograms of elemental lithium). These data indicate a significant potential for the clinical applications of lithium-based drugs in modern neurology for the purposes of prevention and treatment of neurodegenerative and ischemic pathologies. Pharmacological and molecular biology studies indicated that the inhibition of glycogen synthase kinase-syntentase-3 (GSK-3) and induction of brain-derived neurotrophic factors are the main mechanisms of neurotropic actions of lithium. Also, by inhibiting the NMDA receptors, lithium regulates the calcium homeostasis and inhibits the activation of calcium-dependent apotosis. These and other molecular mechanisms of lithium action protect neurons from ischemia and neurodegeneration thus contributing to a significant reduction of neurological deficit in various models of stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- A V Pronin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I V Gogoleva
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - I Yu Torshin
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| | - O A Gromovа
- Ivanovo State Medical Academy, Ivanovo, Russian Satellite Center, Trace Elements Institute for UNESCO, Moscow
| |
Collapse
|
23
|
Ahmadi M, Agah E, Nafissi S, Jaafari MR, Harirchian MH, Sarraf P, Faghihi-Kashani S, Hosseini SJ, Ghoreishi A, Aghamollaii V, Hosseini M, Tafakhori A. Safety and Efficacy of Nanocurcumin as Add-On Therapy to Riluzole in Patients With Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial. Neurotherapeutics 2018; 15:430-438. [PMID: 29352425 PMCID: PMC5935637 DOI: 10.1007/s13311-018-0606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The objective of present study was to assess the safety and efficacy of nanocurcumin as an anti-inflammatory and antioxidant agent in adults with amyotrophic lateral sclerosis (ALS). We conducted a 12-month, double-blind, randomized, placebo-controlled trial at a neurological referral center in Iran. Eligible patients with a definite or probable ALS diagnosis were randomly assigned to receive either nanocurcumin (80 mg daily) or placebo in a 1:1 ratio. A computerized random number generator was used to prepare the randomization list. All patients and research investigators were blinded to treatment allocation. The primary outcome was survival, and event was defined to be death or mechanical ventilation dependency. Analysis was by intention-to-treat and included all patients who received at least one dose of study drug. A total of 54 patients were randomized to receive either nanocurcumin (n = 27) or placebo (n = 27). After 12 months, events occurred in 1 patient (3.7%) in the nanocurcumin group and in 6 patients (22.2%) in the placebo group. Kaplan-Meier analysis revealed a significant difference between the study groups regarding their survival curves (p = 0.036). No significant between-group differences were observed for any other outcome measures. No serious adverse events or treatment-related deaths were detected. No patients withdrew as a result of drug adverse events. The results suggest that nanocurcumin is safe and might improve the probability of survival as an add-on treatment in patients with ALS, especially in those with existing bulbar symptoms. Future studies with larger sample sizes and of longer duration are needed to confirm these findings.
Collapse
Affiliation(s)
- Mona Ahmadi
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Agah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Shahriar Nafissi
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Sarraf
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Faghihi-Kashani
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Hosseini
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Aghamollaii
- Department of Neurology, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research (ICNR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
24
|
Chen H, Kankel MW, Su SC, Han SWS, Ofengeim D. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death Differ 2018; 25:648-662. [PMID: 29459769 DOI: 10.1038/s41418-018-0060-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia normally act to mitigate neurodegeneration in ALS/FTLD? To what extent do cellular signaling pathways mediate non-cell autonomous communications between distinct central nervous system (CNS) cell types during disease? Is it possible to therapeutically target specific cell types in the CNS?
Collapse
Affiliation(s)
- Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Mark W Kankel
- Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Susan C Su
- Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Steve W S Han
- Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,GSK, Upper Providence, PA, 19426, USA
| | - Dimitry Ofengeim
- Biogen Inc., 225 Binney Street, Cambridge, MA, 02142, USA. .,Sanofi Neuroscience, Framingham, MA, USA.
| |
Collapse
|
25
|
Adams SD, Kouzani AZ, Tye SJ, Bennet KE, Berk M. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. J Neuroeng Rehabil 2018; 15:8. [PMID: 29439744 PMCID: PMC5811973 DOI: 10.1186/s12984-018-0349-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Collapse
Affiliation(s)
- Scott D. Adams
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Berk
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
26
|
Potential Role of Humoral IL-6 Cytokine in Mediating Pro-Inflammatory Endothelial Cell Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19020423. [PMID: 29385088 PMCID: PMC5855645 DOI: 10.3390/ijms19020423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease with limited therapeutic options. Numerous intrinsic and extrinsic factors are involved in ALS motor neuron degeneration. One possible effector accelerating motor neuron death in ALS is damage to the blood-Central Nervous System barrier (B-CNS-B), mainly due to endothelial cell (EC) degeneration. Although mechanisms of EC damage in ALS are still unknown, vascular impairment may be initiated by various humoral inflammatory factors and other mediators. Systemic IL-6-mediated inflammation is a possible early extrinsic effector leading to the EC death causing central nervous system (CNS) barrier damage. In this review, we discuss the potential role of humoral factors in triggering EC alterations in ALS. A specific focus was on humoral IL-6 cytokine mediating EC inflammation via the trans-signaling pathway. Our preliminary in vitro studies demonstrated a proof of principle that short term exposure of human bone marrow endothelial cells to plasma from ALS patient leads to cell morphological changes, significantly upregulated IL-6R immunoexpression, and pro-inflammatory cell response. Our in-depth understanding of specific molecular mechanisms of this humoral cytokine in EC degeneration may facilitate an endothelial-IL-6-targeting therapy for restoring cell homeostasis and eventually reestablishing B-CNS-B integrity in ALS.
Collapse
|
27
|
Yener Ilce B, Cagin U, Yilmazer A. Cellular reprogramming: A new way to understand aging mechanisms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7. [PMID: 29350802 DOI: 10.1002/wdev.308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Increased life expectancy, due to the rise in life quality and the decline in mortality rates, is leading to a society in which the population aged 60 and over is growing more rapidly than the entire population. Although various models and model organisms have been employed to investigate the mechanism of aging, induced pluripotent stem cells (iPSCs) are useful candidates to study human aging and age-related human diseases. This work discusses how iPSCs can be used as an alternative to the model organisms such as yeast, Caenorhabditis elegans, Drosophila melanogaster, or the mouse. The main focus is the reprogramming technology of somatic cells which is thought to provide an important perspective for rejuvenation strategies. The effects and relationships between aging and cell reprogramming are discussed, and studies related to aging and cell reprogramming are critically reviewed. We believe that for future studies, different parameters and detailed quantitative experiments should be performed in order to clearly understand the effect of aging on human cell reprogramming with respect to programming efficiency and differentiation capacity. This way, new insights will be provided to prevent or even reverse the aging process. WIREs Dev Biol 2018, 7:e308. doi: 10.1002/wdev.308 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Aging Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
| | | | - Acelya Yilmazer
- Biomedical Engineering Department, Engineering Faculty, Ankara University, Ankara, Turkey.,Stem Cell Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
28
|
Riera-Punet N, Martinez-Gomis J, Willaert E, Povedano M, Peraire M. Functional limitation of the masticatory system in patients with bulbar involvement in amyotrophic lateral sclerosis. J Oral Rehabil 2017; 45:204-210. [PMID: 29240971 DOI: 10.1111/joor.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) with bulbar dysfunction affects the motor neurons responsible for controlling the muscles in the jaw, face, soft palate, pharynx, larynx and tongue. This cross-sectional study aimed to determine the functional limitation of the jaw in patients with ALS and bulbar dysfunction who had upper motor neuron (UMN), lower motor neuron (LMN) or balanced involvement. One hundred and fifty-three patients with ALS and 23 controls were included. All participants answered using the 8-item Jaw Functional Limitation Scale (JFLS-8). Patients with ALS were grouped by neurologic examination as follows: non-bulbar ALS, bulbar UMN-predominant ALS; bulbar LMN-predominant ALS; and bulbar balanced (UMN + LMN) ALS. Jaw limitation between the different groups was compared using the Kruskal-Wallis test. Patients with non-bulbar ALS had similar mandibular limitations to healthy participants. Only patients with balanced UMN and LMN bulbar manifestations reported greater difficulties in chewing soft food or in jaw mobility compared to the non-bulbar ALS group. Patients with bulbar involvement also had greater difficulties in chewing tough food or chicken and in swallowing and talking compared to the non-bulbar group, regardless of whether UMN or LMN predominant. No significant differences were found between the groups in smiling and yawning difficulties. Bulbar involvement in patients with ALS is associated with functional limitation of the masticatory system. However, balanced bulbar UMN and LMN involvement is associated with the worst impairments in chewing soft food and in opening the jaw widely.
Collapse
Affiliation(s)
- N Riera-Punet
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - J Martinez-Gomis
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain.,Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute), IDIBELL, L'Hospitalet de llobregat, Barcelona, Spain
| | - E Willaert
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain.,Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute), IDIBELL, L'Hospitalet de llobregat, Barcelona, Spain
| | - M Povedano
- ALS Unit, Department of Neurology, Bellvitge University Hospital, L'Hospitalet de llobregat, Barcelona, Spain
| | - M Peraire
- Department of Prosthodontics, School of Dentistry, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain.,Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute), IDIBELL, L'Hospitalet de llobregat, Barcelona, Spain
| |
Collapse
|
29
|
Indications and prospects of neural transplantation for chronic neurological diseases. Curr Opin Organ Transplant 2017; 21:490-6. [PMID: 27517509 DOI: 10.1097/mot.0000000000000344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The replacement of damaged cells in the central nervous system (CNS) affected by degenerative disorders represents an attractive therapeutic strategy. The advent of stem cell technology may offer the possibility of generating a large number of renewable, specifically differentiated cells to potentially cure large cohorts of patients. In this review, we discuss current knowledge and issues involved in neural cell transplantation. The most important preclinical and clinical results of cellular transplantation applied to Parkinson's, Huntington's disease and amyotrophic lateral sclerosis will be summarized. RECENT FINDINGS Cellular transplantation is emerging as a possible therapy for a variety of incurable neurological disorders. The disorders that will primarily take advantage from neural stem cell grafting are those involving a well defined cell population in a restricted area of the CNS. Several clinical trials have been initiated to assess safety and efficacy of different stem cell-derived products, and promising results have been obtained for disorders such as Parkinson's disease. However, several scientific questions remain unanswered. Among these, the impact of the immunological interaction between host and graft in the particular environment of the CNS still requires additional investigations. SUMMARY Several chronic neurological disorders appear to be amenable to cell regenerative therapies. However, safety, efficacy and immunological issues will need to be carefully evaluated beforehand.
Collapse
|
30
|
Cheng HWB, Chan OMI, Chan CHR, Chan WH, Fung KS, Wong KY. End-of-life Characteristics and Palliative Care Provision for Patients With Motor Neuron Disease. Am J Hosp Palliat Care 2017; 35:847-851. [DOI: 10.1177/1049909117735832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hon Wai Benjamin Cheng
- Medical Palliative Medicine (MPM) Unit, Department of Medicine and Geriatrics, Tuen Mun Hospital, New Territories, Hong Kong
| | - Oi Man Iman Chan
- Medical Palliative Medicine (MPM) Unit, Department of Medicine and Geriatrics, Tuen Mun Hospital, New Territories, Hong Kong
| | - Chun Hung Red Chan
- Palliative Home Care Team, Tuen Mun Hospital, New Territories, Hong Kong
| | - Wan Hung Chan
- Palliative Home Care Team, Tuen Mun Hospital, New Territories, Hong Kong
| | - Koon Sim Fung
- Palliative Home Care Team, Tuen Mun Hospital, New Territories, Hong Kong
| | - Kar Yin Wong
- Palliative Home Care Team, Tuen Mun Hospital, New Territories, Hong Kong
| |
Collapse
|
31
|
Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci Lett 2017; 658:85-90. [DOI: 10.1016/j.neulet.2017.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022]
|
32
|
Hinchcliffe M, Smith A. Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degener Neurol Neuromuscul Dis 2017; 7:61-70. [PMID: 30050378 PMCID: PMC6053101 DOI: 10.2147/dnnd.s135748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the commonest form of motor neuron disease and is a fatal, degenerative, multisystem disorder affecting upper and/or lower motor neurons in the motor cortex, brain stem, and spinal cord. ALS is characterized by progressive atrophy of associated bulbar, limb, thoracic, and abdominal muscles and supporting cells manifesting in a range of muscular symptoms such as weakness and wasting and eventual paralysis; the majority of patients will die from respiratory failure within 2–5 years of onset. Riluzole, a synthetic benzothiazole drug with glutamine antagonist activity, is indicated for the treatment of patients with ALS and is the only drug that has been shown to slow the course of the disease and extend survival in ALS patients. The original analyses, and subsequent meta-analyses, of data obtained from randomized controlled trials (RCTs) suggest that riluzole typically extends survival by 2–3 months and increases the chance of an additional year of survival by ~9%. However, published real-world evidence (RWE) from 10 clinical ALS databases indicates that riluzole therapy may afford much greater extension of survival, and improvements in median survival times of more than 19 months have been reported in the overall ALS patient population. This article will review the available data from RCTs and RWE on riluzole therapy.
Collapse
Affiliation(s)
| | - Alan Smith
- PharmaSci Consulting Ltd, Nottingham, UK
| |
Collapse
|
33
|
Usarek E, Barańczyk-Kuźma A, Kaźmierczak B, Gajewska B, Kuźma-Kozakiewicz M. Validation of qPCR reference genes in lymphocytes from patients with amyotrophic lateral sclerosis. PLoS One 2017; 12:e0174317. [PMID: 28328930 PMCID: PMC5362213 DOI: 10.1371/journal.pone.0174317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) is the most specific and reliable method for determination of mRNA gene expression. Crucial point for its accurate normalization is the choice of appropriate internal control genes (ICGs). In the present work we determined and compare the expression of eight commonly used ICGs in lymphocytes from 26 patients with amyotrophic lateral sclerosis (ALS) and 30 control subjects. Peripheral blood mononuclear cells (PBMCs) before and after immortalization by EBV transfection (lymphoblast cell lines—LCLs) were used for qPCR analysis. LCLs were studied before and after liquid nitrogen cryopreservation and culturing (groups LCL1 and LCL2, respectively). qPCR data of 8 ICGs expression was analyzed by BestKeeper, NormFinder and geNorm methods. All studied genes (18SRNA, ACTB, B2M, GUSB,GAPDH, HPRT1, MT-ATP6 and RPS17) were expressed in PBMCs, whereas only first four in LCLs. LCLs cryopreservation had no effect on ICGs expression. Comprehensive ranking indicated RPS17 with MT-ATP6 as the best ICGs for qPCR in PBMCs of control and ALS subjects, and RPS17 with 18RNA or MT-ATP6 in LCLs from ALS. In PBMCs 18RNA shouldn’t be used as ICG.
Collapse
Affiliation(s)
- Ewa Usarek
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Barańczyk-Kuźma
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaźmierczak
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Beata Gajewska
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
34
|
McAlary L, Aquilina JA, Yerbury JJ. Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity. Front Neurosci 2016; 10:499. [PMID: 27867347 PMCID: PMC5095133 DOI: 10.3389/fnins.2016.00499] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1G37R, SOD1G93A and SOD1V148G having the greatest abundance of intermediate and unfolded SOD1. SOD1G37R was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1G93A and SOD1V148G in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1G37R with preformed SOD1G93A fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1G37R.
Collapse
Affiliation(s)
- Luke McAlary
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - J Andrew Aquilina
- Science Medicine and Health Faculty, School of Biological Sciences, University of Wollongong Wollongong, NSW, Australia
| | - Justin J Yerbury
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
35
|
Fang X, Wang X, Yang S, Meng F, Wang X, Wei H, Chen T. Evaluation of the Microbial Diversity in Amyotrophic Lateral Sclerosis Using High-Throughput Sequencing. Front Microbiol 2016; 7:1479. [PMID: 27703453 PMCID: PMC5028383 DOI: 10.3389/fmicb.2016.01479] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
More and more evidences indicate that diseases of the central nervous system have been seriously affected by fecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS) and fecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis, Venn and unweighted pair-group method using arithmetic averages (UPGMA) showed an obvious microbial changes between healthy people (group H) and ALS patients (group A), and the average ratios of Bacteroides, Faecalibacterium, Anaerostipes, Prevotella, Escherichia, and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA > 4.0), together with the significant increased genus Dorea (harmful microorganisms) and significant reduced genus Oscillibacter, Anaerostipes, Lachnospiraceae (beneficial microorganisms) in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Xin Wang
- Institute of Translational Medicine, Nanchang University Nanchang, China
| | - Shaoguo Yang
- Institute of Translational Medicine, Nanchang University Nanchang, China
| | - Fanjing Meng
- Institute of Translational Medicine, Nanchang University Nanchang, China
| | - Xiaolei Wang
- Institute of Translational Medicine, Nanchang University Nanchang, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University Nanchang, China
| |
Collapse
|
36
|
Kotan D, Iskender C, Özoğuz Erimiş A, Başak AN. A Turkish Family with a Familial ALS-positive UBQLN2-S340I Mutation. Noro Psikiyatr Ars 2016; 53:283-285. [PMID: 28373810 DOI: 10.5152/npa.2016.12371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Ceren Iskender
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| | - Aslıhan Özoğuz Erimiş
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| | - A Nazlı Başak
- Department of Molecular Biology and Genetic, Boğaziçi University Suna ve İnan Kıraç Foundation, Neurodegeneration Research Laboratuary (NDAL), İstanbul, Turkey
| |
Collapse
|
37
|
Patel AN, Sampson JB. Cognitive Profile of C9orf72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Curr Neurol Neurosci Rep 2016. [PMID: 26198888 DOI: 10.1007/s11910-015-0582-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review article focuses on the cognitive profile associated with the C9orf72 gene with GGGGCC (G4C2) hexanucleotide repeat expansions that is commonly found in both familial and sporadic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in order to aid clinicians in the screening process. In this growing clinical continuum between FTD and ALS, understanding and recognizing a neurocognitive profile is important for diagnosis. Key features of this profile include executive dysfunction with memory impairment and language deficits as the disease progresses. Behaviorally, patients are prone to disinhibition, apathy, and psychosis. With the discovery of this mutation, studies have begun to characterize the different phenotypes associated with this mutation in terms of epidemiology, clinical presentation, imaging, and pathology. Greater awareness and increased surveillance for this mutation will benefit patients and their families in terms of access to genetic counseling, research studies, and improved understanding of the disease process.
Collapse
Affiliation(s)
- Anjali N Patel
- Division of Aging and Dementia, Columbia University Medical Center, 622 West 168th Street, PH-19, Room 121, New York, NY, 10032, USA,
| | | |
Collapse
|
38
|
Kuźma-Kozakiewicz M, Kaźmierczak B, Chudy A, Gajewska B, Barańczyk-Kuźma A. Alteration of Motor Protein Expression Involved in Bidirectional Transport in Peripheral Blood Mononuclear Cells of Patients with Amyotrophic Lateral Sclerosis. NEURODEGENER DIS 2016; 16:235-44. [PMID: 26954557 DOI: 10.1159/000443664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sporadic amyotrophic lateral sclerosis (SALS) is a fatal motor neuron degenerative disease of unclear pathogenesis. Disturbances of intracellular transport are possible causes of the disease. OBJECTIVE We evaluated the expression of motor proteins involved in the anterograde (kinesins KIF1B, KIF5C) and retrograde (KIFC3, dynactin subunits DCTN1 and DCTN3) intracellular transport in peripheral blood mononuclear cells (PBMCs). MATERIALS AND METHODS PBMCs were obtained from 74 SALS patients with different clinical phenotypes, 65 blood donors (healthy control I), and 29 cases with other neurological diseases (disease control II) divided into subgroups IIA (atypical parkinsonism) and IIB (ALS-mimicking disorders). mRNA expression was studied by real-time qPCR, and protein level by Western blotting. RESULTS In SALS, KIF5C and KIFC3 expression was significantly lower and DCTN1 higher than in control I, and dependent of age. KIF1B expression was significantly higher in SALS than in subgroup IIB, whereas DCTN1 and DCTN3 were higher in SALS than in subgroup IIA. All changes in the studied proteins were statistically significant in classic ALS but not in progressive muscular atrophy. CONCLUSION In SALS, and especially in classic ALS, the changes in motor protein expression may alter bidirectional intracellular transport in PBMCs. More studies are needed to find out whether the levels of KIF5C and DCTN1 may be useful in ALS diagnosis, and whether KIF1B expression may discriminate ALS from ALS-mimicking disorders.
Collapse
|
39
|
Raman R, Allen SP, Goodall EF, Kramer S, Ponger LL, Heath PR, Milo M, Hollinger HC, Walsh T, Highley JR, Olpin S, McDermott CJ, Shaw PJ, Kirby J. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol Appl Neurobiol 2015; 41:201-26. [PMID: 24750211 PMCID: PMC4329387 DOI: 10.1111/nan.12147] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Aims Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS. Methods Microarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes. Results Gene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration. Conclusions The data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rohini Raman
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2015; 577:109-18. [PMID: 26657039 DOI: 10.1016/j.gene.2015.11.049] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neural disorder that causes death of the motor neurons in the brain and spinal cord; this affects the voluntary muscles and gradually leads to paralysis of the whole body. Most ALS cases are sporadic, though about 5-10% are familial. ALS is caused by multiple factors including mutation in any one of a number of specific genes, one of the most frequently affected is superoxide dismutase (SOD) 1. Alterations in SOD 1 have been linked with several variants of familial ALS. SOD 1 is a powerful antioxidant enzyme that protects cells from the damaging effects of superoxide radicals. The enzyme binds both copper and zinc ions that are directly involved in the deactivation of toxic superoxide radicals. Mutated SOD1 gene can acquire both gain and loss of function mutations. The most commonly identified mutations in SOD1 that affect protein activity are D90A, A4V and G93A. Deleterious mutations have been shown to modify SOD1 activity, which leads to the accumulation of highly toxic hydroxyl radicals. Accumulation of these free radicals causes degradation of both nuclear and mitochondrial DNA and protein misfolding, features which can be used as pathological indicators associated with ALS. Numerous clinical trials have been carried out over last few years with limited success. In some patients advanced techniques like gene and stem cell therapy have been trialed. However no definitive treatment option can provide a cure and currently ALS is managed by drugs and other supportive therapies. Consequently there is a need to identify new approaches for treatment of this ultimately fatal disease.
Collapse
|
41
|
An Overview of Potential Targets for Treating Amyotrophic Lateral Sclerosis and Huntington's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:198612. [PMID: 26295035 PMCID: PMC4532815 DOI: 10.1155/2015/198612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases affect millions of people worldwide. Progressive damage or loss of neurons, neurodegeneration, has severe consequences on the mental and physical health of a patient. Despite all efforts by scientific community, there is currently no cure or manner to slow degeneration progression. We review some treatments that attempt to prevent the progress of some of major neurodegenerative diseases: Amyotrophic Lateral Sclerosis and Huntington's disease.
Collapse
|
42
|
Predicting Early Bulbar Decline in Amyotrophic Lateral Sclerosis: A Speech Subsystem Approach. Behav Neurol 2015; 2015:183027. [PMID: 26136624 PMCID: PMC4468279 DOI: 10.1155/2015/183027] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/03/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose. To develop a predictive model of speech loss in persons with amyotrophic lateral sclerosis (ALS) based on measures of respiratory, phonatory, articulatory, and resonatory functions that were selected using a data-mining approach. Method. Physiologic speech subsystem (respiratory, phonatory, articulatory, and resonatory) functions were evaluated longitudinally in 66 individuals with ALS using multiple instrumentation approaches including acoustic, aerodynamic, nasometeric, and kinematic. The instrumental measures of the subsystem functions were subjected to a principal component analysis and linear mixed effects models to derive a set of comprehensive predictors of bulbar dysfunction. These subsystem predictors were subjected to a Kaplan-Meier analysis to estimate the time until speech loss. Results. For a majority of participants, speech subsystem decline was detectible prior to declines in speech intelligibility and speaking rate. Among all subsystems, the articulatory and phonatory predictors were most responsive to early bulbar deterioration; and the resonatory and respiratory predictors were as responsive to bulbar decline as was speaking rate. Conclusions. The articulatory and phonatory predictors are sensitive indicators of early bulbar decline due to ALS, which has implications for predicting disease onset and progression and clinical management of ALS.
Collapse
|
43
|
Yacila G, Sari Y. Potential therapeutic drugs and methods for the treatment of amyotrophic lateral sclerosis. Curr Med Chem 2015; 21:3583-93. [PMID: 24934355 DOI: 10.2174/0929867321666140601162710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder caused by damage of motoneurons leading to paralysis state and long term disability. Riluzole is currently the only FDA-approved drug for the treatment of ALS. The proposed mechanisms of ALS include glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, protein aggregation, SOD1 accumulations, and neuronal death. In this review, we discuss potential biomarkers for the identification of patients with ALS. We further emphasize potential therapy involving the uses of neurotrophic factors such as IGFI, GDNF, VEGF, ADNF-9, colivelin and angiogenin in the treatment of ALS. Moreover, we described several existing drugs such as talampanel, ceftriaxone, pramipexole, dexpramipexole and arimoclomol potential compounds for the treatment of ALS. Interestingly, the uses of stem cell therapy and immunotherapy are promising for the treatment of ALS.
Collapse
Affiliation(s)
| | - Y Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614. USA.
| |
Collapse
|
44
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|
45
|
Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C. Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Cereb Cortex 2015; 26:1512-28. [DOI: 10.1093/cercor/bhu317] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
46
|
Forlenza OV, De-Paula VJR, Diniz BSO. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci 2014; 5:443-50. [PMID: 24766396 DOI: 10.1021/cn5000309] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. More recently, based on findings from translational research, lithium has also been regarded as a neuroprotective agent and a candidate drug for disease-modification in certain neurodegenerative disorders, namely, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and, more recently, Parkinson's disease (PD). The putative neuroprotective effects of lithium rely on the fact that it modulates several homeostatic mechanisms involved in neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Such a wide range of intracellular responses may be secondary to two key effects, that is, the inhibition of glycogen synthase kinase-3 beta (GSK-3β) and inositol monophosphatase (IMP) by lithium. In the present review, we revisit the neurobiological properties of lithium in light of the available evidence of its neurotrophic and neuroprotective properties, and discuss the rationale for its use in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- O. V. Forlenza
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - V. J. R. De-Paula
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - B. S. O. Diniz
- Department
of Mental Health and National Institute of Science and Technology,
Molecular Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
47
|
Sizoo EM, Grisold W, Taphoorn MJB. Neurologic aspects of palliative care: the end of life setting. HANDBOOK OF CLINICAL NEUROLOGY 2014; 121:1219-1225. [PMID: 24365413 DOI: 10.1016/b978-0-7020-4088-7.00081-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As there are, to date, few curative treatment options for many neurologic diseases, end of life (EOL) care is an important aspect of the treatment of neurologic patients. In the EOL phase, treatment should be aimed at relieving symptoms, maintaining quality of life, and facilitating a peaceful and dignified way of dying. Common signs and symptoms in the EOL phase of neurologic patients are raised intracranial pressure, seizures, confusion, cognitive deficits, and impaired motor function. Supportive treatment of these symptoms (such as analgesic drugs, dexamethasone, antiepileptic and neuroleptic drugs) is of major importance to maintain quality of life as long as possible. Another key aspect of EOL care is EOL decision making, such as withholding or withdrawing life-sustaining treatment, and palliative sedation. The main goal of EOL decision making is the prevention and relief of suffering, even if this might hasten death. Especially in advanced stages of many neurologic diseases, confusion, cognitive deficits, communication deficits, and decreasing levels of consciousness may impair the competence of patients to participate in EOL decision making. Given that patient autonomy is increasingly essential, advance care planning (ACP) at an early stage of the disease should be considered.
Collapse
Affiliation(s)
- Eefje M Sizoo
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Wolfgang Grisold
- Department of Neurology, Kaiser Franz Josep Hospital, Vienna, Austria
| | | |
Collapse
|
48
|
Williams JR, Fitzhenry D, Grant L, Martyn D, Kerr DA. Diagnosis pathway for patients with amyotrophic lateral sclerosis: retrospective analysis of the US Medicare longitudinal claims database. BMC Neurol 2013; 13:160. [PMID: 24499173 PMCID: PMC4029731 DOI: 10.1186/1471-2377-13-160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Background Initial symptoms of amyotrophic lateral sclerosis (ALS) are often subtle and can delay diagnosis. This exploratory analysis was conducted to better characterize the pre-diagnosis pathway undertaken by patients with ALS in the US Centers for Medicare & Medicaid Services Medicare longitudinal claims database. Methods Quarterly Medicare claims data were analyzed to determine the pre-diagnosis pathway for an ALS patient cohort that included patients aged ≥ 65 years with ≥ 2 ALS claims (International Classification of Diseases, Ninth Revision, Clinical Modification code 335.20) between the first quarter of 2007 and the fourth quarter of 2009, and were enrolled in Medicare ≥ 2 years before the first ALS claim (diagnosis). A cohort of Medicare patients without claims for motor neuron diseases were identified for comparison. A subset of these patients with ≥ 3 years of claims data was included in a time to diagnosis analysis. Data extraction included the most common initial symptoms of ALS, the time from first ALS symptom to diagnosis, and the diagnostic procedures performed before the diagnosis of ALS. Results A total of 399 patients met the inclusion criteria and were included in the ALS cohort; 272 patients were included in the time to diagnosis cohort. Before the quarter of diagnosis, symptoms that were more frequently seen in the ALS cohort than the general Medicare cohort included muscle weakness, lack of coordination and speech/swallowing difficulties. Limb-onset ALS (74%) was more common than bulbar-onset ALS (17%). Median time to diagnosis for limb- and bulbar-onset patients was 2.5 years and 1.25 years, respectively. The most common tests conducted before the quarter of diagnosis included sensory and motor nerve conduction tests, imaging studies, and electromyography; however, a substantial number of patients did not receive any nerve conduction testing. Motor nerve conduction testing in patients with bulbar-onset ALS had the largest impact on time to diagnosis. Conclusions This analysis describes a diagnostic delay for patients with ALS in the US Medicare population, similar to previous reports. The development of tools and ongoing education that can help to identify patients with ALS earlier in their disease course is needed.
Collapse
|
49
|
Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 71:999-1015. [PMID: 24100629 PMCID: PMC3928509 DOI: 10.1007/s00018-013-1480-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/27/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are characterized by the selective vulnerability and progressive loss of discrete neuronal populations. Non-neuronal cells appear to significantly contribute to neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS), Parkinson, and Alzheimer’s disease. In ALS, there is deterioration of motor neurons in the cortex, brainstem, and spinal cord, which control voluntary muscle groups. This results in muscle wasting, paralysis, and death. Neuroinflammation, characterized by the appearance of reactive astrocytes and microglia as well as macrophage and T-lymphocyte infiltration, appears to be highly involved in the disease pathogenesis, highlighting the involvement of non-neuronal cells in neurodegeneration. There appears to be cross-talk between motor neurons, astrocytes, and immune cells, including microglia and T-lymphocytes, which are subsequently activated. Currently, effective therapies for ALS are lacking; however, the non-cell autonomous nature of ALS may indicate potential therapeutic targets. Here, we review the mechanisms of action of astrocytes, microglia, and T-lymphocytes in the nervous system in health and during the pathogenesis of ALS. We also evaluate the therapeutic potential of these cellular populations, after transplantation into ALS patients and animal models of the disease, in modulating the environment surrounding motor neurons from pro-inflammatory to neuroprotective. We also thoroughly discuss the recent advances made in the field and caveats that need to be overcome for clinical translation of cell therapies aimed at modulating non-cell autonomous events to preserve remaining motor neurons in patients.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Retzius v. 8, 17177 Stockholm, Sweden
| |
Collapse
|
50
|
Gordon PH. Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials. Aging Dis 2013; 4:295-310. [PMID: 24124634 PMCID: PMC3794725 DOI: 10.14336/ad.2013.0400295] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS), first described by Jean-Martin Charcot in the 1870s, is an age-related disorder that leads to degeneration of motor neurons. The disease begins focally in the central nervous system and then spreads relentlessly. The clinical diagnosis, defined by progressive signs and symptoms of upper and lower motor neuron dysfunction, is confirmed by electromyography. Additional testing excludes other conditions. The disease is heterogeneous, but most patients die of respiratory muscle weakness less than 3 years from symptom-onset. Like other age-related neurodegenerative diseases, ALS has genetic and environmental triggers. Of the five to 10% of cases that are inherited, mutations have been discovered for a high proportion. In addition to genetic factors, age, tobacco use, and athleticism may contribute to sporadic ALS, but important etiologies are unidentified for most patients. Complex pathophysiological processes, including mitochondrial dysfunction, aggregation of misfolded protein, oxidative stress, excitotoxicity, inflammation and apoptosis, involve both motor neurons and surrounding glial cells. There is clinical and pathological overlap with other neurodegenerative diseases, particularly frontotemporal dementia. The mechanisms leading to disease propagation in the brain are a current focus of research. To date, one medication, riluzole, licensed in 1996, has been proved to prolong survival in ALS. Numerous clinical trials have so far been unable to identify another neuroprotective agent. Researchers now aim to slow disease progression by targeting known pathophysiological pathways or genetic defects. Current approaches are directed at muscle proteins such as Nogo, energetic balance, cell replacement, and abnormal gene products resulting from mutations. Until better understanding of the causes and mechanisms underlying progression lead to more robust neuroprotective agents, symptomatic therapies can extend life and improve quality of life. Palliative care programs such as hospice give emotional and physical support to patients and families throughout much of the disease course.
Collapse
Affiliation(s)
- Paul H. Gordon
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département des Maladies du Système Nerveux, Paris, France
- Northern Navajo Medical Center, Shiprock, NM 87420, USA
| |
Collapse
|