1
|
Takenaka Y, Hirasaki M, Bono H, Nakamura S, Kakinuma Y. Transcriptome Analysis Reveals Enhancement of Cardiogenesis-Related Signaling Pathways by S-Nitroso- N -Pivaloyl- d -Penicillamine: Implications for Improved Diastolic Function and Cardiac Performance. J Cardiovasc Pharmacol 2024; 83:433-445. [PMID: 38422186 DOI: 10.1097/fjc.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT We previously reported a novel compound called S-nitroso- N -pivaloyl- d -penicillamine (SNPiP), which was screened from a group of nitric oxide donor compounds with a basic chemical structure of S-nitroso- N -acetylpenicillamine, to activate the nonneuronal acetylcholine system. SNPiP-treated mice exhibited improved cardiac output and enhanced diastolic function, without an increase in heart rate. The nonneuronal acetylcholine-activating effects included increased resilience to ischemia, modulation of energy metabolism preference, and activation of angiogenesis. Here, we performed transcriptome analysis of SNPiP-treated mice ventricles to elucidate how SNPiP exerts beneficial effects on cardiac function. A time-course study (24 and 48 hours after SNPiP administration) revealed that SNPiP initially induced Wnt and cyclic guanosine monophosphate-protein kinase G signaling pathways, along with upregulation of genes involved in cardiac muscle tissue development and oxytocin signaling pathway. We also observed enrichment of glycolysis-related genes in response to SNPiP treatment, resulting in a metabolic shift from oxidative phosphorylation to glycolysis, which was suggested by reduced cardiac glucose contents while maintaining adenosine tri-phosphate levels. In addition, SNPiP significantly upregulated atrial natriuretic peptide and sarcolipin, which play crucial roles in calcium handling and cardiac performance. These findings suggest that SNPiP may have therapeutic potential based on the pleiotropic mechanisms elucidated in this study.
Collapse
Affiliation(s)
- Yasuhiro Takenaka
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; and
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
2
|
Bahreini E, Babaei M, Mohammadi F, Alizadeh-Fanalou S. Evaluation of serum pro/anti-angiogenic biomarkers in hyperglycemic rats treated with Securigera securidaca seeds, alone and in combination with Glibenclamide. J Cardiovasc Thorac Res 2024; 16:8-14. [PMID: 38584657 PMCID: PMC10997982 DOI: 10.34172/jcvtr.32960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/14/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Herbal medicines are commonly used by many people with diabetes in addition to standard treatment. Plants contain numerous known and unknown compounds that may exacerbate or ameliorate diabetes complications. Therefore, it is crucial to be aware of the side effects of these herbs before prescribing them. This study aimed to investigate the effects of hydroalcoholic extracts of Securigera securidaca (HESS) seeds alone and in combination with glibenclamide on the angiogenic/anti-angiogenic balance in streptozotocin (STZ)-induced diabetic rats. Methods Groups involved in this animal study included diabetic and healthy controls, three doses of HESS, glibenclamide, and combination therapy. Serum samples were collected and analyzed for a vascular endothelial growth factor (VEGF), fibroblast growth factor 21 (FGF21), fetal liver kinase 1 (FLK-1), soluble fms-like tyrosine kinase 1 (sFLT-1), and transforming growth factor -beta (TGF-β). Results Induction of diabetes increased VEGF, FGF21, and TGF-β serum levels and decreased circulating FLK-1 and sFLT-1 factors. Herbal extract, except TGF-β, had little effect on the above blood levels even at the highest doses. Glibenclamide was more effective than the highest dose of HESS in improving the vascular complications of diabetes. Combination therapy with the highest dose of HESS partly enhanced the glibenclamide effects. Conclusion Compared with glibenclamide as a standard chemical drug, HESS had no significant effects on the blood levels of the pro/anti-angiogenesis factor in diabetic rats. Glibenclamide attenuated the levels of the biomarkers and its effects were somewhat enhanced in combination with the highest dose of HESS.
Collapse
Affiliation(s)
- Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Kane AD, Herrera EA, Niu Y, Camm EJ, Allison BJ, Tijsseling D, Lusby C, Derks JB, Brain KL, Bronckers IM, Cross CM, Berends L, Giussani DA. Combined Statin and Glucocorticoid Therapy for the Safer Treatment of Preterm Birth. Hypertension 2023; 80:837-851. [PMID: 36724801 PMCID: PMC10017302 DOI: 10.1161/hypertensionaha.122.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Prematurity is strongly associated with poor respiratory function in the neonate. Rescue therapies include treatment with glucocorticoids due to their anti-inflammatory and maturational effects on the developing lung. However, glucocorticoid treatment in the infant can increase the risk of long-term cardiovascular complications including hypertension, cardiac, and endothelial dysfunction. Accumulating evidence implicates a molecular link between glucocorticoid excess and depletion of nitric oxide (NO) bioavailability as a mechanism underlying the detrimental effects of postnatal steroids on the heart and circulation. Therefore, combined glucocorticoid and statin therapy, by increasing NO bioavailability, may protect the developing cardiovascular system while maintaining beneficial effects on the lung. METHODS We investigated combined glucocorticoid and statin therapy using an established rodent model of prematurity and combined experiments of cardiovascular function in vivo, with those in isolated organs as well as measurements at the cellular and molecular levels. RESULTS We show that neonatal glucocorticoid treatment increases the risk of later cardiovascular dysfunction in the offspring. Underlying mechanisms include decreased circulating NO bioavailability, sympathetic hyper-reactivity, and NO-dependent endothelial dysfunction. Combined neonatal glucocorticoid and statin therapy protects the developing cardiovascular system by normalizing NO and sympathetic signaling, without affecting pulmonary maturational or anti-inflammatory effects of glucocorticoids. CONCLUSIONS Therefore, combined glucocorticoid and statin therapy may be safer than glucocorticoids alone for the treatment of preterm birth.
Collapse
Affiliation(s)
- Andrew D. Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Emilio A. Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile (E.A.H.)
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Beth J. Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia (E.J.C., B.J.A.)
| | - Deodata Tijsseling
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Ciara Lusby
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Jan B. Derks
- Perinatal Center, University Medical Center, Utrecht, the Netherlands (D.T., J.B.D.)
| | - Kirsty L. Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Inge M. Bronckers
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, the Netherlands (I.M.B.)
| | - Christine M. Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
| | - Lindsey Berends
- Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom (L.B.)
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (A.D.K., E.A.H., Y.N., E.J.C., B.J.A., C.L., K.L.B., C.M.C., D.A.G.)
- The Cambridge BHF Centre for Research Excellence, Cambridge, United Kingdom (Y.N., D.A.G.)
- The Cambridge Strategic Research Initiative in Reproduction, Cambridge, United Kingdom (Y.N., D.A.G.)
| |
Collapse
|
4
|
Butova X, Myachina T, Simonova R, Kochurova A, Bozhko Y, Arkhipov M, Solovyova O, Kopylova G, Shchepkin D, Khokhlova A. Peculiarities of the Acetylcholine Action on the Contractile Function of Cardiomyocytes from the Left and Right Atria in Rats. Cells 2022; 11:cells11233809. [PMID: 36497067 PMCID: PMC9737865 DOI: 10.3390/cells11233809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Acetylcholine (ACh) is the neurotransmitter of the parasympathetic nervous system that modulates cardiac function, and its high concentrations may induce atrial fibrillation. We compared the ACh action on the mechanical function of single cardiomyocytes from the left atria (LA) and the right atria (RA). We exposed single rat LA and RA cardiomyocytes to 1, 10, and 100 µM ACh for 10-15 min and measured the parameters of sarcomere shortening-relengthening and cytosolic calcium ([Ca2+]i) transients during cell contractions. We also studied the effects of ACh on cardiac myosin function using an in vitro motility assay and analyzed the phosphorylation level of sarcomeric proteins. In LA cardiomyocytes, ACh decreased the time to peak sarcomere shortening, time to 50% relengthening, and time to peak [Ca2+]i transients. In RA cardiomyocytes, ACh affected the time of shortening and relengthening only at 10 µM. In the in vitro motility assay, ACh reduced to a greater extent the sliding velocity of F-actin over myosin from LA cardiomyocytes, which was accompanied by a more pronounced decrease in phosphorylation of the myosin regulatory light chain (RLC) in LA cardiomyocytes than in RA cardiomyocytes. Our findings indicate that ACh plays an important role in modulating the contractile function of LA and RA, provoking more pronounced changes in the time course of sarcomere shortening-relengthening and the kinetics of actin-myosin interaction in LA cardiomyocytes.
Collapse
Affiliation(s)
- Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Raisa Simonova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Yakov Bozhko
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Michael Arkhipov
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Abelanet A, Camoin M, Rubin S, Bougaran P, Delobel V, Pernot M, Forfar I, Guilbeau-Frugier C, Galès C, Bats ML, Renault MA, Dufourcq P, Couffinhal T, Duplàa C. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:745-763. [PMID: 35510550 DOI: 10.1161/atvbaha.121.317319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.
Collapse
Affiliation(s)
- Alice Abelanet
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Marion Camoin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Sebastien Rubin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Isabelle Forfar
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Marie Lise Bats
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| |
Collapse
|
6
|
Manuelli V, Pecorari C, Filomeni G, Zito E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J 2021; 289:5413-5425. [PMID: 34228878 DOI: 10.1111/febs.16110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Angiogenesis is the process of blood vessel growth. The angiogenic switch consists of new blood vessel formation that, in carcinogenesis, can lead to the transition from a harmless cluster of dormant cells to a large tumorigenic mass with metastatic potential. Hypoxia, that is, the scarcity of oxygen, is a hallmark of solid tumors to which they adapt by activating hypoxia-inducible factor-1 (HIF-1), a transcription factor triggering de novo angiogenesis. HIF-1 and the angiogenic molecules that are expressed upon its activation are modulated by redox status. Modulations of the redox environment can influence the angiogenesis signaling at different levels, thereby impinging on the angiogenic switch. This review provides a molecular overview of the redox-sensitive steps in angiogenic signaling, the main molecular players involved, and their crosstalk with the unfolded protein response. New classes of inhibitors of these modulators which might act as antiangiogenic drugs in cancer are also discussed.
Collapse
Affiliation(s)
- Valeria Manuelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Pecorari
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Copenhagen University, Denmark.,Department of Biology, Tor Vergata University, Rome, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Italy
| |
Collapse
|
7
|
Saw EL, Pearson JT, Schwenke DO, Munasinghe PE, Tsuchimochi H, Rawal S, Coffey S, Davis P, Bunton R, Van Hout I, Kai Y, Williams MJA, Kakinuma Y, Fronius M, Katare R. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol 2021; 20:50. [PMID: 33618724 PMCID: PMC7898760 DOI: 10.1186/s12933-021-01231-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acetylcholine (ACh) plays a crucial role in the function of the heart. Recent evidence suggests that cardiomyocytes possess a non-neuronal cholinergic system (NNCS) that comprises of choline acetyltransferase (ChAT), choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), acetylcholinesterase (AChE) and type-2 muscarinic ACh receptors (M2AChR) to synthesize, release, degrade ACh as well as for ACh to transduce a signal. NNCS is linked to cardiac cell survival, angiogenesis and glucose metabolism. Impairment of these functions are hallmarks of diabetic heart disease (DHD). The role of the NNCS in DHD is unknown. The aim of this study was to examine the effect of diabetes on cardiac NNCS and determine if activation of cardiac NNCS is beneficial to the diabetic heart. METHODS Ventricular samples from type-2 diabetic humans and db/db mice were used to measure the expression pattern of NNCS components (ChAT, CHT1, VAChT, AChE and M2AChR) and glucose transporter-4 (GLUT-4) by western blot analysis. To determine the function of the cardiac NNCS in the diabetic heart, a db/db mouse model with cardiac-specific overexpression of ChAT gene was generated (db/db-ChAT-tg). Animals were followed up serially and samples collected at different time points for molecular and histological analysis of cardiac NNCS components and prosurvival and proangiogenic signaling pathways. RESULTS Immunoblot analysis revealed alterations in the components of cardiac NNCS and GLUT-4 in the type-2 diabetic human and db/db mouse hearts. Interestingly, the dysregulation of cardiac NNCS was followed by the downregulation of GLUT-4 in the db/db mouse heart. Db/db-ChAT-tg mice exhibited preserved cardiac and vascular function in comparison to db/db mice. The improved function was associated with increased cardiac ACh and glucose content, sustained angiogenesis and reduced fibrosis. These beneficial effects were associated with upregulation of the PI3K/Akt/HIF1α signaling pathway, and increased expression of its downstream targets-GLUT-4 and VEGF-A. CONCLUSION We provide the first evidence for dysregulation of the cardiac NNCS in DHD. Increased cardiac ACh is beneficial and a potential new therapeutic strategy to prevent or delay the development of DHD.
Collapse
Affiliation(s)
- Eng Leng Saw
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shruti Rawal
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Sean Coffey
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand
| | - Yuko Kai
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Michael J A Williams
- Department of Medicine, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Martin Fronius
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
8
|
Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular Macular Degeneration: A Review of Etiology, Risk Factors, and Recent Advances in Research and Therapy. Int J Mol Sci 2021; 22:1170. [PMID: 33504013 PMCID: PMC7866170 DOI: 10.3390/ijms22031170] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (exudative or wet AMD) is a prevalent, progressive retinal degenerative macular disease that is characterized by neovascularization of the choroid, mainly affecting the elderly population causing gradual vision impairment. Risk factors such as age, race, genetics, iris color, smoking, drinking, BMI, and diet all play a part in nvAMD's progression, with anti-vascular endothelial growth factor (anti-VEGF) therapy being the mainstay of treatment. Current therapeutic advancements slow the progression of the disease but do not cure or reverse its course. Newer therapies such as gene therapies, Rho-kinase inhibitors, and levodopa offer potential new targets for treatment.
Collapse
Affiliation(s)
- Arunbalaji Pugazhendhi
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Margaret Hubbell
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Pooja Jairam
- Vagelos College of Physicians & Surgeons, Columbia Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Balamurali Ambati
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| |
Collapse
|
9
|
Oikawa S, Kai Y, Mano A, Ohata H, Kurabayashi A, Tsuda M, Kakinuma Y. Non-neuronal cardiac acetylcholine system playing indispensable roles in cardiac homeostasis confers resiliency to the heart. J Physiol Sci 2021; 71:2. [PMID: 33461483 PMCID: PMC10717922 DOI: 10.1186/s12576-020-00787-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND We previously established that the non-neuronal cardiac cholinergic system (NNCCS) is equipped with cardiomyocytes synthesizes acetylcholine (ACh), which is an indispensable endogenous system, sustaining cardiac homeostasis and regulating an inflammatory status, by transgenic mice overexpressing choline acetyltransferase (ChAT) gene in the heart. However, whole body biological significances of NNCCS remain to be fully elucidated. METHODS AND RESULTS To consolidate the features, we developed heart-specific ChAT knockdown (ChATKD) mice using 3 ChAT-specific siRNAs. The mice developed cardiac dysfunction. Factors causing it included the downregulation of cardiac glucose metabolism along with decreased signal transduction of Akt/HIF-1alpha/GLUT4, leading to poor glucose utilization, impairment of glycolytic metabolites entering the tricarboxylic (TCA) cycle, the upregulation of reactive oxygen species (ROS) production with an attenuated scavenging potency, and the downregulated nitric oxide (NO) production via NOS1. ChATKD mice revealed a decreased vagus nerve activity, accelerated aggression, more accentuated blood basal corticosterone levels with depression-like phenotypes, several features of which were accompanied by cardiac dysfunction. CONCLUSION The NNCCS plays a crucial role in cardiac homeostasis by regulating the glucose metabolism, ROS synthesis, NO levels, and the cardiac vagus nerve activity. Thus, the NNCCS is suggested a fundamentally crucial system of the heart.
Collapse
Affiliation(s)
- Shino Oikawa
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuko Kai
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Asuka Mano
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hisayuki Ohata
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Atsushi Kurabayashi
- Department of Pathology, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | - Masayuki Tsuda
- Institute for Laboratory Animal Research, Kochi Medical School, Nankoku, Kochi, 783-8505, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Graduate School of Medicine, Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
10
|
Kakinuma Y. Characteristic Effects of the Cardiac Non-Neuronal Acetylcholine System Augmentation on Brain Functions. Int J Mol Sci 2021; 22:ijms22020545. [PMID: 33430415 PMCID: PMC7826949 DOI: 10.3390/ijms22020545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
11
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
12
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
13
|
Oikawa S, Kai Y, Mano A, Nakamura S, Kakinuma Y. S-Nitroso-N-Pivaloyl-D-Penicillamine, a novel non-neuronal ACh system activator, modulates cardiac diastolic function to increase cardiac performance under pathophysiological conditions. Int Immunopharmacol 2020; 84:106459. [PMID: 32325404 DOI: 10.1016/j.intimp.2020.106459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 01/06/2023]
Abstract
We have previously reported the development of a novel chemical compound, S-Nitroso-N-Pivaloyl-D-Penicillamine (SNPiP), for the upregulation of the non-neuronal cardiac cholinergic system (NNCCS), a cardiac acetylcholine (ACh) synthesis system, which is different from the vagus nerve releasing of ACh as a neurotransmitter. However, it remains unclear how SNPiP could influence cardiac function positively, and whether SNPiP could improve cardiac function under various pathological conditions. SNPiP-injected control mice demonstrated a gradual upregulation in diastolic function without changes in heart rate. In contrast to some parameters in cardiac function that were influenced by SNPiP 24 h or 48 h after a single intraperitoneal (IP) injection, 72 h later, end-systolic pressure, cardiac output, end-diastolic volume, stroke volume, and ejection fraction increased. IP SNPiP injection also improved impaired cardiac function, which is a characteristic feature of the db/db heart, in a delayed fashion, including diastolic and systolic function, following either several consecutive injections or a single injection. SNPiP, a novel NNCCS activator, could be applied as a therapeutic agent for the upregulation of NNCCS and as a unique tool for modulating cardiac function via improvement in diastolic function.
Collapse
Affiliation(s)
- Shino Oikawa
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuko Kai
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Asuka Mano
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
14
|
Jahani M, Azadbakht M, Rasouli H, Yarani R, Rezazadeh D, Salari N, Mansouri K. L-arginine/5-fluorouracil combination treatment approaches cells selectively: Rescuing endothelial cells while killing MDA-MB-468 breast cancer cells. Food Chem Toxicol 2019; 123:399-411. [DOI: 10.1016/j.fct.2018.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
|
15
|
Tsiaoussis J, Hatzidaki E, Docea AO, Nikolouzakis TK, Petrakis D, Burykina T, Mamoulakis C, Makrigiannakis A, Tsatsakis A. Molecular and clinical aspects of embryotoxicity induced by acetylcholinesterase inhibitors. Toxicology 2018; 409:137-143. [PMID: 30055296 DOI: 10.1016/j.tox.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase inhibitors are widely used for a variety of medical, agricultural and public health purposes. Consequently, exposure is highly possible during lifetime. However, their systematic use raises concerns for the potential impact on the fetus and newborn since these substances may affect angiogenesis, the neonatal and maternal intensive care, neuroimmune function and response, mammary growth/lactation via cholinergic/non-cholinergic central and peripheral neuroendocrine pathways. New methodologies, neuroscientific technologies and research studies are needed to harness existing knowledge along with the proper management, availability for new acetylcholinesterase inhibitors, with stable pharmacodynamics and clinical outcomes.
Collapse
Affiliation(s)
- J Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - E Hatzidaki
- Department of Neonatology, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - A O Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - T K Nikolouzakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Voutes, 71110, Heraklion, Crete, Greece.
| | - D Petrakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| | - T Burykina
- Department of Analytical and Forensic Medical Chemistry, Sechenov University, 119991, Moscow, Russian Federation
| | - C Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, 71003, Heraklion, Crete, Greece.
| | - A Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003, Heraklion, Crete, Greece.
| | - A Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
16
|
Treatment with Sildenafil and Donepezil Improves Angiogenesis in Experimentally Induced Critical Limb Ischemia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9532381. [PMID: 28243607 PMCID: PMC5294352 DOI: 10.1155/2017/9532381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022]
Abstract
Objectives. In this study, we aimed to demonstrate the role of sildenafil (an antagonist of phosphodiesterase type 5 (PDE-5)) and donepezil (a specific and reversible inhibitor of acetylcholinesterase (Ach)) in increasing ischemia-induced angiogenesis. Method. Critical limb ischemia was induced by ligation of the common femoral artery followed by ligation of the common iliac artery. The operated animals were divided into 3 groups: receiving sildenafil, receiving donepezil, and surgery alone; the contralateral lower limb was used as a negative control. The results were controlled based on clinical score and Doppler ultrasound. Gastrocnemius muscle samples were taken from all animals, both from the ischemic and nonischemic limb and were used for histopathological and immunohistochemical examination for the evaluation of the number of nuclei/field, endothelial cells (CD31), dividing cells (Ki-67), and vascular endothelial growth factor (VEGFR-3). Results. An increasing tendency of the number of nuclei/field with time was observed both in the case of sildenafil and donepezil treatment. The formation of new capillaries (the angiogenesis process) was more strongly influenced by donepezil treatment compared to sildenafil or no treatment. This treatment significantly influenced the capillary/fiber ratio, which was increased compared to untreated ligated animals. Sildenafil treatment led to a gradual increase in the number of dividing cells, which was significantly compared to the negative control group and compared to the ligation control group. The same effect (increase in the number of Ki-67 positive cells) was more obvious in the case of donepezil treatment. Conclusion. Donepezil treatment has a better effect in ligation-induced ischemia compared to sildenafil, promoting angiogenesis in the first place, and also arteriogenesis.
Collapse
|
17
|
Silva IHM, de Andrade SC, de Faria ABS, Fonsêca DDD, Gueiros LAM, Carvalho AAT, da Silva WTF, de Castro RM, Leão JC. Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers. Lasers Med Sci 2016; 31:1855-1862. [DOI: 10.1007/s10103-016-2061-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
|
18
|
Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity. Clin Sci (Lond) 2016; 130:1913-28. [PMID: 27528769 DOI: 10.1042/cs20160277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity.
Collapse
|
19
|
Kakinuma Y. Future perspectives of a cardiac non-neuronal acetylcholine system targeting cardiovascular diseases as an adjunctive tool for metabolic intervention. Int Immunopharmacol 2015; 29:185-8. [PMID: 26028150 DOI: 10.1016/j.intimp.2015.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 01/04/2023]
Abstract
It has been several years since the function of the non-neuronal cholinergic system was independently reported in cardiomyocytes by several research groups. Although these findings initially seemed to be negligible and insignificant, extraordinary findings about cardiomyocytes were subsequently reported in studies involving the knockdown of the non-neuronal cholinergic system. These studies provide the evidence that this system may be indispensable for maintaining principal cardiac functions. Despite the absence of an appropriate and reliable technology to detect cellular ACh in real time in cardiomyocytes, studies of this system have progressed, albeit very slowly, to gradually consolidate the significance of this system. Based on the many significant findings regarding this system, these will be critical to develop adjunctive intervention therapy against cardiovascular diseases, including peripheral artery disease and heart failure. In this study, previous studies focusing on the non-neuronal cholinergic system are reviewed along with our studies, both indicating the biologically significant roles of the cardiac non-neuronal acetylcholine system from a clinical perspective.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Dep. of Physiology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
20
|
Nicotinic receptor-dependent and -independent effects of galantamine, an acetylcholinesterase inhibitor, on the non-neuronal acetylcholine system in C2C12 cells. Int Immunopharmacol 2015; 29:31-5. [PMID: 25979761 DOI: 10.1016/j.intimp.2015.04.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis.
Collapse
|
21
|
Hunter RA, Schoenfisch MH. S-Nitrosothiol analysis via photolysis and amperometric nitric oxide detection in a microfluidic device. Anal Chem 2015; 87:3171-6. [PMID: 25714120 DOI: 10.1021/ac503220z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 530 nm light emitting diode was coupled to a microfluidic sensor to facilitate photolysis of nitrosothiols (i.e., S-nitrosoglutathione, S-nitrosocysteine, and S-nitrosoalbumin) and amperometric detection of the resulting nitric oxide (NO). This configuration allowed for maximum sensitivity and versatility, while limiting potential interference from nitrate decomposition caused by ultraviolet light. Compared to similar measurements of total S-nitrosothiol content in bulk solution, use of the microfluidic platform permitted significantly enhanced analytical performance in both phosphate-buffered saline and plasma (6-20× improvement in sensitivity depending on nitrosothiol type). Additionally, the ability to reduce sample volumes from milliliters to microliters provides increased clinical utility. To demonstrate its potential for biological analysis, this device was used to measure basal nitrosothiol levels from the vasculature of a healthy porcine model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Li F, Yuan Y, Guo Y, Liu N, Jing D, Wang H, Guo W. Pulsed magnetic field accelerate proliferation and migration of cardiac microvascular endothelial cells. Bioelectromagnetics 2014; 36:1-9. [PMID: 25338938 DOI: 10.1002/bem.21875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Li
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Yuan Yuan
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Ying Guo
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Nan Liu
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Da Jing
- Faculty of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Haichang Wang
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Wenyi Guo
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| |
Collapse
|
23
|
Atilgan R, Kuloglu T, Ozkan ZS, Kavak SB, Kumbak B, Deveci D, Simsek M, Baspinar M, Sapmaz E. Evaluation of vitamin C and vitamin E for prevention of postoperative adhesion: A rat uterine horn model study. J Obstet Gynaecol Res 2014; 41:418-23. [DOI: 10.1111/jog.12544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/31/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Remzi Atilgan
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Tuncay Kuloglu
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Zehra Sema Ozkan
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Salih Burcin Kavak
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Banu Kumbak
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Derya Deveci
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Mehmet Simsek
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Melike Baspinar
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| | - Ekrem Sapmaz
- Department of Obstetrics and Gynecology; School of Medicine; Fırat University; Istanbul Turkey
| |
Collapse
|
24
|
Morrow D, Hatch E, Hamm K, Cahill PA, Redmond EM. Flk-1/KDR mediates ethanol-stimulated endothelial cell Notch signaling and angiogenic activity. J Vasc Res 2014; 51:315-24. [PMID: 25322777 DOI: 10.1159/000367807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/15/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED We previously reported that ethanol (EtOH) stimulates endothelial angiogenic activity mediated via a notch- and angiopoietin-1 (Ang-1) pathway. As crosstalk exists between notch and vascular endothelial growth factor (VEGF) signaling, we examined whether the VEGF receptor (VEGFR) Flk-1 (fetal liver kinase 1) mediates EtOH-stimulated notch signaling and angiogenic activity. METHODS AND RESULTS Treatment of human coronary artery endothelial cells (HCAECs) with EtOH (1-50 mM, 24 h) dose-dependently increased Flk-1 expression with a maximum increase observed at 25 mM EtOH. Ethanol treatment activated both Flk-1 and Flt-1 (FMS-like tyrosine kinase 1) as indicated by their phosphorylation, and subsequent stimulation of Akt. EtOH activation of Flk-1 was inhibited by the VEGFR inhibitor SU5416. Gene silencing of Flk-1 using small interfering RNA inhibited the EtOH-induced increase in notch receptors 1 and 4 and notch target gene (hairy enhancer of split-related transcription factor 1) mRNA. Knockdown of Flk-1 inhibited EtOH-induced Ang-1/Tie-2 mRNA expression and blocked EtOH-induced HCAEC network formation on Matrigel, a response that was restored by notch ligand, notch ligand delta-like ligand 4, treatment. In vivo, moderate alcohol feeding increased vascular remodeling in mouse ischemic hindlimbs. CONCLUSIONS These data demonstrate that EtOH activates Flk-1 and Flt-1 receptors in HCAECs and promotes angiogenic activity via an Flk-1/notch pathway. These effects of EtOH may be relevant to the influence of moderate alcohol consumption on cardiovascular health.
Collapse
Affiliation(s)
- David Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, N.Y., USA
| | | | | | | | | |
Collapse
|
25
|
Inada C, Niu Y, Matsumoto K, Le XT, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int 2014; 75:39-47. [DOI: 10.1016/j.neuint.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/17/2023]
|
26
|
Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model. Transl Res 2014; 164:32-45. [PMID: 24811002 DOI: 10.1016/j.trsl.2014.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022]
Abstract
We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy.
Collapse
|
27
|
Bir SC, Pattillo CB, Pardue S, Kolluru GK, Shen X, Giordano T, Kevil CG. Nitrite anion therapy protects against chronic ischemic tissue injury in db/db diabetic mice in a NO/VEGF-dependent manner. Diabetes 2014; 63:270-81. [PMID: 24009258 PMCID: PMC4179307 DOI: 10.2337/db13-0890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nitrite anion has been demonstrated to be a prodrug of nitric oxide (NO) with positive effects on tissue ischemia/reperfusion injury, cytoprotection, and vasodilation. However, effects of nitrite anion therapy for ischemic tissue vascular remodeling during diabetes remain unknown. We examined whether sodium nitrite therapy altered ischemic revascularization in BKS-Lepr(db/db) mice subjected to permanent unilateral femoral artery ligation. Sodium nitrite therapy completely restored ischemic hind limb blood flow compared with nitrate or PBS therapy. Importantly, delayed nitrite therapy 5 days after ischemia restored ischemic limb blood flow in aged diabetic mice. Restoration of blood flow was associated with increases in ischemic tissue angiogenesis activity and cell proliferation. Moreover, nitrite but not nitrate therapy significantly prevented ischemia-mediated tissue necrosis in aged mice. Nitrite therapy significantly increased ischemic tissue vascular endothelial growth factor (VEGF) protein expression that was essential for nitrite-mediated reperfusion of ischemic hind limbs. Nitrite significantly increased ischemic tissue NO bioavailability along with concomitant reduction of superoxide formation. Lastly, nitrite treatment also significantly stimulated hypoxic endothelial cell proliferation and migration in the presence of high glucose in an NO/VEGF-dependent manner. These results demonstrate that nitrite therapy effectively stimulates ischemic tissue vascular remodeling in the setting of metabolic dysfunction that may be clinically useful.
Collapse
Affiliation(s)
- Shyamal C. Bir
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
| | - Christopher B. Pattillo
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
| | - Gopi K. Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
| | | | - Christopher G. Kevil
- Department of Pathology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, LA
- TheraVasc Inc., Cleveland, OH
- Corresponding author: Christopher G. Kevil,
| |
Collapse
|
28
|
Noguchi T, Kakinuma Y, Arikawa M, Okazaki K, Hoshino E, Iiyama T, Kubo T, Kitaoka H, Doi Y, Sato T. Donepezil Can Improve Ischemic Muscle Atrophy by Activating Angiomyogenic Properties of Satellite Cells. Circ J 2014; 78:2317-24. [DOI: 10.1253/circj.cj-14-0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatsuya Noguchi
- Department of Cardiovascular Control, Kochi Medical School
- Department of Medical and Geriatrics, Kochi Medical School
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School Graduate School of Medicine
| | | | - Kayo Okazaki
- Department of Cardiovascular Control, Kochi Medical School
| | | | | | - Toru Kubo
- Department of Medical and Geriatrics, Kochi Medical School
| | | | - Yoshinori Doi
- Department of Medical and Geriatrics, Kochi Medical School
| | - Takayuki Sato
- Department of Cardiovascular Control, Kochi Medical School
| |
Collapse
|
29
|
Hunter RA, Privett BJ, Henley WH, Breed ER, Liang Z, Mittal R, Yoseph BP, McDunn JE, Burd EM, Coopersmith CM, Ramsey JM, Schoenfisch MH. Microfluidic amperometric sensor for analysis of nitric oxide in whole blood. Anal Chem 2013; 85:6066-72. [PMID: 23692300 PMCID: PMC3712765 DOI: 10.1021/ac400932s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Standard photolithographic techniques and a nitric oxide (NO) selective xerogel polymer were utilized to fabricate an amperometric NO microfluidic sensor with low background noise and the ability to analyze NO levels in small sample volumes (~250 μL). The sensor exhibited excellent analytical performance in phosphate buffered saline, including a NO sensitivity of 1.4 pA nM(-1), a limit of detection (LOD) of 840 pM, and selectivity over nitrite, ascorbic acid, acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and both protonated and deprotonated peroxynitrite (selectivity coefficients of -5.3, -4.2, -4.0, -5.0, -6.0, -5.8, -3.8, -1.5, and -4.0, respectively). To demonstrate the utility of the microfluidic NO sensor for biomedical analysis, the device was used to monitor changes in blood NO levels during the onset of sepsis in a murine pneumonia model.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Burns EM, Tober KL, Riggenbach JA, Kusewitt DF, Young GS, Oberyszyn TM. Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice. PLoS One 2013; 8:e63809. [PMID: 23691100 PMCID: PMC3653797 DOI: 10.1371/journal.pone.0063809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/05/2013] [Indexed: 12/31/2022] Open
Abstract
Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits.
Collapse
Affiliation(s)
- Erin M. Burns
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kathleen L. Tober
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Judith A. Riggenbach
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Donna F. Kusewitt
- Department of Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville Texas, United States of America
| | - Gregory S. Young
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Tatiana M. Oberyszyn
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kakinuma Y, Tsuda M, Okazaki K, Akiyama T, Arikawa M, Noguchi T, Sato T. Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1α-related defense mechanisms. J Am Heart Assoc 2013; 2:e004887. [PMID: 23525439 PMCID: PMC3603257 DOI: 10.1161/jaha.112.004887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the existence of a nonneuronal cholinergic system in ventricular myocardium. Methods and Results To examine the role of the nonneuronal cardiac cholinergic system, we generated choline acetyltransferase (ChAT)–expressing cells and heart‐specific ChAT transgenic (ChAT‐tg) mice. Compared with cardiomyocytes of wild‐type (WT) mice, those of the ChAT‐tg mice had high levels of ACh and hypoxia‐inducible factor (HIF)‐1α protein and augmented glucose uptake. These phenotypes were also reproduced by ChAT‐overexpressing cells, which utilized oxygen less. Before myocardial infarction (MI), the WT and ChAT‐tg mice showed similar hemodynamics; after MI, however, the ChAT‐tg mice had better survival than did the WT mice. In the ChAT‐tg hearts, accelerated angiogenesis at the ischemic area, and accentuated glucose utilization prevented post‐MI remodeling. The ChAT‐tg heart was more resistant to ischemia–reperfusion injury than was the WT heart. Conclusions These results suggest that the activated cardiac ACh‐HIF‐1α cascade improves survival after MI. We conclude that de novo synthesis of ACh in cardiomyocytes is a pivotal mechanism for self‐defense against ischemia.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 2012; 10:243. [PMID: 23217165 PMCID: PMC3543338 DOI: 10.1186/1479-5876-10-243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023] Open
Abstract
Background Ischemia is the major cause of acute kidney injury (AKI), associated with high mortality and morbidity. Mesenchymal stem cells (MSCs) have multilineage differentiation potential and can be a potent therapeutic option for the cure of AKI. Methods MSCs were cultured in four groups SNAP (S-nitroso N-acetyl penicillamine), SNAP + Methylene Blue (MB), MB and a control for in vitro analysis. Cultured MSCs were pre-conditioned with either SNAP (100 μM) or MB (1 μM) or both for 6 hours. Renal ischemia was induced in four groups (as in in vitro study) of rats by clamping the left renal padicle for 45 minutes and then different pre-conditioned stem cells were transplanted. Results We report that pre-conditioning of MSCs with SNAP enhances their proliferation, survival and engraftment in ischemic kidney. Rat MSCs pre-conditioned with SNAP decreased cell apoptosis and increased proliferation and cytoprotective genes’ expression in vitro. Our in vivo data showed enhanced survival and engraftment, proliferation, reduction in fibrosis, significant improvement in renal function and higher expression of pro-survival and pro-angiogenic factors in ischemic renal tissue in SNAP pre-conditioned group of animals. Cytoprotective effects of SNAP pre-conditioning were abrogated by MB, an inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Conclusion The results of these studies demonstrate that SNAP pre-conditioning might be useful to enhance therapeutic potential of MSCs in attenuating renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Muhammad Shareef Masoud
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
33
|
Wang ML, Shih CK, Chang HP, Chen YH. Antiangiogenic activity of indole-3-carbinol in endothelial cells stimulated with activated macrophages. Food Chem 2012; 134:811-20. [PMID: 23107695 DOI: 10.1016/j.foodchem.2012.02.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 09/07/2011] [Accepted: 02/28/2012] [Indexed: 01/18/2023]
Abstract
The effect of indole-3-carbinol (I3C), a major indolic metabolite in cruciferous vegetables, on lipopolysaccharide (LPS)-activated macrophage-induced tube formation and its associated factors in endothelial EA hy926 cells was investigated. LPS significantly enhanced the capillary-like structure of endothelial cells (ECs) co-cultured with macrophages, but no such effect was observed in single-cultured ECs. I3C, on the other hand, suppressed such enhancement in concert with decreased secretions of vascular endothelial growth factor (VEGF), nitric oxide (NO), interleukin-6 (IL-6), and matrix metalloproteinases (MMPs). The results obtained from cultivating ECs with conditioned medium (CM) collected from macrophages suggested that both ECs and macrophages were inactivated by I3C. These results indicate that I3C from cruciferous vegetables may possess potential roles in preventing inflammation-associated angiogenic diseases.
Collapse
Affiliation(s)
- Mei-Lin Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan, ROC
| | | | | | | |
Collapse
|
34
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Doronzo G, Viretto M, Russo I, Mattiello L, Di Martino L, Cavalot F, Anfossi G, Trovati M. Nitric oxide activates PI3-K and MAPK signalling pathways in human and rat vascular smooth muscle cells: Influence of insulin resistance and oxidative stress. Atherosclerosis 2011; 216:44-53. [DOI: 10.1016/j.atherosclerosis.2011.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
|
36
|
Morita T, Kakinuma Y, Kurabayashi A, Fujieda M, Sato T, Shuin T, Furihata M, Wakiguchi H. Conditional VHL gene deletion activates a local NO-VEGF axis in a balanced manner reinforcing resistance to endothelium-targeted glomerulonephropathy. Nephrol Dial Transplant 2011; 26:4023-31. [PMID: 21493813 DOI: 10.1093/ndt/gfr176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIMS We have reported that tubular epithelial cell injury caused by renal ischemia-reperfusion is attenuated in conditional VHL knockout (VHL-KO) mice and also that induction of hypoxia-inducible factor (HIF) suppresses angiotensin II-accelerated Habu snake venom (HV) glomerulonephropathy in rats. However, it remains unknown whether VHL knockdown protects glomerular endothelial cells from endothelium-targeted glomerulonephritis. METHODS AND RESULTS VHL-KO mice with HV glomerulonephropathy (HV GN) had fewer injured glomeruli, a lower mesangiolysis score and reduced blood urea nitrogen levels. Immunoreactivity of vascular endothelial growth factor (VEGF) in the glomerular capillaries was enhanced by VHL knockdown and was conserved even in VHL-KO mice with HV GN, despite HV-attenuating endothelial VEGF expression in vitro. VHL-KO mice showed enhanced nitric oxide (NO) production in glomerular endothelial cells and tubular cells, associated with activated VEGF expression in the kidney (i.e. an activated NO-VEGF axis). The levels of NO in glomeruli and tubules were conserved even in mice with HV GN. In contrast, suppressing NO production in glomerular endothelial cells by an NO synthase inhibitor, N(ϖ)-nitro-L-arginase, completely blunted the protection of VHL-KO from HV GN. The activated NO-VEGF axis in the kidney of VHL-KO mice was also associated with an elevation in Flk-1 phosphorylation and increased levels of IL-10 and IP-10. CONCLUSION Conditional VHL knockdown may enhance the NO-VEGF axis and protect glomerular endothelial cells from HV GN, thereby providing resistance to injury of tubular epithelial cells and glomerular endothelial cells.
Collapse
Affiliation(s)
- Taku Morita
- Department of Pediatrics, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Katare RG, Ando M, Kakinuma Y, Arikawa M, Yamasaki F, Sato T. Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. J Mol Cell Cardiol 2010; 49:234-44. [PMID: 20302876 DOI: 10.1016/j.yjmcc.2010.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Vagal nerve stimulation (VS) has been reported to improve the survival after both acute and chronic myocardial infarction through the release of neurotransmitter ACh. However, the precise mechanism behind its beneficial effect is still unknown. In this study, we demonstrate the upregulation of tumor necrosis factor-alpha (TNF-alpha) and its cell survival TNF receptor-2 (TNFR2) as the mechanism behind VS induced myocardial protection. We investigated the effects of efferent VS on myocardial ischemic injury with in vivo and in vitro mouse models. In in vivo hearts VS significantly increased the expression of TNF-alpha both at the messenger and protein level after 3-hours of myocardial ischemia. In the in vitro studies ACh treatment before hypoxia, induced a significant upregulation of TNF-alpha compared to the untreated cardiomyocytes. Immunofluorescence analysis confirmed the synthesis of TNF-alpha by cardiomyocytes both in vivo and in vitro. VS also significantly reduced the myocardial infarct size (23.9+/-5.7% vs. 56+/-1.9%) and activated the cell survival Akt cascade system. Further, ACh upregulated the cell survival TNFR2 expression, while downregulating the cell destructive TNF receptor 1 (TNFR1) expression. These results were confirmed using the TNF receptors deficient mice, where the VS mediated protection was lost both in vivo and in vitro in TNFR2 (TNFR2(-/-)) and TNF receptors double knock out (TNFR1(-/-)2(-/-)) mice. VS and ACh protects the heart against acute ischemia or hypoxic injury by differentially regulating the TNF receptor subtypes.
Collapse
Affiliation(s)
- Rajesh G Katare
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Kakinuma Y, Furihata M, Akiyama T, Arikawa M, Handa T, Katare RG, Sato T. Donepezil, an acetylcholinesterase inhibitor against Alzheimer's dementia, promotes angiogenesis in an ischemic hindlimb model. J Mol Cell Cardiol 2009; 48:680-93. [PMID: 19962381 DOI: 10.1016/j.yjmcc.2009.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
Abstract
Our recent studies have indicated that acetylcholine (ACh) protects cardiomyocytes from prolonged hypoxia through activation of the PI3K/Akt/HIF-1alpha/VEGF pathway and that cardiomyocyte-derived VEGF promotes angiogenesis in a paracrine fashion. These results suggest that a cholinergic system plays a role in modulating angiogenesis. Therefore, we assessed the hypothesis that the cholinergic modulator donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, exhibits beneficial effects, especially on the acceleration of angiogenesis. We evaluated the effects of donepezil on angiogenic properties in vitro and in vivo, using an ischemic hindlimb model of alpha7 nicotinic receptor-deleted mice (alpha7 KO) and wild-type mice (WT). Donepezil activated angiogenic signals, i.e., HIF-1alpha and VEGF expression, and accelerated tube formation in human umbilical vein endothelial cells (HUVECs). ACh and nicotine upregulated signal transduction with acceleration of tube formation, suggesting that donepezil promotes a common angiogenesis pathway. Moreover, donepezil-treated WT exhibited rich capillaries with enhanced VEGF and PCNA endothelial expression, recovery from impaired tissue perfusion, prevention of ischemia-induced muscular atrophy with sustained surface skin temperature in the limb, and inhibition of apoptosis independent of the alpha7 receptor. Donepezil exerted comparably more effects in alpha7 KO in terms of angiogenesis, tissue perfusion, biochemical markers, and surface skin temperature. Donepezil concomitantly elevated VEGF expression in intracardiac endothelial cells of WT and alpha7 KO and further increased choline acetyltransferase (ChAT) protein expression, which is critical for ACh synthesis in endothelial cells. The present study concludes that donepezil can act as a therapeutic tool to accelerate angiogenesis in cardiovascular disease patients.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Calbet JAL, Robach P, Lundby C. The exercising heart at altitude. Cell Mol Life Sci 2009; 66:3601-13. [PMID: 19809792 PMCID: PMC11115914 DOI: 10.1007/s00018-009-0148-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Maximal cardiac output is reduced in severe acute hypoxia but also in chronic hypoxia by mechanisms that remain poorly understood. In theory, the reduction of maximal cardiac output could result from: (1) a regulatory response from the central nervous system, (2) reduction of maximal pumping capacity of the heart due to insufficient coronary oxygen delivery prior to the achievement of the normoxic maximal cardiac output, or (3) reduced central command. In this review, we focus on the effects that acute and chronic hypoxia have on the pumping capacity of the heart, particularly on myocardial contractility and the molecular responses elicited by acute and chronic hypoxia in the cardiac myocytes. Special emphasis is put on the cardioprotective effects of chronic hypoxia.
Collapse
Affiliation(s)
- José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | |
Collapse
|
40
|
HB-EGF-induced VEGF production and eNOS activation depend on both PI3 kinase and MAP kinase in HaCaT cells. J Dermatol Sci 2009; 55:170-8. [DOI: 10.1016/j.jdermsci.2009.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/21/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022]
|
41
|
Smith RS, Gao L, Bledsoe G, Chao L, Chao J. Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol 2009; 297:H1040-7. [PMID: 19592612 DOI: 10.1152/ajpheart.00404.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermedin (IMD) is a newly discovered peptide closely related to adrenomedullin. We recently reported that IMD gene delivery prevented kidney damage and capillary loss in a rat model of chronic renal injury. In this study, we evaluated the role of IMD in angiogenesis in the ischemic hindlimb. Adenovirus containing human IMD or control adenovirus (Ad.Null) was injected into the adductor muscles of rats immediately after femoral artery ligation. The expression of human IMD was detected in the skeletal muscle 5 days after the viral injection. Blood perfusion in the ischemic hindlimb was monitored by laser-Doppler imaging from 1 to 3 wk after gene delivery. When compared with animals receiving Ad.Null, those with IMD gene transfer resulted in a time-dependent increase in blood perfusion. IMD gene delivery also increased capillary and arteriole density in ischemic hindlimb, identified by anti-CD-31 and alpha-smooth muscle actin immunostaining. Angiogenesis promoted by IMD was confirmed by increased capillary formation and hemoglobin content in Matrigel implants containing IMD peptide in mice. In cultured endothelial cells, IMD induced cell migration and tube formation, and these effects were blocked by the inhibition of extracellular signal-regulated kinase (ERK), Akt, nitric oxide (NO) synthase (NOS), vascular endothelial growth factor receptor-2 (VEGFR-2), and anti-IMD-neutralizing antibody. IMD was found to increase the phosphorylation of ERK, Akt, and endothelial NOS, as well as to augment NO formation, VEGF, and VEGFR-2 synthesis. Taken together, these results indicate that IMD enhances angiogenesis through ERK, Akt/NOS/NO, and VEGF/VEGFR-2 signaling pathways and raises the potential of IMD gene or peptide administration in the modulation of endothelial dysfunction.
Collapse
Affiliation(s)
- Robert S Smith
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425-2211, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Hemoglobin and myoglobin are among the most extensively studied proteins, and nitrite is one of the most studied small molecules. Recently, multiple physiologic studies have surprisingly revealed that nitrite represents a biologic reservoir of NO that can regulate hypoxic vasodilation, cellular respiration, and signaling. These studies suggest a vital role for deoxyhemoglobin- and deoxymyoglobin-dependent nitrite reduction. Biophysical and chemical analysis of the nitrite-deoxyhemoglobin reaction has revealed unexpected chemistries between nitrite and deoxyhemoglobin that may contribute to and facilitate hypoxic NO generation and signaling. The first is that hemoglobin is an allosterically regulated nitrite reductase, such that oxygen binding increases the rate of nitrite conversion to NO, a process termed R-state catalysis. The second chemical property is oxidative denitrosylation, a process by which the NO formed in the deoxyhemoglobin-nitrite reaction that binds to other deoxyhemes can be released due to heme oxidation, releasing free NO. Third, the reaction undergoes a nitrite reductase/anhydrase redox cycle that catalyzes the anaerobic conversion of 2 molecules of nitrite into dinitrogen trioxide (N(2)O(3)), an uncharged molecule that may be exported from the erythrocyte. We will review these reactions in the biologic framework of hypoxic signaling in blood and the heart.
Collapse
|
43
|
Gavish L, Perez LS, Reissman P, Gertz SD. Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide‐stimulated macrophages: Implications for the prevention of aneurysm progression. Lasers Surg Med 2008; 40:371-8. [DOI: 10.1002/lsm.20635] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 2008; 7:318-34. [PMID: 18284659 PMCID: PMC2408640 DOI: 10.1111/j.1474-9726.2008.00380.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Age-associated changes in stem cell populations have been implicated in age-related diseases, including cancer. However, little is known about the underlying molecular mechanisms that link aging to the modulation of adult stem cell populations. Drosophila midgut is an excellent model system for the study of stem cell renewal and aging. Here we describe an age-related increase in the number and activity of intestinal stem cells (ISCs) and progenitor cells in Drosophila midgut. We determined that oxidative stress, induced by paraquat treatment or loss of catalase function, mimicked the changes associated with aging in the midgut. Furthermore, we discovered an age-related increase in the expression of PVF2, a Drosophila homologue of human PDGF/VEGF, which was associated with and required for the age-related changes in midgut ISCs and progenitor cell populations. Taken together, our findings suggest that PDGF/VEGF may play a central role in age-related changes in ISCs and progenitor cell populations, which may contribute to aging and the development of cancer stem cells.
Collapse
Affiliation(s)
- Na-Hyun Choi
- Department of Molecular Biology, College of Natural Science, Pusan National UniversityBusan 609-735, South Korea
| | - Joong-Gook Kim
- Department of Molecular Biology, College of Natural Science, Pusan National UniversityBusan 609-735, South Korea
| | - Dong-Jin Yang
- Department of Molecular Biology, College of Natural Science, Pusan National UniversityBusan 609-735, South Korea
| | - Young-Shin Kim
- Research Institute of Genetic Engineering, Pusan National UniversityBusan 609-735, South Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, College of Natural Science, Pusan National UniversityBusan 609-735, South Korea
| |
Collapse
|
45
|
Illi B, Russo CD, Colussi C, Rosati J, Pallaoro M, Spallotta F, Rotili D, Valente S, Ragone G, Martelli F, Biglioli P, Steinkuhler C, Gallinari P, Mai A, Capogrossi MC, Gaetano C. Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling. Circ Res 2008; 102:51-8. [DOI: 10.1161/circresaha.107.157305] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27–275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.
Collapse
Affiliation(s)
- Barbara Illi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Claudio Dello Russo
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Claudia Colussi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Jessica Rosati
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Michele Pallaoro
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Francesco Spallotta
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Dante Rotili
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Sergio Valente
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Gianluca Ragone
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Fabio Martelli
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Paolo Biglioli
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Christian Steinkuhler
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Paola Gallinari
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Antonello Mai
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Maurizio C. Capogrossi
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| | - Carlo Gaetano
- From the Laboratorio di Biologia Vascolare e Terapia Genica (B.I., F.S.), Centro Cardiologico Fondazione “I. Monzino”, IRCCS, Milan; Istituto di Ricerche di Biologia Molecolare I.R.B.M. P. Angeletti (C.D.R., C.S., P.G.), Via Pontina km 30 600, Pomezia, Rome; Laboratorio di Patologia Vascolare (C.C., J.R., G.R., F.M., M.C.C.), Istituto Dermopatico dell’ Immacolata-IRCCS, Rome; Università di Siena (M.P.), Siena; Dipartimento di Cardiochirurgia (P.B.), Centro Cardiologico Fondazione “I. Monzino”,
| |
Collapse
|
46
|
Kakinuma Y, Katare RG, Arikawa M, Muramoto K, Yamasaki F, Sato T. A HIF-1alpha-related gene involved in cell protection from hypoxia by suppression of mitochondrial function. FEBS Lett 2007; 582:332-40. [PMID: 18155669 DOI: 10.1016/j.febslet.2007.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 12/07/2007] [Accepted: 12/14/2007] [Indexed: 11/16/2022]
Abstract
Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Wang D, Lu S, Dong Z. Regulation of TGF-beta1 gene transcription in human prostate cancer cells by nitric oxide. Prostate 2007; 67:1825-33. [PMID: 17941092 DOI: 10.1002/pros.20669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Overexpression of transforming growth factor (TGF)-beta1 is associated with advanced prostate cancer. Our previous studies showed an inverse correlation between the expressions of TGF-beta1 and inducible nitric oxide synthase (iNOS) in prostatic tumors in mice. The purpose of this study was to investigate regulation of TGF-beta1 expression in human prostate cancer cells by nitric oxide (NO). METHODS Expression of TGF-beta1 in the three well-characterized lines of human prostate cancer cells (PC-3MM2, LNCaP, and DU145) was determined by using the enzyme-linked immunoabsorbance assay (ELISA), real-time reverse-transcriptase PCR (RT-PCR), nuclear run-on, and promoter activity analyses. RESULTS Expression of both TGF-beta1 protein and mRNA was inhibited in both dose- and time-dependent manners by NO donors sodium nitroprusside (SNP), S-nitroso-N-acetylpenicilamine (SNAP), S-nitrosoglutathione (GSNO), and (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexeneamide (NOR-1) and by transfection of iNOS. The inhibitory effects of SNP and iNOS on TGF-beta1 expression were reduced in cells treated with NO scavengers N-dithiocarboxysarcosine (DTCS), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), and hemoglobin, or with the iNOS inhibitor N-methyl-arginine (NMA). SNP downregulated the in vitro transcription of TGF-beta1 mRNA, inhibited TGF-beta1 promoter activity, but had no significant effects on TGF-beta1 mRNA stability. CONCLUSION These results show that NO downregulates TGF-beta1 expression in prostate cancer cells at transcription level by suppressing the de novo synthesis of TGF-beta1 mRNA.
Collapse
Affiliation(s)
- Daren Wang
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
48
|
Daghini E, Zhu XY, Versari D, Bentley MD, Napoli C, Lerman A, Lerman LO. Antioxidant vitamins induce angiogenesis in the normal pig kidney. Am J Physiol Renal Physiol 2007; 293:F371-81. [PMID: 17429028 DOI: 10.1152/ajprenal.00475.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of chronic supplementation with antioxidant vitamins on angiogenesis are controversial. The aim of the present study was to evaluate in kidneys of normal pigs the effect of chronic supplementation with vitamins E and C, at doses that are effective in reducing oxidative stress and attenuating angiogenesis under pathological conditions. Domestic pigs were randomized to receive a 12-wk normal diet without ( n = 6) or with antioxidant vitamins supplementation (1g/day vitamin C, 100 IU·kg−1·day−1 vitamin E; n = 6). Electron beam computed tomography (CT) was used to evaluate renal cortical vascular function in vivo, and micro-CT was to assess the spatial density and average diameter of cortical microvessels (diameter <500 μm) ex vivo. Oxidative stress and expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α were evaluated in renal tissue. The effects of increasing concentrations of the same vitamins on redox status and angiogenesis were also evaluated in human umbilical vascular endothelial cells (HUVEC). Compared with normal pigs, the density of cortical transmural microvessels was significantly greater in vitamin-supplemented pigs (149.0 ± 11.7 vs. 333.8 ± 48.1 vessel/cm2, P < 0.05), whereas the cortical perfusion response to ACh was impaired. This was accompanied by a significant increase in tissue oxidative stress and levels of VEGF and HIF-1α. A low dose of antioxidant decreased, whereas a high dose increased, HUVEC oxidative stress and angiogenesis, which was partly mediated by hydrogen peroxide. Antioxidant vitamin supplementation can increase tissue oxidative redox and microvascular proliferation in the normal kidney, probably due to a biphasic effect that depends on basal redox balance.
Collapse
Affiliation(s)
- Elena Daghini
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang J, Shang F, Jiang R, Liu L, Wang S, Hou J, Huan M, Mei Q. Nitric Oxide-Donating Genistein Prodrug: Design, Synthesis, and Bioactivity on MC3T3-E1 Cells. J Pharmacol Sci 2007; 104:82-9. [PMID: 17510526 DOI: 10.1254/jphs.fp0061549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
To find a more potent alternative with less estrogen-related side effects for hormone replacement therapy, we designed and synthesized a nitric oxide (NO)-releasing prodrug of genistein, named NO-donating genistein (NO-G). The characteristics of NO-G were determined by melting point, NMR spectroscopy, and mass spectrometric analysis. HPLC has been used to test the new prodrug's stability. The releasing capacity of NO-G was tested by Griess reagent in vitro. The bioactivities of NO-G on proliferation, differentiation, and mineralization of the osteoblastic cell line MC3T3-E1 were determined by MTT assay, flow cytometric analysis, measurement of the alkaline phosphatase (ALP) activity and the secreted osteocalcin (OCN), and Alizarin Red-S staining. The product showed 1H NMR spectra and relative molecular mass in agreement with the designed structure, and it was stable in buffer solution. NO-G continually released low level NO within 5 h in MC3T3-E1 cells. NO-G caused a significant elevation of cell growth, ALP activity, and OCN secretion in both dose- and time-dependent manner. Furthermore, the Alizarin Red-S staining showed that NO-G promoted mineralization of MC3T3-E1 cells. These effects were all significantly greater than those of its parent drugs. The results suggested that NO-G might be a novel drug for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jiepin Wang
- Department of Pharmacology, Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, and Department of Cardiology, Tangdu Hospital, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|