1
|
Zhang T, Tong S, Zhang L, Wei S, Wang X, He Z, Huang H, Liao Y, Tan J, Chen Y, Xu Y, Wang D, Wei J. A novel modified peptide derived from tilapia piscidin 4 with improved cytotoxicity, stability and antibacterial activity against fish pathogens and its underlying antibacterial mechanism. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110309. [PMID: 40216317 DOI: 10.1016/j.fsi.2025.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Tilapia piscidin 4 (TP4) is an amphiphilic cationic antimicrobial peptide derived from Nile tilapia (Oreochromis niloticus), known for its broad-spectrum antimicrobial activity, potent anti-tumor effects, and immunomodulatory property. However, its significant toxicity and poor stability pose major challenges for practical applications. In this study, the TP4 sequence was modified by deleting nine amino acids from the N-terminal region and substituting glycine at the 13th position with cysteine, resulting in a modified peptide designated TP4-16G4C (FSACKAIHRLIRRRRR). The dimer of TP4-16G4C (bis-TP4-16G4C) was obtained by facilitating the formation of disulfide bonds through the oxidation of cysteine. Subsequently, their antibacterial activity, cytotoxicity, stability, and underlying mechanisms were investigated. TP4-16G4C and its dimer exhibited excellent antibacterial activity against a range of fish pathogens, particularly the dimer in vivo. Further study indicated that bis-TP4-16G4C exhibited significantly reduced toxicity toward fish red blood cells and other cell lines, alongside improved stability against proteases and serum, compared to the parental peptide TP4. Mechanistically, bis-TP4-16G4C disrupted the integrity of the bacterial membrane, leading to the leakage of cellular contents; additionally, it interacted with lipopolysaccharides, bound to bacterial genomic DNA, and effectively inhibited bacterial biofilm formation, similar to the action of TP4. In summary, the modified and dimerized antimicrobial peptide bis-TP4-16G4C exhibits reduced toxicity, enhanced stability, and superior antimicrobial activity in vivo, suggesting its greater suitability for practical applications in aquaculture and other fields compared to its parental peptide.
Collapse
Affiliation(s)
- Tingting Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Sheng Tong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Liping Zhang
- Chongqing Aquatic Animal Disease Prevention and Control Center, Chongqing Fisheries Technical Extension Station, Chongqing, 401122, China
| | - Shuhan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiangxuan Wang
- Sichuan Datang International Ganzi Hydropower Development Co.,Ltd, Sicuan, 626002, China
| | - Zhaolin He
- Sichuan Datang International Ganzi Hydropower Development Co.,Ltd, Sicuan, 626002, China
| | - Hui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University, Chongqing, 402460, China
| | - Yuhua Liao
- Chongqing Aquatic Animal Disease Prevention and Control Center, Chongqing Fisheries Technical Extension Station, Chongqing, 401122, China
| | - Jiaxin Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yongxun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yaobo Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Hu H, Shao Y, Yang L, Wang X, Li C. Molecular characterization and immunological functions of the antimicrobial peptide theromacin from razor clam Sinonovacula constricta. Int J Biol Macromol 2025; 308:142312. [PMID: 40139596 DOI: 10.1016/j.ijbiomac.2025.142312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Antimicrobial peptides are natural immune effector molecules that protect the host from pathogenic microorganisms and play crucial roles in the innate immune system. Herein, the functions of theromacin from the razor clam Sinonovacula constricta (ScTM) were identified. Multiple sequence alignment revealed that the structure of ScTM was similar to that of a theromacin homolog with a signal peptide and conserved Macin domain. Tissue distribution analysis indicated that ScTM mRNA was expressed in all tested tissues. Moreover, ScTM transcripts were upregulated in hemocytes and hepatopancreas after challenge with Vibrio parahaemolyticus. Importantly, interfering with ScTM expression through siRNA transfection reduced hemocyte clearance ability and razor clam survival rates. Further functional analysis indicated that recombinant ScTM protein possessed considerable binding abilities to pathogens and PAMPs, showing the strongest binding ability to LPS. Minimum inhibitory concentration assays revealed that rScTm exerted stronger antimicrobial activities against Gram-negative bacteria than against Gram-positive bacteria. Moreover, rScTM exhibited antimicrobial activity against V. parahaemolyticus by increasing extracellular membrane permeability, impairing inner membrane integrity, and binding to genomic DNA, leading to cytoplasmic efflux and bacterial death. All of the results of this work provide a new perspective for the development of an effective strategy to control razor clam bacterial infection.
Collapse
Affiliation(s)
- Haoge Hu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China.
| | - Lei Yang
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Zheng L, Zafir M, Zhang Z, Ma Y, Yang F, Wang X, Xue X, Wang C, Li P, Liu P, El-Gohary FA, Zhao X, Xue H. Antimicrobial peptide DiPGLa-H exhibits the most outstanding anti-infective activity among the PGLa variants based on a systematic comparison. Appl Environ Microbiol 2025; 91:e0206224. [PMID: 39907455 PMCID: PMC11921344 DOI: 10.1128/aem.02062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
The escalating threat of antibiotic-resistant bacteria has heightened global interest in antimicrobial peptides as promising candidates due to their potent broad-spectrum activity and low likelihood of resistance development. Despite this potential, these peptides face challenges, including modest bactericidal efficacy, insufficient safety assessment, and expensive production. In this study, we systematically evaluated a panel of nine AMP variants of PGLa, a natural AMP derived from Xenopus laevis. All peptides retained α-helical structures and exhibited high biocompatibility, with hemolytic concentrations above 128 µg/mL and macrophage survival rates over 80%. Among them, a tandem-repeat variant DiPGLa-H demonstrated the most potent antimicrobial activity, with a therapeutic index of 35.94, against key pathogens such as Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. A DAMP4-DiPGLa-H fusion protein was engineered to mitigate potential host toxicity, and we achieved high-purity biosynthesis of DiPGLa-H by employing a combination of acid cleavage and non-chromatographic purification, with yields reaching 21.2 mg/mL. The biosynthesized DiPGLa-H exhibited robust stability across a wide pH range and high temperatures, effectively disrupting biofilms formed by multiple pathogenic species. Mechanistically, DiPGLa-H disrupts both the inner and outer bacterial membranes, causing cell shrinkage, vesiculation, and intracellular leakage. In vivo, DiPGLa-H significantly improved survival rates in mice with induced peritoneal inflammation by 31%-38% while reducing bacterial burdens in key organs by 100-fold to 1,000-fold. These findings unearthed DiPGLa-H as a highly promising AMP. Moreover, the successful development of a cost-effective, high-purity biosynthesis method for DiPGLa-H, utilizing DAMP4 fusion technology, enables its low-cost application in combating multidrug-resistant pathogens. IMPORTANCE AMPs are innate defense molecules in animals, plants, and microorganisms. Notably, one-third of these peptides in databases originate from amphibians. We discovered that naturally weak AMPs from this source can be enhanced through artificial design. Specifically, variant DiPGLa-H showed superior germicidal efficacy and cell selectivity both in vivo and in vitro and can be biosynthesized and purified by combining DAMP4 fusion protein strategy and a simple non-chromatographic method that facilitates large-scale production. Our focus is on understanding the structure-activity relationships of PGLa. Furthermore, the development of a non-chromatographic purification technique for AMPs offers a viable pathway for the large-scale production of these essential compounds.
Collapse
Affiliation(s)
- Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Muhammad Zafir
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Ziqian Zhang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Yadong Ma
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Fengyi Yang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Xiaokun Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Xuemei Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Chen Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Ping Li
- Olymbel Bioengineering Institute, Zhangye, Gansu, China
| | - Pilong Liu
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Huping Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Chen R, You Y, Liu Y, Sun X, Ma T, Lao X, Zheng H. Deep-Learning-Based Approaches for Rational Design of Stapled Peptides With High Antimicrobial Activity and Stability. Microb Biotechnol 2025; 18:e70121. [PMID: 40042163 PMCID: PMC11881016 DOI: 10.1111/1751-7915.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 05/12/2025] Open
Abstract
Antimicrobial peptides (AMPs) face stability and toxicity challenges in clinical use. Stapled modification enhances their stability and effectiveness, but its application in peptide design is rarely reported. This study built ten prediction models for stapled AMPs using deep and machine learning, tested their accuracy with an independent data set and wet lab experiments, and characterised stapled loop structures using structural, sequence and amino acid descriptors. AlphaFold improved stapled peptide structure prediction. The support vector machine model performed best, while two deep learning models achieved the highest accuracy of 1.0 on an external test set. Designed cysteine- and lysine-stapled peptides inhibited various bacteria with low concentrations and showed good serum stability and low haemolytic activity. This study highlights the potential of the deep learning method in peptide modification and design.
Collapse
Affiliation(s)
- Ruole Chen
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yuhao You
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yanchao Liu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xin Sun
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Tianyue Ma
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xingzhen Lao
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Heng Zheng
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Ye Z, Xu Z, Ouyang J, Shi W, Li S, Wang X, Lu B, Wang K, Wang Y. Improving the Stability and Anti-Infective Activity of Sea Turtle AMPs Using Multiple Structural Modification Strategies. J Med Chem 2024; 67:22104-22123. [PMID: 39636182 DOI: 10.1021/acs.jmedchem.4c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Antimicrobial peptides (AMPs) are regarded as promising candidates for combating antimicrobial resistance. Previously we identified an AMP named Cm-CATH2 from the green sea turtle, which exhibited potent antibacterial activity and attractive potential in application. However, natural AMPs including Cm-CATH2 frequently suffer from structural instability and sensitivity to physiological conditions, limiting their effectiveness. Herein, we explored various strategies to enhance the efficacy and stability of Cm-CATH2, including peptide truncation, non-natural amino acid substitutions, disulfide bond-based cyclization, and stapled peptide techniques. The results demonstrated that the truncated NCM4 significantly improved the antimicrobial capability of Cm-CATH2 while also enhancing its anti-inflammatory and antibiofilm activities with minimal cytotoxicity. Further ornithine-substituted peptide oNCM markedly enhanced the stability of NCM4 without compromising its antimicrobial efficacy. This study successfully designed a lead peptide oNCM with significant development potential, while providing valuable insights into the advantages and limitations associated with diverse strategies for enhancing the stability of AMPs.
Collapse
Affiliation(s)
- Zifan Ye
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhouye Xu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenzhuang Shi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuangyu Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Binjuan Lu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yipeng Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
García-Vela S, Cournoyer A, Sánchez-Reinoso Z, Bazinet L. Antimicrobial Peptides from Porcine Blood Cruor Hydrolysates as a Promising Source of Antifungal Activity. Foods 2024; 14:8. [PMID: 39796298 PMCID: PMC11719724 DOI: 10.3390/foods14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance. The objective of this study was to evaluate the antimicrobial activity of potential AMPs previously identified from porcine cruor hydrolysates. To this end, a total of sixteen peptides were chemically synthesized and their antimicrobial activities (antibacterial, anti-mold, and anti-yeast) were evaluated using microtitration and agar well diffusion methods against a wide range of microorganisms. Five new peptide sequences demonstrated antifungal activity, with Pep5 (FQKVVAGVANALAHKYH), an alpha-helix peptide, exhibiting the most promising results. Pep5 demonstrated efficacy against nine of the eleven fungal isolates, exhibiting low minimum inhibitory concentrations (MICs) and a fungicidal effect against key spoilage fungi (Rhodotorula mucilaginosa, Debaryomyces hansenii, Candida guilliermondii, Paecilomyces spp., Eurotium rubrum, Mucor racemosus, Aspergillus versicolor, Penicillium commune, and P. chrysogenum). These findings illustrate the potential of porcine blood hydrolysates as a source of AMPs, particularly antifungal peptides, which are less known and less studied than the antibacterial ones. Among the tested sequences, Pep5 exhibited the most promising characteristics, including broad-spectrum activity, low MICs, and a fungicidal effect. It is, therefore, a promising candidate for further research and for potential applications in the porcine industry and beyond.
Collapse
Affiliation(s)
- Sara García-Vela
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada; (S.G.-V.); (A.C.); (Z.S.-R.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Aurore Cournoyer
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada; (S.G.-V.); (A.C.); (Z.S.-R.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Zain Sánchez-Reinoso
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada; (S.G.-V.); (A.C.); (Z.S.-R.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada; (S.G.-V.); (A.C.); (Z.S.-R.)
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Coelho AA, Barbosa LCDS, da Costa AC, Kipnis A, Junqueira-Kipnis AP. Novel Synthetic Peptide Agelaia-12 Has Improved Activity Against Mycobacterium abscessus Complex. Pathogens 2024; 13:994. [PMID: 39599547 PMCID: PMC11597844 DOI: 10.3390/pathogens13110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Fast-growing mycobacteria cause difficult-to-treat infections due to their high intrinsic resistance to antibiotics as well as disinfectant agents. Mycobacterium abscessus complex (MAC) is the main cause of nontuberculous mycobacteria diseases. In this work, we evaluated the activity of the novel synthetic antimicrobial peptide, Agelaia-12, against Mycobacterium abscessus and M. massiliense. Agelaia-12 showed a minimum inhibitory concentration (MIC) of 25 μM detected against M. abscessus and M. massiliense with no cytotoxicity. The scanning electronic microscopy analysis of mycobacterial treated with Agelaia-12 demonstrated the presence of filamentous structures and aggregation of the cells. Congo red binding assay of M. abscessus exhibited altered dye accumulation after treatment with Agelaia-12. Treatment of M. abscessus- or M. massiliense-infected murine macrophages with Agelaia-12 decreased the mycobacterial load by 92% for the tested strains. Additionally, IFN-y KO mice infected with M. abscessus or M. massiliense and treated with Agelaia-12 showed a 98% reduction in lung bacterial load. Thus, the synthetic peptide Agelaia-12 may be a promising biomolecule for the treatment of mycobacteriosis, and its structural properties may serve as a foundational model for the design and development of novel pharmaceutical agents aimed at combating this disease.
Collapse
Affiliation(s)
- Arthur Alves Coelho
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Lília Cristina de Souza Barbosa
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Adeliane Castro da Costa
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
- Health Sciences Academic Unit, Federal University of Jataí, Jatái 75801-615, GO, Brazil
| | - André Kipnis
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia 74605-050, GO, Brazil; (A.A.C.); (L.C.d.S.B.); (A.C.d.C.); (A.K.)
| |
Collapse
|
8
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
9
|
Chu D, Lan J, Liang L, Xia K, Li L, Yang L, Liu H, Zhang T. The antibacterial activity of a novel highly thermostable endolysin, LysKP213, against Gram-negative pathogens is enhanced when combined with outer membrane permeabilizing agents. Front Microbiol 2024; 15:1454618. [PMID: 39439944 PMCID: PMC11493673 DOI: 10.3389/fmicb.2024.1454618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Phages and phage-encoded lytic enzymes are promising antimicrobial agents. In this study, we report the isolation and identification of bacteriophage KP2025 from Klebsiella pneumoniae. Bioinformatics analysis of KP2025 revealed a putative endolysin, LysKP213, containing a T4-like_lys domain. Purified LysKP213 was found to be highly thermostable, retaining approximately 44.4% of its lytic activity after 20 h of incubation at 95°C, and approximately 57.5% residual activity after 30 min at 121°C. Furthermore, when administered in combination with polymyxin B or fused at the N-terminus with the antimicrobial peptide cecropin A (CecA), LysKP213 exhibited increased antibacterial activity against Gram-negative pathogens, including K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli, both in vitro and in vivo. These results indicated that LysKP213 is a highly thermostable endolysin that, when combined with or fused with an outer membrane permeabilizer, has enhanced antibacterial activity and is a candidate agent for the control of infections by Gram-negative pathogens.
Collapse
Affiliation(s)
- Dingjian Chu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Lu Liang
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Kaide Xia
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongmei Liu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Zhao Y, Hao L, Meng Y, Li L, Wang W, Zhao R, Zhao P, Zhang J, Wang M, Ren J, Zhang L, Yin X, Xia X. Screening and heterologous expression of an antimicrobial peptide SCAK33 with broad-spectrum antimicrobial activity resourced from sea cucumber proteome. Int Microbiol 2024:10.1007/s10123-024-00595-7. [PMID: 39316254 DOI: 10.1007/s10123-024-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Antimicrobial peptides (AMPs) are a family of short defense proteins that are naturally produced by all organisms and have great potential as effective substitutes for small-molecule antibiotics. The present study aims to excavate AMPs from sea cucumbers and achieve their heterologous expression in prokaryotic Escherichia coli. Using MytC as a probe, a cysteine-stabilized peptide SCAK33 with broad-spectrum antimicrobial activity was discovered from the proteome of Apostichopus japonicas. The SCAK33 showed inhibitory effects on both gram positive and gram negative bacteria with MICs of 3-28 μM, and without significant hemolysis activity in rat blood erythrocyte. Especially, it exhibited good antimicrobial activity against Bacillus megaterium, B. subtilis, and Vibrio parahaemolyticus with the MIC of 3, 7, and 7 μM, respectively. After observation by scanning electronic microscopy (SEM) and confocal laser scanning microscope (CLSM), it was found that the cell membrane of bacteria was severely damaged. Furthermore, the recombinant SCAK33 (reSCAK33) was heterologously expressed by fusion with SUMO tag in E. coli BL21(DE3), and the protein yield reached 70 mg/L. The research will supplement the existing quantity of sea cucumber AMPs and provide data support for rapid mining and biological preparation of sea cucumber AMPs.
Collapse
Affiliation(s)
- Yanqiu Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lujiang Hao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Longfen Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Rui Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jiyuan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Xuekui Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
11
|
Chen J, Zhang CY, Wang Y, Zhang L, Seah RWX, Ma L, Ding GH. Discovery of Ll-CATH: a novel cathelicidin from the Chong'an Moustache Toad (Leptobrachium liui) with antibacterial and immunomodulatory activity. BMC Vet Res 2024; 20:343. [PMID: 39095814 PMCID: PMC11295328 DOI: 10.1186/s12917-024-04202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cathelicidins are vital antimicrobial peptides expressed in diverse vertebrates, crucial for immunity. Despite being a new field, amphibian cathelicidin research holds promise. RESULTS We isolated the cDNA sequence of the cathelicidin (Ll-CATH) gene from the liver transcriptome of the Chong'an Moustache Toad (Leptobrachium liui). We confirmed the authenticity of the cDNA sequence by rapid amplification of cDNA ends and reverse transcription PCR, and obtained the Ll-CATH amino acid sequence using the Open Reading Frame Finder, an online bioinformatics tool. Its translated protein contained a cathelin domain, signal peptide, and mature peptide, confirmed by amino acid sequence. The comparative analysis showed that the mature peptides were variable between the amphibian species, while the cathelin domain was conserved. The concentration of Ll-CATH protein and the expression of its gene varied in the tissues, with the spleen showing the highest levels. The expression levels of Ll-CATH in different tissues of toads was significantly increased post infection with Aeromonas hydrophila. Chemically synthesized Ll-CATH effectively combated Proteus mirabilis, Staphylococcus epidermidis, Vibrio harveyi, V. parahaemolyticus, and V. vulnificus; disrupted the membrane of V. harveyi, hydrolyzed its DNA. Ll-CATH induced chemotaxis and modulated the expression of pro-inflammatory cytokine genes in RAW264.7 macrophages. CONCLUSIONS This study unveiled the antibacterial and immunomodulatory potential of amphibian cathelicidin, implying its efficacy against infections. Ll-CATH characterization expands our knowledge, emphasizing its in a bacterial infection therapy.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Chi-Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou , Zhejiang, 311121, China
| | - Yu Wang
- Administration Center of Zhejiang Jiulongshan National Nature Reserve, Suichang, Zhejiang, 323300, China
| | - Le Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore, 117558, Singapore
| | - Li Ma
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
12
|
Bala Subramaniyan S, Karnan Singaravelu D, Raman T, Ameen F, Veerappan A. Antimicrobial lipids loaded on lectin display reduced MIC, curtail pathogenesis and protect zebrafish from reinfection by immunomodulation. Microb Pathog 2024; 193:106744. [PMID: 38876321 DOI: 10.1016/j.micpath.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic resistance and re-emergence of highly resistant pathogens is a grave concern everywhere and this has consequences for all kinds of human activities. Herein, we showed that N-palmitoylethanolamine-derived cationic lipid (cN16E) had a lower minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria when it was loaded with Butea monosperma seed lectin (BMSL). The analysis using lectin-FITC conjugate labelling indicated that the improved antibacterial activity of BMSL conjugation was due to bacterial cell surface glycan recognition. Live and dead staining experiments revealed that the BMSL-cN16E conjugate (BcN16E) exerts antibacterial activity by damaging the bacterial membrane. BcN16E antimicrobial activity was demonstrated using an infected zebrafish animal model because humans have 70 % genetic similarity to zebrafish. BcN16E therapeutic potential was established successfully by rescuing fish infected with uropathogenic Escherichia coli (UPEC). Remarkably, the rescued infected fish treated with BcN16E prevented reinfection without further therapy, indicating BcN16E immunomodulatory potential. Thus, the study examined the expression of immune-related genes, including tnfα, ifnγ, il-1β, il-4, il-10, tlr-2, etc. There was a significant elevation in the expression of all these genes compared to control and fish treated with BMSL or cN16E alone. Interestingly, when the rescued zebrafish were reinfected with the same pathogen, the levels of expression of these genes were many folds higher than seen earlier. Radial immune diffusion analyses (RIA) using zebrafish serum revealed antibody production during the initial infection and treatment. Interestingly, reinfected fish had significant immunoprecipitation in RIA, a feature absent in the groups treated with cN16E, BMSL, and control. These results clearly show that the BcN16E complex not only rescued infected zebrafish but also conferred long-lasting protection in terms of immunomodulation that protects against multiple reinfections. The findings support that BcN16E has immense potential as a novel immunostimulant for various biomedical applications.
Collapse
Affiliation(s)
- Siva Bala Subramaniyan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Dharshini Karnan Singaravelu
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
13
|
Hao S, Shi W, Chen L, Kong T, Wang B, Chen S, Guo X. CATH-2-derived antimicrobial peptide inhibits multidrug-resistant Escherichia coli infection in chickens. Front Cell Infect Microbiol 2024; 14:1390934. [PMID: 38812753 PMCID: PMC11133627 DOI: 10.3389/fcimb.2024.1390934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 μg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 μg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.
Collapse
Affiliation(s)
- Shihao Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wenhui Shi
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liujun Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Tianyou Kong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaomin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
14
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
15
|
Crow RS, Shaw CG, Grayfer L, Smith LC. Recombinant SpTransformer proteins are functionally diverse for binding and phagocytosis by three subtypes of sea urchin phagocytes. Front Immunol 2024; 15:1372904. [PMID: 38742116 PMCID: PMC11089230 DOI: 10.3389/fimmu.2024.1372904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.
Collapse
Affiliation(s)
| | | | | | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
16
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
17
|
Hou Y, Lu J, Yi M, Cui X, Cao L, Shi X, Wang P, Zhou N, Zhang P, Wang C, He H, Che D. Development of an environmentally sensitive fluorescent peptide probe for MrgX2 and application in ligand screening of peptide antibiotics. J Control Release 2024; 367:158-166. [PMID: 38253205 DOI: 10.1016/j.jconrel.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Mast cells (MCs) are primary effector cells involved in immediate allergic reactions. Mas-related G protein-coupled receptor-X2 (MrgX2), which is highly expressed on MCs, is involved in receptor-mediated drug-induced pseudo-anaphylaxis. Many small-molecule drugs and peptides activate MrgX2, resulting in MC activation and allergic reactions. Although small-molecule drugs can be identified using existing MrgX2 ligand-screening systems, there is still a lack of effective means to screen peptide ligands. In this study, to screen for peptide drugs, the MrgX2 high-affinity endogenous peptide ligand substance P (SP) was used as a recognition group to design a fluorescent peptide probe. Spectroscopic properties and fluorescence imaging of the probe were assessed. The probe was then used to screen for MrgX2 agonists among peptide antibiotics. In addition, the effects of peptide antibiotics on MrgX2 activation were investigated in vivo and in vitro. The environment-sensitive property of the probe was revealed by the dramatic increase in fluorescence intensity after binding to the hydrophobic ligand-binding domain of MrgX2. Based on these characteristics, it can be used for in situ selective visualization of MrgX2 in live cells. The probe was used to screen ten types of peptide antibiotics, and we found that caspofungin and bacitracin could compete with the probe and are hence potential ligands of MrgX2. Pharmacological experiments confirmed this hypothesis; caspofungin and bacitracin activated MCs via MrgX2 in vitro and induced local anaphylaxis in mice. Our research can be expected to provide new ideas for screening MrgX2 peptide ligands and reveal the mechanisms of adverse reactions caused by peptide drugs, thereby laying the foundation for improving their clinical safety.
Collapse
Affiliation(s)
- Yajing Hou
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Jiayu Lu
- School of Pharmacy, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi,China
| | - Mengyao Yi
- School of Pharmacy, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi,China
| | - Xia Cui
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Lu Cao
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Xianpeng Shi
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Nan Zhou
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, 710068 Xi'an, Shaanxi, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi,China
| | - Huaizhen He
- School of Pharmacy, Xi'an Jiaotong University, 710004 Xi'an, Shaanxi,China.
| | - Delu Che
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University Second Affiliated Hospital, 710000 Xi'an, Shaanxi, China..
| |
Collapse
|
18
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
20
|
Hilpert K, Munshi T, López-Pérez PM, Sequeira-Garcia J, Bull TJ. Redefining Peptide 14D: Substitutional Analysis for Accelerated TB Diagnosis and Enhanced Activity against Mycobacterium tuberculosis. Microorganisms 2024; 12:177. [PMID: 38258003 PMCID: PMC10819809 DOI: 10.3390/microorganisms12010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a predominant cause of mortality, especially in low- and middle-income nations. Recently, antimicrobial peptides have been discovered that at low concentrations could stimulate the growth of M. tuberculosis (hormetic response). In this study, such a peptide was used to investigate the effects on the time to positivity (TTP). A systematic substitution analysis of peptide 14D was synthesized using Spot synthesis technology, resulting in 171 novel peptides. Our findings revealed a spectrum of interactions, with some peptides accelerating M. tuberculosis growth, potentially aiding in faster diagnostics, while others exhibited inhibitory effects. Notably, peptide NH2-wkivfiwrr-CONH2 significantly reduced the TTP by 25 h compared to the wild-type peptide 14D, highlighting its potential in improving TB diagnostics by culture. Several peptides demonstrated potent antimycobacterial activity, with a minimum inhibitory concentration (MIC) of 20 µg/mL against H37Rv and a multidrug-resistant M. tuberculosis strain. Additionally, for two peptides, a strongly diminished formation of cord-like structures was observed, which is indicative of reduced virulence and transmission potential. This study underscores the multifaceted roles of antimicrobial peptides in TB management, from enhancing diagnostic efficiency to offering therapeutic avenues against M. tuberculosis.
Collapse
Affiliation(s)
- Kai Hilpert
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Tulika Munshi
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | - Tim J. Bull
- Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
21
|
Zhou N, An T, Zhang Y, Zhao G, Wei C, Shen X, Li F, Wang X. Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression. Protein Pept Lett 2024; 31:141-152. [PMID: 38243926 DOI: 10.2174/0109298665276722231212053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system. RESULTS Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.
Collapse
Affiliation(s)
- Nana Zhou
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Tai An
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Yuan Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Guomiao Zhao
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Chao Wei
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xuemei Shen
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Fan Li
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiaoyan Wang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| |
Collapse
|
22
|
Meier S, Ridgway ZM, Picciano AL, Caputo GA. Impacts of Hydrophobic Mismatch on Antimicrobial Peptide Efficacy and Bilayer Permeabilization. Antibiotics (Basel) 2023; 12:1624. [PMID: 37998826 PMCID: PMC10669323 DOI: 10.3390/antibiotics12111624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance continues to be a major threat to world health, with the continued emergence of resistant bacterial strains. Antimicrobial peptides have emerged as an attractive option for the development of novel antimicrobial compounds in part due to their ubiquity in nature and the general lack of resistance development to this class of molecules. In this work, we analyzed the antimicrobial peptide C18G and several truncated forms for efficacy and the underlying mechanistic effects of the sequence truncation. The peptides were screened for antimicrobial efficacy against several standard laboratory strains, and further analyzed using fluorescence spectroscopy to evaluate binding to model lipid membranes and bilayer disruption. The results show a clear correlation between the length of the peptide and the antimicrobial efficacy. Furthermore, there is a correlation between peptide length and the hydrophobic thickness of the bilayer, indicating that hydrophobic mismatch is likely a contributing factor to the loss of efficacy in shorter peptides.
Collapse
Affiliation(s)
- Steven Meier
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Zachary M. Ridgway
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Angela L. Picciano
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
23
|
Han Z, Feng D, Wang W, Wang Y, Cheng M, Yang H, Liu Y. Influence of Fatty Acid Modification on the Anticancer Activity of the Antimicrobial Peptide Figainin 1. ACS OMEGA 2023; 8:41876-41884. [PMID: 37970064 PMCID: PMC10633881 DOI: 10.1021/acsomega.3c06806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Antimicrobial peptides derived from the skin secretions of amphibians have made important progress in tumor therapy due to their unique mechanism of destroying cell membranes. Figainin 1 (F1) is an 18-amino acid antimicrobial peptide from the skin secretions of Boana raniceps frogs. In a previous study, F1 was shown to inhibit cancer cell proliferation. F1 is composed entirely of natural amino acids; therefore, it is easily degraded by a variety of proteases, resulting in poor stability and a short half-life. In the present study, we used a fatty acid modification strategy to improve the stability of Figainin 1. Among the 8 peptides synthesized, A-10 showed the strongest antiproliferative activity against K562 cells and the other four tumor cell lines, and its stability against serum and proteinase K was improved compared with F1. We found that A-10 works through two mechanisms, cell membrane destruction and apoptosis, and can arrest the cell cycle in the G0/G1 phase. Moreover, A-10 exhibited self-assembly behavior. Overall, it is necessary to select a fatty acid with a suitable length for modification to improve the stability and antiproliferative activity of antimicrobial peptides. This study provides a good reference for the development of antimicrobial peptides as effective anticancer compounds.
Collapse
Affiliation(s)
- Zhenbin Han
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Feng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxuan Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
24
|
Huang Y, Wu B, Yang Y, Li W, Han F. Cloning, subcellular localization and antibacterial functional analysis of NK-lysin in yellow drum (Nibea albiflora). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109061. [PMID: 37683807 DOI: 10.1016/j.fsi.2023.109061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Vibrio harveyi is the primary pathogenic bacteria affecting Nibea albiflora aquaculture. In a previous phase, our laboratory intentionally exposed N. albiflora to V. harveyi and analyzed the outcomes using a combination of genome-wide association study (GWAS) and RNA-seq. The results revealed that the antimicrobial peptide NK-lysin (YdNkl-1) was a candidate gene for resistance to V. harveyi disease in N. albiflora. To investigate the role of the antimicrobial peptide NK-lysin in N. albiflora's antimicrobial immunity, we screened the YdNkl-1 gene from the transcriptome database. The full-length cDNA of YdNkl-1 gene is 508 bp, with an open reading frame (ORF) of 477 bp, encoding 158 amino acids. The deduced amino acid sequence of YdNkl-1 contains a signal peptide (1st-22nd amino acids) and a Saposin B domain (50th-124th amino acids), akin to mammalian NK-lysin. Phylogenetic tree analysis confirmed that the NK-lysin of teleost fish clustered into a single species, and YdNkl-1 was most closely related to Larimichthys crocea. Subcellular localization showed that YdNkl-1 was distributed in cytoplasm and nucleus of yellow drum kidney cells. Furthermore, YdNkl-1 mRNA transcripts were significantly up-regulated in the skin, gill, intestine, head-kidney, liver, and spleen after V. harveyi infection, suggesting a critical role in N. albiflora's defense against V. harveyi infection. Additionally, we purified and observed the YdNkl-1 protein, which exhibited a potent membrane-disrupting effect on V. harveyi, Pseudomonas plecoglossicida, Vibrio parahaemolyticus, Escherichia coli and Bacillus subtilis. These findings underscore the significance of NK-lysin in N. albiflora's resistance to V. harveyi infection and provide new insights into the crucial role of NK-lysin in the innate immunity of teleost fishes.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| |
Collapse
|
25
|
Liu H, Wang L, Yao C. Optimization of Antibacterial Activity and Biosafety through Ultrashort Peptide/Cyclodextrin Inclusion Complexes. Int J Mol Sci 2023; 24:14801. [PMID: 37834247 PMCID: PMC10573328 DOI: 10.3390/ijms241914801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)-modified tripeptide RWR (LA-RWR) with β-cyclodextrin (β-CD) to form nano-inclusion complexes. The free cationic tripeptide region in the nano-inclusion complex provided high antibacterial activity, while β-CD enhanced its biocompatibility. Compared with peptides (LA-RWR, LA-RWR-phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram-negative/Gram-positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano-inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non-included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.
Collapse
Affiliation(s)
| | | | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; (H.L.); (L.W.)
| |
Collapse
|
26
|
Gao J, Dong J, Sun Z, Wang T, Guan Y, Sun Y, Qin G, Zhang X, Zhen Y. Effects of antimicrobial peptide and tributyrin on fecal microflora and blood indices of female calves. Food Sci Nutr 2023; 11:5248-5257. [PMID: 37701190 PMCID: PMC10494653 DOI: 10.1002/fsn3.3483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
This study evaluated the effects of antimicrobial peptide (AMP) and tributyrin (TB) on dairy calves in terms of growth performance, immunity, oxidative stress, and intestinal microflora. A total of 40 female calves were divided into four treatment groups (n = 10): basal diet +0.015% essential oil, basal diet +0.03% AMP, basal diet +0.15% TB, and basal diet +0.03% AMP + 0.15% TB. AMP and TB supplementation increased the average daily gain (ADG) and weaning weight, while reducing diarrhea occurrence. Additionally, AMP and TB supplementation reduced the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), while increasing superoxide dismutase (SOD) levels and serum immunoglobulin M (IgM) levels. However, the combined use of AMP and TB did not significantly affect the average daily feed intake, ADG, weaning weight, or diarrhea incidence but decreased ROS levels, while increasing SOD levels as well as MDA and IgM levels. Moreover, AMP and TG supplementation increased the relative abundance of several beneficial fiber- and mucin-degrading bacteria in the gut, in contrast to combined AMP and TB supplementation. The 16S rRNA results showed that AMP supplementation significantly increased the relative abundance of Rikenellaceae_RC9_gut_group, Ruminococcaceae_UCG-014 and [Eubacterium]_coprostanoligenes group (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-005 and Christensenellaceae_R-7_group (p < .01). The TB supplementation significantly increased the abundances of Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-005 (p < .01), and significantly decreased the relative abundances of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). The combined use of AMP and TB significantly increased the relative abundance of Rikenellaceae_RC9_gut_group and Bacteroides (p < .01), and significantly decreased the relative abundance of Ruminococcaceae_UCG-014, [Eubacterium]_coprostanoligenes group and Christensenellaceae_R-7_group (p < .01). In summary, diets supplemented with either AMP or TB improved the intestinal microflora, growth performance, and health of weaned calves, but combined use was detrimental to calf performance.
Collapse
Affiliation(s)
- Junling Gao
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Jianan Dong
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Zhe Sun
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
- College of Life Science, Jilin Agricultural UniversityChangchunChina
| | - Tao Wang
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yanling Guan
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yue Sun
- Institute of Animal Husbandry and Special Animal ScienceHeilongjiang Academy of Land Reclamation SciencesHarbinChina
| | - Guixin Qin
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Xuefeng Zhang
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| | - Yuguo Zhen
- College of Animal Science and Technology, JLAU‐Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of EducationJilin Agricultural UniversityChangchunChina
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin ProvinceChangchun Borui Science & Technology Co., LtdChangchunChina
| |
Collapse
|
27
|
Chen M, Lin N, Liu X, Tang X, Wang Z, Zhang D. A novel antimicrobial peptide screened by a Bacillus subtilis expression system, derived from Larimichthys crocea Ferritin H, exerting bactericidal and parasiticidal activities. Front Immunol 2023; 14:1168517. [PMID: 37275897 PMCID: PMC10232870 DOI: 10.3389/fimmu.2023.1168517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective antimicrobial activities and multiple function mechanisms against pathogenic microorganisms. In this study, a novel AMP containing 51 amino acids, named Lc1687, was screened from the large yellow croaker (Larimichthys crocea) via a B. subtilis system. Bioinformatics and circular dichroism (CD) analyses showed that Lc1687 is a novel anionic amphiphilic α-helical peptide, which was derived from the C-terminal of a Ferritin heavy subunit. The recombinant Lc1687 (named rLc1687) purified from Escherichia coli exhibited strong activities against Gram-positive (Gram+) bacterium Staphylococcus aureus, Gram-negative (Gram-) bacteria Vibrio vulnificus, V. parahaemolyticus, and Scuticociliatida. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) revealed the possible function mechanisms of this peptide, which is to target and disrupt the bacterial cell membranes, including pore-forming, loss of fimbriae, and cytoplasm overflow, whereas gel retardation assay revealed that peptide Lc1687 cannot bind bacterial DNA. The peptide stability analysis showed that rLc1687 acts as a stable antimicrobial agent against Gram+ and Gram- bacteria at temperatures ranging from 25 to 100°C, pH 3-12, and UV radiation time ranging from 15 to 60 min. A hemolytic activity assay confirmed that this peptide may serve as a potential source for clinical medicine development. Taken together, Lc1687 is a novel AMP as it is a firstly confirmed Ferritin fragment with antimicrobial activity. It is also a promising agent for the development of peptide-based antibacterial and anti-parasitic therapy.
Collapse
Affiliation(s)
- Meiling Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Nengfeng Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiande Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xin Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
28
|
Bellavita R, Leone L, Maione A, Falcigno L, D'Auria G, Merlino F, Grieco P, Nastri F, Galdiero E, Lombardi A, Galdiero S, Falanga A. Synthesis of temporin L hydroxamate-based peptides and evaluation of their coordination properties with iron(III ). Dalton Trans 2023; 52:3954-3963. [PMID: 36744636 DOI: 10.1039/d2dt04099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferric iron is an essential nutrient for bacterial growth. Pathogenic bacteria synthesize iron-chelating entities known as siderophores to sequestrate ferric iron from host organisms in order to colonize and replicate. The development of antimicrobial peptides (AMPs) conjugated to iron chelators represents a promising strategy for reducing the iron availability, inducing bacterial death, and enhancing simultaneously the efficacy of AMPs. Here we designed, synthesized, and characterized three hydroxamate-based peptides Pep-cyc1, Pep-cyc2, and Pep-cyc3, derived from a cyclic temporin L peptide (Pep-cyc) developed previously by some of us. The Fe3+ complex formation of each ligand was characterized by UV-visible spectroscopy, mass spectrometry, and IR and NMR spectroscopies. In addition, the effect of Fe3+ on the stabilization of the α-helix conformation of hydroxamate-based peptides and the cotton effect were examined by CD spectroscopy. Moreover, the antimicrobial results obtained in vitro on some Gram-negative strains (K. pneumoniae and E. coli) showed the ability of each peptide to chelate efficaciously Fe3+ obtaining a reduction of MIC values in comparison to their parent peptide Pep-cyc. Our results demonstrated that siderophore conjugation could increase the efficacy and selectivity of AMPs used for the treatment of infectious diseases caused by Gram-negative pathogens.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli "Federico II", Napoli, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80138 Naples, Italy.
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, 80055, Portici, Italy.
| |
Collapse
|
29
|
Park SC, Son H, Kim YM, Lee JK, Park S, Lim HS, Lee JR, Jang MK. Design of Antimicrobial Peptides with Cell-Selective Activity and Membrane-Acting Mechanism against Drug-Resistant Bacteria. Antibiotics (Basel) 2022; 11:1619. [PMID: 36421263 PMCID: PMC9686514 DOI: 10.3390/antibiotics11111619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 09/13/2023] Open
Abstract
Antimicrobial peptides (AMPs) can combat drug-resistant bacteria with their unique membrane-disruptive mechanisms. This study aimed to investigate the antibacterial effects of several membrane-acting peptides with amphipathic structures and positional alterations of two tryptophan residues. The synthetic peptides exhibited potent antibacterial activities in a length-dependent manner against various pathogenic drug-resistant and susceptible bacteria. In particular, the location of tryptophan near the N-terminus of AMPs simultaneously increases their antibacterial activity and toxicity. Furthermore, the growth inhibition mechanisms of these newly designed peptides involve cell penetration and destabilization of the cell membrane. These findings provide new insights into the design of peptides as antimicrobial agents and suggest that these peptides can be used as substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyosuk Son
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Exhibition and Education, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Soyoung Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hye Song Lim
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
30
|
Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14091937. [PMID: 36145681 PMCID: PMC9503518 DOI: 10.3390/pharmaceutics14091937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-derived peptide, Androctonus amoreuxi Antimicrobial Peptide 1 (AamAP1), has been proved to have broad-spectrum antimicrobial properties. However, AamAP1 can induce hemolysis and shows strong toxicity against mammalian cells. Herein, the antimicrobial activity and mechanism of a novel synthetic antimicrobial peptide, GK-19, derived from AamAP1 and its derivatives, was evaluated. Five bacteria and three fungi were used to evaluate the antimicrobial effects of GK-19 in vitro. Scalded mice models combined with skin and soft tissue infections (SSTIs) were used to evaluate its applicability. The results indicated that GK-19 could not only inhibit Gram-positive and Gram-negative bacterial growth, but also kill fungi by disrupting the microbial cell membrane. Meanwhile, GK-19 showed negligible toxicity to mammalian cells, low hemolytic activity and high stability in plasma. Furthermore, in scalded mice models combined with SSTIs induced by either Methicillin-Resistant Staphylococcus aureus (MRSA) or Candida albicans, GK-19 showed significant antimicrobial and healing effects. Overall, it was demonstrated that GK-19 might be a promising drug candidate in the battle against drug-resistant bacterial and fungal infections.
Collapse
|