1
|
Jawad M, Uthirapathy S, Altalbawy FMA, Oghenemaro EF, Rizaev J, Lal M, Eldesoqui M, Sharma N, Pramanik A, Al-Hamairy AK. Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease: a comprehensive review. Inflammopharmacology 2024:10.1007/s10787-024-01622-9. [PMID: 39699843 DOI: 10.1007/s10787-024-01622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder that affects millions of people worldwide. One of the key pathological features of Alzheimer's disease is oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them with antioxidants. In recent years, there has been growing interest in the potential role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease. This review paper aims to provide a comprehensive overview of the current research on antioxidant supplementation in Alzheimer's disease and its effects on oxidative stress markers. The paper will examine the underlying mechanisms of oxidative stress in Alzheimer's disease, the potential benefits of antioxidant supplementation, and the challenges and limitations of using antioxidants as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Subasini Uthirapathy
- Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, Iraq
| |
Collapse
|
2
|
Prajapati KP, Mittal S, Ansari M, Mishra N, Mahato OP, Tiku AB, Anand BG, Kar K. Structural Conversion of Serotonin into Amyloid-like Nanoassemblies Conceptualizes an Unexplored Neurotoxicity Risk. ACS NANO 2024; 18:34044-34062. [PMID: 39621873 DOI: 10.1021/acsnano.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The neuromodulator 5-hydroxytryptamine, known as serotonin, plays a key regulatory role in the central nervous system and peripheral organs; however, several research revelations have indicated a direct link between the oxidation of serotonin and a plethora of detrimental consequences. Hence, the question of how several neuronal and non-neuronal complications originate via serotonin oxidation remains an important area of investigation. Here, we show the autoxidation-driven structural conversion of serotonin into hemolytic and cytotoxic amyloid-like nanoassemblies under physiological conditions. We also observed the catalysis of serotonin oxidation in the presence of Aβ1-42 amyloid fibrils and Cu(II) ions. The serotonin nanostructures generated from its spontaneous and amyloid-mediated oxidation exhibited typical structural and functional characteristics of amyloid entities, and their effective internalization in neuroblastoma cells caused cell-damaging effects via cytosolic aggregation, ROS generation and necrosis/apoptosis-mediated cell death. Since imbalance in the serotonin level is known to predispose diverse pathological conditions including serotonin syndrome, atherosclerosis, diabetes, and Alzheimer's diseases, our results on the formation of cytotoxic nanoassemblies via serotonin oxidation may provide important evidence for understanding the molecular mechanism of serotonin associated complications.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
5
|
Wu X, Zhu X, Pan Y, Gu X, Liu X, Chen S, Zhang Y, Xu T, Xu N, Sun S. Amygdala neuronal dyshomeostasis via 5-HT receptors mediates mood and cognitive defects in Alzheimer's disease. Aging Cell 2024; 23:e14187. [PMID: 38716507 PMCID: PMC11320345 DOI: 10.1111/acel.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024] Open
Abstract
Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist β-amyloid peptides (Aβ) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.
Collapse
Affiliation(s)
- Xin‐Rong Wu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao‐Na Zhu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan‐Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Gu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xian‐Dong Liu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Si Chen
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhang
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tian‐Le Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nan‐Jie Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
- Songjiang Hospital and Songjiang Research InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Emotions and Affective DisordersShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Suya Sun
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Ahmad SR, Zeyaullah M, AlShahrani AM, Khan MS, Muzammil K, Ahmed F, Dawria A, Mohieldin A, Ali H, Altijani AAG. Exploring the most promising anti - Depressant drug targeting Microtubule Affinity Receptor Kinase 4 involved in Alzheimer's Disease through molecular docking and molecular dynamics simulation. PLoS One 2024; 19:e0301179. [PMID: 39052643 PMCID: PMC11271900 DOI: 10.1371/journal.pone.0301179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/12/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's Disease (AD) is the prevailing type of neurodegenerative illness, characterised by the accumulation of amyloid beta plaques. The symptoms associated with AD are memory loss, emotional variability, and a decline in cognitive functioning. To date, the pharmaceuticals currently accessible in the marketplace are limited to symptom management. According to several research, antidepressants have demonstrated potential efficacy in the management of AD. In this particular investigation, a total of 24 anti-depressant medications were selected as ligands, while the Microtubule Affinity Receptor Kinase 4 (MARK4) protein was chosen as the focal point of our study. The selection of MARK4 was based on its known involvement in the advancement of AD and other types of malignancies, rendering it a highly prospective target for therapeutic interventions. The initial step involved doing ADMET analysis, which was subsequently followed by molecular docking of 24 drugs. This was succeeded by molecular dynamics simulation and molecular mechanics generalised Born surface area (MMGBSA) calculations. Upon conducting molecular docking experiments, it has been determined that the binding affinities observed fall within the range of -5.5 kcal/mol to -9.0 kcal/mol. In this study, we selected six anti-depressant compounds (CID ID - 4184, 2771, 4205, 5533, 4543, and 2160) based on their binding affinities, which were determined to be -9.0, -8.7, -8.4, -8.3, -8.2, and -8.2, respectively. Molecular dynamics simulations were conducted for all six drugs, with donepezil serving as the control drug. Various analyses were performed, including basic analysis and post-trajectory analysis such as free energy landscape (FEL), polarizable continuum model (PCM), and MMGBSA calculations. Based on the findings from molecular dynamics simulations and the MMGBSA analysis, it can be inferred that citalopram and mirtazapine exhibit considerable potential as anti-depressant agents. Consequently, these compounds warrant further investigation through in vitro and in vivo investigations in the context of treating AD.
Collapse
Affiliation(s)
- S. Rehan Ahmad
- Hiralal Mazumdar Memorial College for Women, West Bengal State University, Kolkata, West Bengal, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Faheem Ahmed
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Adam Dawria
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Ali Mohieldin
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Haroon Ali
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdelrhman A. G. Altijani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
7
|
Barzegar Behrooz A, Latifi‐Navid H, Lotfi J, Khodagholi F, Shojaei S, Ghavami S, Fahanik Babaei J. CSF amino acid profiles in ICV-streptozotocin-induced sporadic Alzheimer's disease in male Wistar rat: a metabolomics and systems biology perspective. FEBS Open Bio 2024; 14:1116-1132. [PMID: 38769074 PMCID: PMC11216934 DOI: 10.1002/2211-5463.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 μL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Hamid Latifi‐Navid
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
- Department of Molecular MedicineNational Institute of Genetic Engineering and BiotechnologyTehranIran
- School of Biological SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIran
| | - Jabar Lotfi
- Growth and Development Research CenterTehran University of Medical SciencesIran
| | - Fariba Khodagholi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of MedicineUniversity of ManitobaWinnipegCanada
- Faculty of Medicine in ZabrzeUniversity of Technology in KatowiceZabrzePoland
- Research Institute of Oncology and HematologyCancer Care Manitoba‐University of ManitobaWinnipegCanada
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| |
Collapse
|
8
|
Kruk-Slomka M, Slomka T, Biala G. The Influence of an Acute Administration of Cannabidiol or Rivastigmine, Alone and in Combination, on Scopolamine-Provoked Memory Impairment in the Passive Avoidance Test in Mice. Pharmaceuticals (Basel) 2024; 17:809. [PMID: 38931476 PMCID: PMC11206614 DOI: 10.3390/ph17060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Memory is one of the most important abilities of our brain. The process of memory and learning is necessary for the proper existence of humans in the surrounding environment. However, sometimes there are unfavourable changes in the functioning of the brain and memory deficits occur, which may be associated with various diseases. Disturbances in the cholinergic system lead to abnormalities in memory functioning and are an essential part of clinical symptoms of many neurodegenerative diseases. However, their treatment is difficult and still unsatisfactory; thus, it is necessary to search for new drugs and their targets, being an alternative method of mono- or polypharmacotherapy. One of the possible strategies for the modulation of memory-related cognitive disorders is connected with the endocannabinoid system (ECS). The aim of the present study was to determine for the first time the effect of administration of natural cannabinoid compound (cannabidiol, CBD) and rivastigmine alone and in combination on the memory disorders connected with cholinergic dysfunctions in mice, provoked by using an antagonist of muscarinic cholinergic receptor-scopolamine. To assess and understand the memory-related effects in animals, we used the passive avoidance (PA) test, commonly used to examine the different stages of memory. An acute administration of CBD (1 mg/kg) or rivastigmine (0.5 mg/kg) significantly affected changes in scopolamine-induced disturbances in three different memory stages (acquisition, consolidation, and retrieval). Interestingly, co-administration of CBD (1 mg/kg) and rivastigmine (0.5 mg/kg) also attenuated memory impairment provoked by scopolamine (1 mg/kg) injection in the PA test in mice, but at a much greater extent than administered alone. The combination therapy of these two compounds, CBD and rivastigmine, appears to be more beneficial than substances administered alone in reducing scopolamine-induced cognitive impairment. This polytherapy seems to be favourable in the pharmacotherapy of various cognitive disorders, especially those in which cholinergic pathways are implicated.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Tomasz Slomka
- Department of Information Technology and Medical Statistics with e-Health Laboratory, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland;
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Wearn A, Tremblay SA, Tardif CL, Leppert IR, Gauthier CJ, Baracchini G, Hughes C, Hewan P, Tremblay-Mercier J, Rosa-Neto P, Poirier J, Villeneuve S, Schmitz TW, Turner GR, Spreng RN. Neuromodulatory subcortical nucleus integrity is associated with white matter microstructure, tauopathy and APOE status. Nat Commun 2024; 15:4706. [PMID: 38830849 PMCID: PMC11148077 DOI: 10.1038/s41467-024-48490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
| | - Stéfanie A Tremblay
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Department of Biomedical Engineering, McGill University, McGill, H3A 2B4, QC, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, H4B 1R6, QC, Canada
- Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada
- School of Health, Concordia University, Montreal, H4B 1R6, QC, Canada
| | - Giulia Baracchini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Colleen Hughes
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
| | - Patrick Hewan
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology & Pharmacology, Western Institute for Neuroscience, Western University, London, N6A 5C1, ON, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, M3J 1P3, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, QC, Canada.
- McConnell Brain Imaging Centre, McGill University, Montreal, H3A 2B4, QC, Canada.
- Douglas Mental Health University Institute-Research Center, Verdun, H4H 1R3, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, H3A 1A1, QC, Canada.
| |
Collapse
|
10
|
Chen W, Zhang T, Zhang H. Genes related to neurotransmitter receptors as potential biomarkers for Alzheimer's disease. Neurosci Lett 2024; 832:137816. [PMID: 38729598 DOI: 10.1016/j.neulet.2024.137816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a leading cause of dementia and is rapidly emerging as one of the costliest and most burdensome diseases. Neurotransmitter receptors play a vital role in many neuronal processes, primarily regulating signal inhibition within the brain to facilitate cell communication. OBJECTIVES Our research aims to identify potential biomarkers associated with AD and how these biomarkers impact immune infiltration. METHODS We extracted mRNA expression data from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were employed to identify hub genes as biomarkers in AD. The Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Variation Analysis (GSVA) were used for functional enrichment. Furthermore, we examined 22 immune cell types infiltration using "CIBERSORT". RESULTS In this study, we identified 70 neurotransmitter receptor genes showing differential expression in AD: 22 were up-regulated, and 48 were down-regulated. Functional analyses indicated these genes were involved in essential biochemical pathways, including G protein-coupled receptors, neurotransmitter receptor activity, and ion channel interactions. WGCNA generated three co-expression modules, with one demonstrating the strongest association with AD. Five key NRGs (HTR3C, HTR3E, ADRA2A, HTR3A, and ADRA1D) were identified using a combination of differential genes. These genes have better diagnostic value by ROC analysis. Immune infiltration analysis showed that these genes were closely associated with the levels of resting mast cells, activated natural killer (NK) cells, and plasma cells in AD compared to controls. CONCLUSION Our study identified five NRGs (ADRA1D, ADRA2A, HTR3A, HTR3C, and HTR3E) with significant associations with AD. These findings may offer promising sights for further studies.
Collapse
Affiliation(s)
- Wei Chen
- Neurosurgery Department of Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi 710100, China
| | - Taoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi' an 710032, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi' an 710032, China.
| |
Collapse
|
11
|
Sinha JK, Trisal A, Ghosh S, Gupta S, Singh KK, Han SS, Mahapatra M, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Bhaskar R, Mishra PC, Jha SK, Jha NK, Singh AK. Psychedelics for alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Res Rev 2024; 96:102211. [PMID: 38307424 DOI: 10.1016/j.arr.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.
Collapse
Affiliation(s)
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea
| | | | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea.
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
12
|
Pathak C, Kabra UD. A comprehensive review of multi-target directed ligands in the treatment of Alzheimer's disease. Bioorg Chem 2024; 144:107152. [PMID: 38290187 DOI: 10.1016/j.bioorg.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting specifically older population. AD is an irreversible neurodegenerative CNS disorder associated with complex pathophysiology. Presently, the USFDA has approved only four drugs viz. Donepezil, Rivastigmine, Memantine, and Galantamine for the treatment of AD. These drugs exhibit their neuroprotective effects either by inhibiting cholinesterase enzyme (ChE) or N-methyl-d-aspartate (NMDA) receptor. However, the conventional therapy "one target, one molecule" has failed to provide promising therapeutic effects due to the multifactorial nature of AD. This triggered the development of a novel strategy called Multi-Target Directed Ligand (MTDL) which involved designing one molecule that acts on multiple targets simultaneously. The present review discusses the detailed pathology involved in AD and the various MTDL design strategies bearing different heterocycles, in vitro and in vivo activities of the compounds, and their corresponding structure-activity relationships. This knowledge will allow us to identify and design more effective MTDLs for the treatment of AD.
Collapse
Affiliation(s)
- Chandni Pathak
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Uma D Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
13
|
Sun X, Jia X, Lu Z, Tang J, Li M. Drug repositioning with adaptive graph convolutional networks. Bioinformatics 2024; 40:btad748. [PMID: 38070161 PMCID: PMC10761094 DOI: 10.1093/bioinformatics/btad748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
MOTIVATION Drug repositioning is an effective strategy to identify new indications for existing drugs, providing the quickest possible transition from bench to bedside. With the rapid development of deep learning, graph convolutional networks (GCNs) have been widely adopted for drug repositioning tasks. However, prior GCNs based methods exist limitations in deeply integrating node features and topological structures, which may hinder the capability of GCNs. RESULTS In this study, we propose an adaptive GCNs approach, termed AdaDR, for drug repositioning by deeply integrating node features and topological structures. Distinct from conventional graph convolution networks, AdaDR models interactive information between them with adaptive graph convolution operation, which enhances the expression of model. Concretely, AdaDR simultaneously extracts embeddings from node features and topological structures and then uses the attention mechanism to learn adaptive importance weights of the embeddings. Experimental results show that AdaDR achieves better performance than multiple baselines for drug repositioning. Moreover, in the case study, exploratory analyses are offered for finding novel drug-disease associations. AVAILABILITY AND IMPLEMENTATION The soure code of AdaDR is available at: https://github.com/xinliangSun/AdaDR.
Collapse
Affiliation(s)
- Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiao Jia
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhangli Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, FI00014 Helsinki, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
14
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
15
|
Czarnota-Łydka K, Sudoł-Tałaj S, Kucwaj-Brysz K, Kurczab R, Satała G, de Candia M, Samarelli F, Altomare CD, Carocci A, Barbarossa A, Żesławska E, Głuch-Lutwin M, Mordyl B, Kubacka M, Wilczyńska-Zawal N, Jastrzębska-Więsek M, Partyka A, Khan N, Więcek M, Nitek W, Honkisz-Orzechowska E, Latacz G, Wesołowska A, Carrieri A, Handzlik J. Synthesis, computational and experimental pharmacological studies for (thio)ether-triazine 5-HT 6R ligands with noticeable action on AChE/BChE and chalcogen-dependent intrinsic activity in search for new class of drugs against Alzheimer's disease. Eur J Med Chem 2023; 259:115695. [PMID: 37567058 DOI: 10.1016/j.ejmech.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.
Collapse
Affiliation(s)
- Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland.
| | - Sylwia Sudoł-Tałaj
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland.
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Rafał Kurczab
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, PL 31-343, Krakow, Poland.
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, PL 31-343, Krakow, Poland.
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Francesco Samarelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Ewa Żesławska
- Pedagogical University of Krakow, Institute of Biology and Earth Sciences, Podchorążych 2, PL 30-084, Krakow, Poland.
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Barbara Mordyl
- Department of Pharmacobiology, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Natalia Wilczyńska-Zawal
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530, Krakow, Poland; Department of Pathophysiology, Jagiellonian University, Medical College, Czysta 18, PL 30-688, Krakow, Poland.
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL 30-387, Krakow, Poland.
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Cracow, Poland.
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland.
| |
Collapse
|
16
|
Ismail H, Khalid D, Waseem D, Ijaz MU, Dilshad E, Haq IU, Bhatti MZ, Anwaar S, Ahmed M, Saleem S. Bioassays guided isolation of berberine from Berberis lycium and its neuroprotective role in aluminium chloride induced rat model of Alzheimer's disease combined with insilico molecular docking. PLoS One 2023; 18:e0286349. [PMID: 37910530 PMCID: PMC10619822 DOI: 10.1371/journal.pone.0286349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/13/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and β-secretase. RESULTS During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of β-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with β-secretase in docking studies. Binding energies for interaction of β-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing β-secretase expression in the Alzheimer's disease model.
Collapse
Affiliation(s)
- Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Dania Khalid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Durdana Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zeeshan Bhatti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sadaf Anwaar
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Samreen Saleem
- Department of Nutrition and Lifestyle Medicine, Health Services Academy, Islamabad, Pakistan
| |
Collapse
|
17
|
Sharma HS, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Stress induced exacerbation of Alzheimer's disease brain pathology is thwarted by co-administration of nanowired cerebrolysin and monoclonal amyloid beta peptide antibodies with serotonin 5-HT6 receptor antagonist SB-399885. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:3-46. [PMID: 37783559 DOI: 10.1016/bs.irn.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Alzheimer's disease is one of the devastating neurodegenerative diseases affecting mankind worldwide with advancing age mainly above 65 years and above causing great misery of life. About more than 7 millions are affected with Alzheimer's disease in America in 2023 resulting in huge burden on health care system and care givers and support for the family. However, no suitable therapeutic measures are available at the moment to enhance quality of life to these patients. Development of Alzheimer's disease may reflect the stress burden of whole life inculcating the disease processes of these neurodegenerative disorders of the central nervous system. Thus, new strategies using nanodelivery of suitable drug therapy including antibodies are needed in exploring neuroprotection in Alzheimer's disease brain pathology. In this chapter role of stress in exacerbating Alzheimer's disease brain pathology is explored and treatment strategies are examined using nanotechnology based on our own investigation. Our observations clearly show that restraint stress significantly exacerbate Alzheimer's disease brain pathology and nanodelivery of a multimodal drug cerebrolysin together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP) together with a serotonin 5-HT6 receptor antagonist SB399885 significantly thwarted Alzheimer's disease brain pathology exacerbated by restraint stress, not reported earlier. The possible mechanisms and future clinical significance is discussed.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, United States
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Nageeb Hasan SM, Clarke CL, McManamon Strand TP, Bambico FR. Putative pathological mechanisms of late-life depression and Alzheimer's Disease. Brain Res 2023:148423. [PMID: 37244602 DOI: 10.1016/j.brainres.2023.148423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive impairment in cognition and memory. AD is accompanied by several neuropsychiatric symptoms, with depression being the most prominent. Although depression has long been known to be associated with AD, controversial findings from preclinical and clinical studies have obscured the precise nature of this association. However recent evidence suggests that depression could be a prodrome or harbinger of AD. Evidence indicates that the major central serotonergic nucleus-the dorsal raphe nucleus (DRN)-shows very early AD pathology: neurofibrillary tangles made of hyperphosphorylated tau protein and degenerated neurites. AD and depression share common pathophysiologies, including functional deficits of the serotonin (5-HT) system. 5-HT receptors have modulatory effects on the progression of AD pathology i.e., reduction in Aβ load, increased hyper-phosphorylation of tau, decreased oxidative stress etc. Moreover, preclinical models show a role for specific channelopathies that result in abnormal regional activational and neuroplasticity patterns. One of these concerns the pathological upregulation of the small conductance calcium-activated potassium (SK) channel in corticolimbic structure. This has also been observed in the DRN in both diseases. The SKC is a key regulator of cell excitability and long-term potentiation (LTP). SKC over-expression is positively correlated with aging and cognitive decline, and is evident in AD. Pharmacological blockade of SKCs has been reported to reverse symptoms of depression and AD. Thus, aberrant SKC functioning could be related to depression pathophysiology and diverts its late-life progression towards the development of AD. We summarize findings from preclinical and clinical studies suggesting a molecular linkage between depression and AD pathology. We also provide a rationale for considering SKCs as a novel pharmacological target for the treatment of AD-associated symptoms.
Collapse
Affiliation(s)
- S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada.
| | - Courtney Leigh Clarke
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada
| | | | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada; Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| |
Collapse
|
19
|
Lima JDR, Ferreira MKA, Sales KVB, da Silva AW, Marinho EM, Magalhães FEA, Marinho ES, Marinho MM, da Rocha MN, Bandeira PN, Teixeira AMR, de Menezes JESA, Dos Santos HS. Diterpene Sonderianin isolated from Croton blanchetianus exhibits acetylcholinesterase inhibitory action and anxiolytic effect in adult zebrafish ( Danio rerio) by 5-HT system. J Biomol Struct Dyn 2022; 40:13625-13640. [PMID: 34696690 DOI: 10.1080/07391102.2021.1991477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Croton blanchetianus is known as 'marmeleiro preto', a very widespread shrub in Northeast Brazil. Terpenoids, steroids and phenolic compounds are among the reported secondary metabolites of the Croton genus that are a potential source of bioactive compounds. This study evaluated the anxiolytic potential of clerodine-type diterpene, sonderianin (CBWS) isolated from the stem bark of C. blanchetianus and its mechanism of action in adult zebrafish (Danio rerio) (ZFa). The anticonvulsant and anti-acetylcholinesterase effects have also been explored. ZFa (n = 6/group) were treated intraperitoneally (ip; 20 µL) with CBWS (4, 12 and 40 mg/kg) and vehicle (3% DMSO; 20 µL) and subjected to locomotor activity tests, as well as toxicity acute 96 h. CBWS was also administered for analysis in the light/dark test. The involvement of the serotonergic system (5-HT) was investigated using 5-HTR1, 5-HTR2A/2C and 5-HTR3A/3B receptor antagonists. Anxiolytic doses were tested for pentylenetetrazol-induced seizure in ZFa. The inhibitory activity of the enzyme acetylcholinesterase (AChE) was measured. CBWS was not considered toxic and reduced locomotor activity. The results of the present study identified for the first time the interaction of the diterpene sonderianina in the CNS. This study provides evidence that CBWS has an anxiolytic effect mediated by serotonergic (5-HT) involvement and anti-acetylcholinesterase action. The 5-HTR1 and 5-HTR2A/2C receptors may be implicated in the low anticonvulsant effect in CBWS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Joyce Dos Reis Lima
- State University of Ceará, Science and Technology, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
| | | | | | - Antônio Wlisses da Silva
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisco Ernani Alves Magalhães
- Department of Chemistry, Laboratory of Natural Products Bioprospecting and Biotechnology, State University of Ceará, CECITEC Campus, Tauá, CE, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil
| | - Márcia Machado Marinho
- Faculty of Education, Science and Letters of Iguatu, State University of Ceará, Iguatu, CE, Brazil
| | - Matheus Nunes da Rocha
- State University of Ceará, Faculty of Philosophy Dom Aureliano Matos, Limoeiro do Norte, CE, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- State University of Ceará, Science and Technology, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil.,Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil.,Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil.,Chemistry Course, State University of Vale do Acaraú, Sobral, CE, Brazil
| |
Collapse
|
20
|
Wei CC, Li SW, Wu CT, How CM, Pan MH. Dietary Methylglyoxal Exposure Induces Alzheimer's Disease by Promoting Amyloid β Accumulation and Disrupting Autophagy in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10011-10021. [PMID: 35917150 DOI: 10.1021/acs.jafc.2c03411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methylglyoxal (MG) is a precursor of advanced glycation end products usually generated during cooking. The high level of MG in the brain is correlated to the pathogenesis of Alzheimer's disease (AD). However, it is not clear if MG consumed through the diet can cause AD-related toxicity. Herein, the Caenorhabditis elegans (C. elegans) AD model was used to investigate the neurotoxicity after long-term MG exposure at dietary levels. The results showed that C. elegans locomotive behaviors were significantly decreased after 0.1, 0.5, and 1 mM MG exposure (p < 0.001). In amyloid β (Aβ)-expressing transgenic C. elegans strains, 0.5 mM MG significantly promoted Aβ accumulation by around 50% in day-8 CL2006 (p < 0.001), enhanced paralysis in CL4176 (p < 0.001) and CL2006 (p < 0.01), and made CL2355 around 17% more vulnerable to 5-HT, indicating impaired serotonin reuptake (p < 0.05). Additionally, 0.5 mM MG significantly increased the reactive oxygen species level (p < 0.001) by inhibiting the expression of stress-response genes including sod-3, gst-4, and hsp-16.2 in day-8 aged worms. Moreover, the autophagic pathway was disrupted through lgg-1, vps-34, and bec-1 expression after MG exposure and Aβ accumulation. Treatment with the citrus flavonoid nobiletin reduced the MG-induced toxicity (p < 0.001). Overall, these findings imply that it is possible to exacerbate AD pathogenesis by MG exposure through the diet.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Shang-Wei Li
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chia-Tung Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
21
|
Woldańska-Okońska M, Koszela K. Chronic-Exposure Low-Frequency Magnetic Fields (Magnetotherapy and Magnetic Stimulation) Influence Serum Serotonin Concentrations in Patients with Low Back Pain-Clinical Observation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9743. [PMID: 35955097 PMCID: PMC9368470 DOI: 10.3390/ijerph19159743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: The influence of serotonin on many regulatory mechanisms has not been sufficiently studied. The use of a physical method, assuming the possibility of its action on increasing the concentration of serotonin, may be the direction of therapy limiting the number of antidepressants used. The aim of the research was to study the effects of low-frequency magnetic fields of different characteristics on the circadian profile of serotonin in men with low back pain. (2) Methods: 16 men with back pain syndrome participated in the study. The patients were divided into two groups. In group 1, magnetotherapy (2.9 mT, 40 Hz, square wave, bipolar) was applied at 10.00 a.m. In group 2, the M2P2 magnetic stimulation program of the Viofor JPS device was used. Treatments in each group lasted 3 weeks, 5 days each, with breaks for Saturday and Sunday. The daily serotonin profile was determined the day before the exposure and the day after the last treatment. Blood samples (at night with red light) were collected at 8:00, 12:00, 16:00, 24:00, and 4:00. The patients did not suffer from any chronic or acute disease and were not taking any medications. (3) Results: In group 1, a significant increase in serotonin concentration was observed after 15 treatments at 4:00. In group 2, a significant increase in serotonin concentration was observed at 8:00 after the end of the treatments. In comparison between magnetotherapy and magnetic stimulation, the time points at which differences appeared after the application of serotonin occurred due to the increase in its concentrations after the application of magnetic stimulation. (4) Conclusions: Magnetotherapy and magnetic stimulation, acting in a similar way, increase the concentration of serotonin. Weak magnetic fields work similarly to the stronger ones used in TMS. It is possible to use them in the treatment of mental disorders or other diseases with low serotonin concentrations.
Collapse
Affiliation(s)
| | - Kamil Koszela
- Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
22
|
Unlocking the Memory Component of Alzheimer’s Disease:Biological Processes and Pathways across Brain Regions. Biomolecules 2022; 12:biom12020263. [PMID: 35204764 PMCID: PMC8961579 DOI: 10.3390/biom12020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and a general cognitive decline leading to dementia. AD is characterized by changes in the behavior of the genome and can be traced across multiple brain regions and cell types. It is mainly associated with β-amyloid deposits and tau protein misfolding, leading to neurofibrillary tangles. In recent years, however, research has shown that there is a high complexity of mechanisms involved in AD neurophysiology and functional decline enabling its diverse presentation and allowing more questions to arise. In this study, we present a computational approach to facilitate brain region-specific analysis of genes and biological processes involved in the memory process in AD. Utilizing current genetic knowledge we provide a gene set of 265 memory-associated genes in AD, combinations of which can be found co-expressed in 11 different brain regions along with their functional role. The identified genes participate in a spectrum of biological processes ranging from structural and neuronal communication to epigenetic alterations and immune system responses. These findings provide new insights into the molecular background of AD and can be used to bridge the genotype–phenotype gap and allow for new therapeutic hypotheses.
Collapse
|
23
|
Antioxidants in Alzheimer's Disease: Current Therapeutic Significance and Future Prospects. BIOLOGY 2022; 11:biology11020212. [PMID: 35205079 PMCID: PMC8869589 DOI: 10.3390/biology11020212] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) rate is accelerating with the increasing aging of the world's population. The World Health Organization (WHO) stated AD as a global health priority. According to the WHO report, around 82 million people in 2030 and 152 million in 2050 will develop dementia (AD contributes 60% to 70% of cases), considering the current scenario. AD is the most common neurodegenerative disease, intensifying impairments in cognition, behavior, and memory. Histopathological AD variations include extracellular senile plaques' formation, tangling of intracellular neurofibrils, and synaptic and neuronal loss in the brain. Multiple evidence directly indicates that oxidative stress participates in an early phase of AD before cytopathology. Moreover, oxidative stress is induced by almost all misfolded protein lumps like α-synuclein, amyloid-β, and others. Oxidative stress plays a crucial role in activating and causing various cell signaling pathways that result in lesion formations of toxic substances, which foster the development of the disease. Antioxidants are widely preferred to combat oxidative stress, and those derived from natural sources, which are often incorporated into dietary habits, can play an important role in delaying the onset as well as reducing the progression of AD. However, this approach has not been extensively explored yet. Moreover, there has been growing evidence that a combination of antioxidants in conjugation with a nutrient-rich diet might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in the stated field.
Collapse
|
24
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. Brain Mitochondrial Dysfunction: A Possible Mechanism Links Early Life Anxiety to Alzheimer’s Disease in Later Life. Aging Dis 2022; 13:1127-1145. [PMID: 35855329 PMCID: PMC9286915 DOI: 10.14336/ad.2022.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengna Lu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyu Zhu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence should be addressed to: Dr. Mingmei Zhou, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. E-mail:
| |
Collapse
|
25
|
Shamsi A, DasGupta D, Alhumaydhi FA, Khan MS, Alsagaby SA, Al Abdulmonem W, Hassan MI, Yadav DK. Inhibition of MARK4 by serotonin is an attractive therapeutic approach to combat Alzheimer’s disease and neuroinflammation. RSC Med Chem 2022; 13:737-745. [PMID: 35814926 PMCID: PMC9215163 DOI: 10.1039/d2md00053a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) govern various cellular programs and crucial intermediate pathways in signaling. Microtubule affinity-regulating kinase 4 (MARK4) is a part of the kinase family recognized for actively...
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University United Arab Emirates
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan 428 Church Street Ann Arbor Michigan 48109 USA
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University Buraydah Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University Majmaah 11932 Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University Buraydah Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025 India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science Hambakmoeiro, Yeonsu-gu Incheon 21924 South Korea
| |
Collapse
|
26
|
Ebert T, Heinz DE, Almeida-Corrêa S, Cruz R, Dethloff F, Stark T, Bajaj T, Maurel OM, Ribeiro FM, Calcagnini S, Hafner K, Gassen NC, Turck CW, Boulat B, Czisch M, Wotjak CT. Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice. Front Aging Neurosci 2021; 13:731603. [PMID: 34867270 PMCID: PMC8633395 DOI: 10.3389/fnagi.2021.731603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Collapse
Affiliation(s)
- Tim Ebert
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniel E. Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | | | - Renata Cruz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Frederik Dethloff
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Oriana M. Maurel
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabiola M. Ribeiro
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvio Calcagnini
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C. Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Benoit Boulat
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T. Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
27
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Highlighting Immune System and Stress in Major Depressive Disorder, Parkinson's, and Alzheimer's Diseases, with a Connection with Serotonin. Int J Mol Sci 2021; 22:ijms22168525. [PMID: 34445231 PMCID: PMC8395198 DOI: 10.3390/ijms22168525] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
There is recognition that both stress and immune responses are important factors in a variety of neurological disorders. Moreover, there is an important role of several neurotransmitters that connect these factors to several neurological diseases, with a special focus in this paper on serotonin. Accordingly, it is known that imbalances in stressors can promote a variety of neuropsychiatric or neurodegenerative pathologies. Here, we discuss some facts that link major depressive disorder, Alzheimer’s, and Parkinson’s to the stress and immune responses, as well as the connection between these responses and serotonergic signaling. These are important topics of investigation which may lead to new or better treatments, improving the life quality of patients that suffer from these conditions.
Collapse
|
29
|
Pirolla NFF, Batista VS, Dias Viegas FP, Gontijo VS, McCarthy CR, Viegas C, Nascimento-Júnior NM. Alzheimer's Disease: Related Targets, Synthesis of Available Drugs, Bioactive Compounds Under Development and Promising Results Obtained from Multi-target Approaches. Curr Drug Targets 2021; 22:505-538. [PMID: 32814524 DOI: 10.2174/1389450121999200819144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
We describe herein the therapeutic targets involved in Alzheimer's disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer's disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.
Collapse
Affiliation(s)
- Natália F F Pirolla
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Victor S Batista
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Flávia Pereira Dias Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Vanessa Silva Gontijo
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Caitlin R McCarthy
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Claudio Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Nailton M Nascimento-Júnior
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| |
Collapse
|
30
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
31
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
32
|
Bortolami M, Rocco D, Messore A, Di Santo R, Costi R, Madia VN, Scipione L, Pandolfi F. Acetylcholinesterase inhibitors for the treatment of Alzheimer's disease - a patent review (2016-present). Expert Opin Ther Pat 2021; 31:399-420. [PMID: 33428491 DOI: 10.1080/13543776.2021.1874344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction - AD, the most common form of dementia, has a multifactorial etiology, and the current therapy (AChEIs and memantine) is unable to interrupt its progress and fatal outcome. This is reflected in the research programs that are oriented toward the development of new therapeutics able to operate on multiple targets involved in the disease progression.Areas covered - The patents from 2016 to present regarding the use of AChEIs in AD, concerns the development of new AChEIs, multitarget or multifunctional ligands, or the associations of currently used AChEIs with other compounds acting on different targets involved in the AD.Expert opinion - The development of new multitarget AChEIs promises to identify compounds with great therapeutic potential but requires more time and effort in order to obtain drugs with the optimal pharmacodynamic profile. Otherwise, the research on new combinations of existing drugs, with known pharmacodynamic and ADME profile, could shorten the time and reduce the costs to develop a new therapeutic treatment for AD. From the analyzed data, it seems more likely that a response to the urgent need to develop effective treatments for AD therapy could come more quickly from studies on drug combinations than from the development of new AChEIs.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Daniele Rocco
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Antonella Messore
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberto Di Santo
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Costi
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Valentina Noemi Madia
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luigi Scipione
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Lam J, Lee J, Liu CY, Lozano AM, Lee DJ. Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction. Neuromodulation 2020; 24:171-186. [PMID: 33377280 DOI: 10.1111/ner.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Treatments for Alzheimer's disease are urgently needed given its enormous human and economic costs and disappointing results of clinical trials targeting the primary amyloid and tau pathology. On the other hand, deep brain stimulation (DBS) has demonstrated success in other neurological and psychiatric disorders leading to great interest in DBS as a treatment for Alzheimer's disease. MATERIALS AND METHODS We review the literature on 1) circuit dysfunction in Alzheimer's disease and 2) DBS for Alzheimer's disease. Human and animal studies are reviewed individually. RESULTS There is accumulating evidence of neural circuit dysfunction at the structural, functional, electrophysiological, and neurotransmitter level. Recent evidence from humans and animals indicate that DBS has the potential to restore circuit dysfunction in Alzheimer's disease, similarly to other movement and psychiatric disorders, and may even slow or reverse the underlying disease pathophysiology. CONCLUSIONS DBS is an intriguing potential treatment for Alzheimer's disease, targeting circuit dysfunction as a novel therapeutic target. However, further exploration of the basic disease pathology and underlying mechanisms of DBS is necessary to better understand how circuit dysfunction can be restored. Additionally, robust clinical data in the form of ongoing phase III clinical trials are needed to validate the efficacy of DBS as a viable treatment.
Collapse
Affiliation(s)
- Jordan Lam
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Justin Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Charles Y Liu
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Andres M Lozano
- Division of Neurological Surgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Darrin J Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| |
Collapse
|
34
|
Skonieczna-Żydecka K, Jakubczyk K, Maciejewska-Markiewicz D, Janda K, Kaźmierczak-Siedlecka K, Kaczmarczyk M, Łoniewski I, Marlicz W. Gut Biofactory-Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients 2020; 12:E3369. [PMID: 33139656 PMCID: PMC7693392 DOI: 10.3390/nu12113369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have gained much scientific attention recently. Apart from unravelling the taxonomic data, we should understand how the altered microbiota structure corresponds to functions of this complex ecosystem. The metabolites of intestinal microorganisms, especially bacteria, exert pleiotropic effects on the human organism and contribute to the host systemic balance. These molecules play key roles in regulating immune and metabolic processes. A subset of them affect the gut brain axis signaling and balance the mental wellbeing. Neurotransmitters, short chain fatty acids, tryptophan catabolites, bile acids and phosphatidylcholine, choline, serotonin, and L-carnitine metabolites possess high neuroactive potential. A scoping literature search in PubMed/Embase was conducted up until 20 June 2020, using three major search terms "microbiota metabolites" AND "gut brain axis" AND "mental health". This review aimed to enhance our knowledge regarding the gut microbiota functional capacity, and support current and future attempts to create new compounds for future clinical interventions.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Karolina Jakubczyk
- Department of Surgical Oncology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | | | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (K.J.); (D.M.-M.); (K.J.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland
- The Centre for Digestive Diseases Endoklinika, 70-535 Szczecin, Poland
| |
Collapse
|
35
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
36
|
Albertini C, Salerno A, Sena Murteira Pinheiro P, Bolognesi ML. From combinations to multitarget‐directed ligands: A continuum in Alzheimer's disease polypharmacology. Med Res Rev 2020; 41:2606-2633. [DOI: 10.1002/med.21699] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| | - Pedro Sena Murteira Pinheiro
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
- Programa de Pós‐Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology Alma Mater Studiorum–University of Bologna Bologna Italy
| |
Collapse
|
37
|
Hira S, Saleem U, Anwar F, Raza Z, Rehman AU, Ahmad B. In Silico Study and Pharmacological Evaluation of Eplerinone as an Anti-Alzheimer's Drug in STZ-Induced Alzheimer's Disease Model. ACS OMEGA 2020; 5:13973-13983. [PMID: 32566864 PMCID: PMC7301577 DOI: 10.1021/acsomega.0c01381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
UNLABELLED Alzheimer's disease (AD) is the neurodegenerative disorder characterized by impairment of higher intellectual dysfunctions associated with changes in the cognitive, behavioral, and social activities. AIM OF THE STUDY The current study was designed to evaluate the potential of aldosterone antagonist in the treatment of AD. METHODOLOGY The study was conducted on albino mice of either sex (n = 60). Mice were subcategorized into six groups, each group having 10 mice. Group I-normal control (CMC 1 mL/kg), group II-diseased [streptozotocin (STZ), 3 mg/kg, intracerebroventricular (i.c.v.)], group III-standard (piracetam, 200 mg/kg, i.p.), and groups IV-VI designated as the treatment group (eplerinone at dose levels of 4, 8, and 16 mg/kg, orally), respectively. The study was carried out for 14 consecutive days. STZ was administered through the i.c.v. route on first and third days of the study for memory impairment. The molecular docking was performed to investigate the chemical behavior of compounds to inhibit the AChE. Anti-Alzheimer's effect was assessed by using the behavioral paradigms such as passive avoidance, elevated plus maze, Morris water maze, open field, and balance beam. Various endogenous antioxidants such as SOD, GSH, nitrite, MDA, CAT, and AChE were identified in brain tissues of treated mice to assess the oxidative stress index. Biochemical markers for AD such as norepinephrine, dopamine, and serotonin, Aβ 1-40, Aβ 1-42, NF-κB, and tumor necrosis factor alpha were analyzed in brain tissues of mice. Expression of beta amyloid was observed by PCR. RESULTS The in silico study indicated the distinct mechanism of eplerinone to inhibit the AChE. The outcomes of the in vivo study manifested that eplerinone at the highest dose was found to be more effective in the treatment of AD. CONCLUSION It may be concluded from the research work that eplerinone can be effective for cognitive improvement which proposes its therapeutic effect in many neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Sundas Hira
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Zohaib Raza
- Faculty
of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan
| | - Atta Ur Rehman
- Department
of Pharmacy, Faculty of Natural Sciences, Forman Christian College (a Chartered University), Ferozpur Road, Lahore 54600, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
38
|
Oglesby RT, Lam WW, Stanisz GJ. In vitro characterization of the serotonin biosynthesis pathway by CEST MRI. Magn Reson Med 2020; 84:2389-2399. [DOI: 10.1002/mrm.28281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ryan T. Oglesby
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
- Medical Biophysics University of Toronto Toronto ON Canada
| | - Wilfred W. Lam
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
| | - Greg J. Stanisz
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
- Medical Biophysics University of Toronto Toronto ON Canada
- Neurosurgery and Pediatric Neurosurgery Medical University of Lublin Lublin Poland
| |
Collapse
|
39
|
Syllwasschy BF, Beck MS, Družeta I, Hopp MT, Ramoji A, Neugebauer U, Nozinovic S, Menche D, Willbold D, Ohlenschläger O, Kühl T, Imhof D. High-affinity binding and catalytic activity of His/Tyr-based sequences: Extending heme-regulatory motifs beyond CP. Biochim Biophys Acta Gen Subj 2020; 1864:129603. [PMID: 32234408 DOI: 10.1016/j.bbagen.2020.129603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & MOTIVATION Peptides and proteins can interact with heme through His, Tyr, or Cys in heme-regulatory motifs (HRMs). The Cys-Pro dipeptide is a well investigated HRM, but for His and Tyr such a distinct motif is currently unknown. In addition, many heme-peptide complexes, such as heme-amyloid β, can display a peroxidase-like activity, albeit there is little understanding of how the local primary and secondary coordination environment influences catalytic activity. We thus systematically evaluated a series of His- and Tyr-based peptides to identify sequence features for high-affinity heme binding and their impact on the catalytic activity of heme. METHODS We employed solid-phase peptide synthesis to produce 58 nonapeptides, which were investigated by UV/vis, resonance Raman, and 2D NMR spectroscopy. A chromogenic assay was used to determine the catalytic activity of the heme-peptide complexes. RESULTS Heme-binding affinity and binding mode were found to be dependent on the coordinating amino acid and spacer length between multiple potential coordination sites in a motif. In particular, HXH and HXXXH motifs showed strong heme binding. Analysis of the peroxidase-like activity revealed that some of these peptides and also HXXXY motifs enhance the catalytic activity of heme significantly. CONCLUSIONS We identify HXH, HXXXH, and HXXXY as potential new HRMs with functional properties. Several peptides displayed a strikingly high peroxidase-like activity. GENERAL SIGNIFICANCE The identification of HRMs allows to discover yet unknown heme-regulated proteins, and consequently, enhances our current understanding of pathologies involving labile heme.
Collapse
Affiliation(s)
- Benjamin Franz Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Anuradha Ramoji
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Senada Nozinovic
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dirk Menche
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dieter Willbold
- Jülich Research Centre, Institute of Complex Systems - Structural Biochemistry (ICS-6), 52425 Jülich, Germany; Institute of Physical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
40
|
Family N, Maillet EL, Williams LTJ, Krediet E, Carhart-Harris RL, Williams TM, Nichols CD, Goble DJ, Raz S. Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology (Berl) 2020; 237:841-853. [PMID: 31853557 PMCID: PMC7036065 DOI: 10.1007/s00213-019-05417-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Research has shown that psychedelics, such as lysergic acid diethylamide (LSD), have profound anti-inflammatory properties mediated by 5-HT2A receptor signaling, supporting their evaluation as a therapeutic for neuroinflammation associated with neurodegenerative disease. OBJECTIVE This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of orally repeated administration of 5 μg, 10 μg, and 20 μg LSD in older healthy individuals. In the current paper, we present safety, tolerability, pharmacokinetics, and pharmacodynamic measures that relate to safety, tolerability, and dose response. METHODS This was a phase 1 double-blind, placebo-controlled, randomized study. Volunteers were randomly assigned to 1 of 4 dose groups (5 μg, 10 μg, 20 μg LSD, and placebo), and received their assigned dose on six occasions (i.e., every 4 days). RESULTS Forty-eight older healthy volunteers (mean age = 62.9 years) received placebo (n = 12), 5 μg (n = 12), 10 μg (n = 12), or 20 μg (n = 12) LSD. LSD plasma levels were undetectable for the 5 μg group and peak blood plasma levels for the 10 μg and 20 μg groups occurred at 30 min. LSD was well tolerated, and the frequency of adverse events was no higher than for placebo. Assessments of cognition, balance, and proprioception revealed no impairment. CONCLUSIONS Our results suggest safety and tolerability of orally administered 5 μg, 10 μg, and 20 μg LSD every fourth day over a 21-day period and support further clinical development of LSD for the treatment and prevention of Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | | | - Shlomi Raz
- Eleusis Benefit Corporation, New York, NY, USA
| |
Collapse
|
41
|
Abstract
Given the failure to develop disease-modifying therapies for Alzheimer’s disease (AD), strategies aiming at preventing or delaying the onset of the disease are being prioritized. While the debate regarding whether depression is an etiological risk factor or a prodrome of AD rages on, a key determining factor may be the timing of depression onset in older adults. There is increasing evidence that untreated early-onset depression is a risk factor and that late-onset depression may be a catalyst of cognitive decline. Data from animal studies have shown a beneficial impact of selective serotonin reuptake inhibitors on pathophysiological biomarkers of AD including amyloid burden, tau deposits and neurogenesis. In humans, studies focusing on subjects with a prior history of depression also showed a delay in the onset of AD in those treated with most selective serotonin reuptake inhibitors. Paroxetine, which has strong anticholinergic properties, was associated with increased mortality and mixed effects on amyloid and tau deposits in mice, as well as increased odds of developing AD in humans. Although most of the data regarding selective serotonin reuptake inhibitors is promising, findings should be interpreted cautiously because of notable methodological heterogeneity between studies. There is thus a need to conduct large scale randomized controlled trials with long follow up periods to clarify the dose-effect relationship of specific serotonergic antidepressants on AD prevention.
Collapse
Affiliation(s)
- Bernadette Mdawar
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elias Ghossoub
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
42
|
Tsegay EW, Demise DG, Hailu NA, Gufue ZH. Serotonin Type 6 and 7 Receptors as a Novel Therapeutic Target for the Treatment of Schizophrenia. Neuropsychiatr Dis Treat 2020; 16:2499-2509. [PMID: 33149591 PMCID: PMC7604258 DOI: 10.2147/ndt.s263424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a serious disease of the central nervous system that affects a person's ability to think, feel and behave clearly. Even though the pathophysiological hypothesis of the disease is not clearly understood, dysfunction of dopamine, glutamate, serotonin and other neurotransmitters is widely believed to be involved. Serotonin within the synaptic vesicles functions as neurotransmitter and neurohormone in regulation of emotion, learning, memory, hormone release, cognition and motor function. Dysfunction of normal brain activity of serotonin is associated with schizophrenia. The role of serotonin 6 and 7 receptors in schizophrenia, interaction with neurotransmitters and the effect of drugs on those receptors in schizophrenia are the goal of this review. The aim of this review was to provide information for researchers and other scholars to identify the possible intervention points in the management of schizophrenia. The serotonin 6 and 7 receptors are associated with schizophrenia via modulating cyclic adenosine monophosphate, regulation of Fyn kinase and induction of structural plasticity. The above modulatory effects affect cholinergic, dopaminergic, glutamatergic, adrenergic and GABAergic systems. Recently, diverse numbers of selective agonist and antagonist ligands were developed for both receptors. SGS-518, ABT-354, Lu AE58054, SB-742,457, S-518, AVN-211, AVN-322, SYN-114 and SYN-120 are serotonin 6 receptor antagonists and aripiprazole-controlled release serotonin 7 receptor agonists under clinical trial for schizophrenia. Thus, research on novel drugs that act on serotonin 6 and 7 receptors likely facilitates the intervention into schizophrenia patients seeking better quality of life in the future.
Collapse
Affiliation(s)
- Etsay Weldekidan Tsegay
- Department of Pharmacy, College of Medicine and Health Sciences, Adigrat University, Adigrat, Tigray, Ethiopia
| | - Desalegn Getnet Demise
- Department of Pharmacy, College of Medicine and Health Sciences, Adigrat University, Adigrat, Tigray, Ethiopia
| | - Nigus Alemu Hailu
- Department of Biomedical Science, College of Medicine and Health Sciences, Adigrat University, Adigrat, Tigray, Ethiopia
| | - Zenawi Hagos Gufue
- Department of Public Health, College of Medicine and Health Sciences, Adigrat University, Adigrat, Tigray, Ethiopia
| |
Collapse
|
43
|
Kaur H, Bose C, Mande SS. Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Front Neurosci 2019; 13:1365. [PMID: 31920519 PMCID: PMC6930238 DOI: 10.3389/fnins.2019.01365] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The link between gut microbiome and brain is being slowly acknowledged due to the speculated role of resident gut microbial community in altering the functions of gut-brain axis (GBA). Recently, a number of microbial metabolites (referred to as neuro-active metabolites) produced through tryptophan metabolism have been suggested to influence the GBA. In view of this, the current study focuses on microbial tryptophan metabolism pathways which produce neuro-active metabolites. An in silico analysis was performed on bacterial genomes as well as publicly available gut microbiome data. The results provide a comprehensive catalog of the analyzed pathways across bacteria. The analysis indicates an enrichment of tryptophan metabolism pathways in five gut-associated phyla, namely, Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria. Further, five genera, namely, Clostridium, Burkholderia, Streptomyces, Pseudomonas, and Bacillus have been predicted to be enriched in terms of number of the analyzed tryptophan metabolism pathways, suggesting a higher potential of these bacterial groups to metabolize tryptophan in gut. Analysis of available microbiome data corresponding to gut samples from patients of neurological diseases and healthy individuals suggests probable association of different sets of tryptophan metabolizing bacterial pathways with the etiology of different diseases. The insights obtained from the present study are expected to provide directions toward designing of microbiome based diagnostic and therapeutic approaches for neurological diseases/disorders.
Collapse
Affiliation(s)
| | | | - Sharmila S. Mande
- Life Sciences R&D, TCS Research, Tata Consultancy Services, Pune, India
| |
Collapse
|
44
|
Wang N, Qiu P, Cui W, Yan X, Zhang B, He S. Recent Advances in Multi-target Anti-Alzheimer Disease Compounds (2013 Up to the Present). Curr Med Chem 2019; 26:5684-5710. [DOI: 10.2174/0929867326666181203124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
:
Since the last century, when scientists proposed the lock-and-key model, the discovery of
drugs has focused on the development of drugs acting on single target. However, single-target drug
therapies are not effective to complex diseases with multi-factorial pathogenesis. Moreover, the
combination of single-target drugs readily causes drug resistance and side effects. In recent years,
multi-target drugs have increasingly been represented among FDA-approved drugs. Alzheimer’s
Disease (AD) is a complex and multi-factorial disease for which the precise molecular mechanisms
are still not fully understood. In recent years, rational multi-target drug design methods, which combine
the pharmacophores of multiple drugs, have been increasingly applied in the development of
anti-AD drugs. In this review, we give a brief description of the pathogenesis of AD and provide
detailed discussions about the recent development of chemical structures of anti-AD agents (2013 up
to present) that have multiple targets, such as amyloid-β peptide, Tau protein, cholinesterases,
monoamine oxidase, β-site amyloid-precursor protein-cleaving enzyme 1, free radicals, metal ions
(Fe2+, Cu2+, Zn2+) and so on. In this paper, we also added some novel targets or possible pathogenesis
which have been reported in recent years for AD therapy. We hope that these findings may provide
new perspectives for the pharmacological treatment of AD.
Collapse
Affiliation(s)
- Ning Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer's disease. Neuroimage 2019; 199:143-152. [PMID: 31112788 DOI: 10.1016/j.neuroimage.2019.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022] Open
Abstract
Disruption of cholinergic and serotonergic neurotransmitter systems is associated with cognitive, emotional and behavioural symptoms of Alzheimer's disease (AD). To investigate the responsiveness of these systems in AD we measured the effects of a single-dose of the selective serotonin reuptake inhibitor citalopram and acetylcholinesterase inhibitor galantamine in 12 patients with AD and 12 age-matched controls on functional brain connectivity with resting state functional magnetic resonance imaging. In this randomized, double blind, placebo-controlled crossover study, functional magnetic resonance images were repeatedly obtained before and after dosing, resulting in a dataset of 432 scans. Connectivity maps of ten functional networks were extracted using a dual regression method and drug vs. placebo effects were compared between groups with a multivariate analysis with signals coming from cerebrospinal fluid and white matter as covariates at the subject level, and baseline and heart rate measurements as confound regressors in the higher-level analysis (at p < 0.05, corrected). A galantamine induced difference between groups was observed for the cerebellar network. Connectivity within the cerebellar network and between this network and the thalamus decreased after galantamine vs. placebo in AD patients, but not in controls. For citalopram, voxelwise network connectivity did not show significant group × treatment interaction effects. However, we found default mode network connectivity with the precuneus and posterior cingulate cortex to be increased in AD patients, which could not be detected within the control group. Further, in contrast to the AD patients, control subjects showed a consistent reduction in mean connectivity with all networks after administration of citalopram. Since AD has previously been characterized by reduced connectivity between the default mode network and the precuneus and posterior cingulate cortex, the effects of citalopram on the default mode network suggest a restoring potential of selective serotonin reuptake inhibitors in AD. The results of this study also confirm a change in cerebellar connections in AD, which is possibly related to cholinergic decline.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
46
|
Shahidi S, Hashemi-Firouzi N, Asl SS, Komaki A. Serotonin type 6 receptor antagonist attenuates the impairment of long-term potentiation and memory induced by Abeta. Behav Brain Res 2019; 364:205-212. [PMID: 30735758 DOI: 10.1016/j.bbr.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by memory impairment and synaptic loss. Long-term potentiation (LTP), a type of synaptic plasticity, is impaired during AD. Serotonin type 6 receptor (5-HT6R) inactivation is proposed as a therapeutic target for AD. This study examined the effects of chronic administration of the 5-HT6R antagonist, SB-258585, on cognitive, memory, and hippocampal plasticity in a rat model of AD. Abeta neurotoxicity was induced in rats using Aβ (1.35 pmol intracerebroventricular [ICV] injection). The following groups were formed: control sustained surgery and saline-treated, Aβ+saline (1 μL ICV for 30 days), and Aβ+SB-258585 (0.024 mg/kg, ICV for 30 days). The learning and memory were tested using the novel object recognition and passive avoidance tests. Next, anesthetized rats were placed in a stereotaxic apparatus. The population spike (PS) amplitude and the slope of the excitatory postsynaptic potentials (fEPSPs) of the LTP were measured following high-frequency stimulation in the dentate gyrus. The Aβ injection reduced step-through latency in the passive avoidance test and decreased the discrimination index in the novel object test. Aβ diminished both the amplitude of hippocampal neuron population spikes and the slope of excitatory postsynaptic potentials, compared to the control group. The administration of SB-258585 in rats receiving Aβ attenuated the Aβ-induced deficits in cognition, memory, and LTP in comparison with the Aβ group. It can be concluded that chronic treatment with SB-258585 antagonist can prevent Aβ-related deficiencies in learning and memory performance by improving neuronal plasticity. SB-258585 can prevent the progression of AD.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
47
|
Chakraborty S, Lennon JC, Malkaram SA, Zeng Y, Fisher DW, Dong H. Serotonergic system, cognition, and BPSD in Alzheimer's disease. Neurosci Lett 2019; 704:36-44. [PMID: 30946928 DOI: 10.1016/j.neulet.2019.03.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Behavioral and Psychological Symptoms of Dementia (BPSD), present in almost 90% of patients with Alzheimer's Disease (AD), cause extensive impairment leading to reduced independence and inability to complete activities of daily living. Though BPSD includes a wide range of symptoms, such as agitation, aggression, disinhibition, anxiety, depression, apathy, delusions, and hallucinations. Certain BPSD in AD co-present and can be clustered into distinct domains based on their frequency of co-occurrence. As these BPSD are so pervasive in any stages of AD, the disease may be better characterized as a disorder of heterogeneous degenerative symptoms across a number of symptom domains, with the most prominent domain comprising memory and cognitive deficits. Importantly, there are no FDA-approved drugs to treat these BPSD, and new approaches must be considered to develop effective treatments for AD patients. The biogenic monoamine 5-hydroxytryptamine (5-HT), or serotonin, works as both a neurotransmitter and neuromodulator, which has been tied to cognitive decline and multiple BPSD domains. This review summarizes the evidence for specific serotonergic system alterations across some of the well-studied cognitive, behavioral, and psychiatric domains. Though differences in overall serotonergic transmission occur in AD, circuit-specific alterations in individual 5-HT receptors (5-HTRs) are likely linked to the heterogeneous presentation of BPSD in AD.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Jack C Lennon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Sridhar A Malkaram
- Department of Biology, West Virginia State University Institute, WV-25112, USA
| | - Yan Zeng
- Brain and Cognition Research Institute, Wuhan University of Science and Technology, China
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
49
|
Hassan M, Abbas Q, Seo SY, Shahzadi S, Ashwal HA, Zaki N, Iqbal Z, Moustafa AA. Computational modeling and biomarker studies of pharmacological treatment of Alzheimer's disease (Review). Mol Med Rep 2018; 18:639-655. [PMID: 29845262 PMCID: PMC6059694 DOI: 10.3892/mmr.2018.9044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a complex and multifactorial disease. In order to understand the genetic influence in the progression of AD, and to identify novel pharmaceutical agents and their associated targets, the present study discusses computational modeling and biomarker evaluation approaches. Based on mechanistic signaling pathway approaches, various computational models, including biochemical and morphological models, are discussed to explore the strategies that may be used to target AD treatment. Different biomarkers are interpreted on the basis of morphological and functional features of amyloid β plaques and unstable microtubule‑associated tau protein, which is involved in neurodegeneration. Furthermore, imaging and cerebrospinal fluids are also considered to be key methods in the identification of novel markers for AD. In conclusion, the present study reviews various biochemical and morphological computational models and biomarkers to interpret novel targets and agonists for the treatment of AD. This review also highlights several therapeutic targets and their associated signaling pathways in AD, which may have potential to be used in the development of novel pharmacological agents for the treatment of patients with AD. Computational modeling approaches may aid the quest for the development of AD treatments with enhanced therapeutic efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Saba Shahzadi
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
- Department of Bioinformatics, Virtual University Davis Road Campus, Lahore 54000, Pakistan
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nazar Zaki
- College of Information Technology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Zeeshan Iqbal
- Institute of Molecular Science and Bioinformatics, Dyal Singh Trust Library, Lahore 54000, Pakistan
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, Western Sydney University, Sydney, NSW 2751, Australia
- MARCS Institute for Brain, Behavior and Development, Western Sydney University, Sydney, NSW 2751, Australia
| |
Collapse
|
50
|
Shelar M, Nanaware S, Arulmozhi S, Lohidasan S, Mahadik K. Validation of ethnopharmacology of ayurvedic sarasvata ghrita and comparative evaluation of its neuroprotective effect with modern alcoholic and lipid based extracts in β-amyloid induced memory impairment. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:182-194. [PMID: 29501676 DOI: 10.1016/j.jep.2018.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/20/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarasvata ghrita (SG), a polyherbal formulation from ayurveda, an ancient medicinal system of India, has been used to improve intelligence and memory, treat speech delay, speaking difficulties and low digestion power in children. AIM OF THE STUDY Study aimed to validate the ethno use of SG in memory enhancement through systematic scientific protocol. The effect of SG and modern extracts of ingredients of SG was compared on cognitive function and neuroprotection in amyloid-β peptide 25-35(Aβ25-35) induced memory impairment in wistar rats. Further the underlying mechanism for neuroprotective activity was investigated. MATERIALS AND METHODS SG was prepared as per traditional method, ethanolic extract (EE) was prepared by conventional method and lipid based extract was prepared by modern extraction method. All extracts were standardised by newly developed HPLC method with respect to marker compounds. SG, EE and LE were administered orally to male Wistar rats at doses of 100,200 and 400 mg/kg Body Weight by feeding needle for a period of 21 days after the intracerebroventricular administration of Aβ25-35 bilaterally. Spatial memory of rats was tested using Morris water maze (MWM) and Radial arm maze (RAM) test. The possible underlying mechanisms for the cognitive improvement exhibited by SG, EE and LE was investigated through ex-vivo brain antioxidant effect, monoamine level estimation, acetylcholine esterase (AchE) inhibitory effect and Brain-derived neurotropic factor (BDNF) levels estimation. RESULTS SG, EE and LE were analyzed by HPLC method, results showed that EE extract has high percent of selected phytoconstituents as compared with SG and LE. SG and LE decrease escape latency and searching distance in a dose dependant manner during MWM test. In case of RAM significant decrease in number of errors and increase in number of correct choices indicate an elevation in retention and recall aspects of learning and memory after administration of SG an LE. SG and LE extract can efficiently prevent accumulation of β-amyloid plaque in hippocampus region. There was increase in SOD, GSH, CAT and NO level and decrease in MDA levels in SG and LE administered animals. SG and LE have found to exhibit AchE inhibitiory activity and significant dose-dependant increase in BDNF level in the plasma. SG and LE significantly increased the levels of noradrenaline, dopamine and 5-hydroxytryptamine in the brain. CONCLUSION The study validated the neuroprotective activity of SG. The study concludes the extraction efficiency of SG for selected phytoconstituents is less than modern methods. However the neuroprotective activity of SG and LE was found to be greater than EE.
Collapse
Affiliation(s)
- Madhuri Shelar
- Department of Pharmaceutiacal Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Paud Road, Erandwane, Pune India
| | - Sadhana Nanaware
- Department of Pharmaceutiacal Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Paud Road, Erandwane, Pune India
| | - S Arulmozhi
- Department of Pharmacology, Bharati Vidyapeeth University, Poona College of Pharmacy, Paud Road, Erandwane, Pune India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutiacal Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Paud Road, Erandwane, Pune India.
| | - Kakasaheb Mahadik
- Department of Pharmaceutiacal Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Paud Road, Erandwane, Pune India.
| |
Collapse
|