1
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
2
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Zhai S, Li Y, Yang Y, Lang W, Liu X, Liu K, Qu J, Zhu L. Scinderin is a potential prognostic biomarker and correlated with immunological regulation: from pan-cancer analysis to liver hepatocellular carcinoma. Front Immunol 2024; 15:1361657. [PMID: 39108273 PMCID: PMC11300247 DOI: 10.3389/fimmu.2024.1361657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/05/2024] [Indexed: 09/17/2024] Open
Abstract
Aim This study aimed to systematically dissect the role of Scinderin (SCIN) in tumorigenesis. Methods Bioinformatics techniques were employed based on cancer data from TCGA, ENCORI, HPA, GEPIA2, UALCAN, Kaplan-Meier plotter, TIMER, TISIDB, cBioPortal, HCCDB, GeneMANIA and LinkedOmics database. Experiments in vitro and in vivo were conducted to dissect the role of SCIN in liver hepatocellular carcinoma (LIHC). Results Significantly differential expression of SCIN was found in nine types of cancers, including LIHC. Through pan-cancer analysis, the correlations between SCIN expression with prognosis and immune cell infiltration were proven, especially in LIHC, ovarian serous cystadenocarcinoma and lung adenocarcinoma. The highest frequency of alteration in SCIN (6.81%) was seen in patients with uterine corpus endometrial carcinoma, in which "mutation" was the predominant type, with a frequency of about 5.29%; meanwhile, S673F and S381Y were the two most frequent mutation sites. Furthermore, the abnormal expression of SCIN exhibited a strong relationship with immune cell subtypes, immune checkpoint genes, tumor mutation burden, microsatellite instability, neoantigen, molecular subtypes, mismatch repair signatures and DNA methyl-transferase in different cancer types. Through comparative analysis, we discovered that SCIN was dramatically up-regulated in LIHC, and associated with poor survival. Experiments in vitro and in vivo suggested the knockdown of SCIN could suppress tumor cell proliferation and improve the survival rate partly in animal models. Conclusion This study reveals SCIN may be a promising biomarker for prognosis and treatment in certain cancers, especially in LIHC.
Collapse
Affiliation(s)
- Shengyong Zhai
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Yuhua Li
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Yuanyuan Yang
- Department of Nuclear Medicine, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Wei Lang
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Xiaoxia Liu
- Department of Anesthesiology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Kai Liu
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Jianjun Qu
- Department of Gastrointestinal Surgery, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Lingyu Zhu
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| |
Collapse
|
4
|
Zhang F, Lei X, Yang X. Emerging roles of ncRNAs regulating ABCC1 on chemotherapy resistance of cancer - a review. J Chemother 2024; 36:1-10. [PMID: 38263773 DOI: 10.1080/1120009x.2023.2247202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 01/25/2024]
Abstract
In the process of chemotherapy, drug resistance of cancer cells is a common and difficult problem of chemotherapy failure, and it is also the main cause of cancer recurrence and metastasis. Non-coding RNAs (ncRNAs) refer to the RNA that does not encode proteins, including microRNA (miRNA), long non-coding RNA (lncRNA) and circularRNA (circRNA), etc. NcRNAs are involved in a series of important life processes and further regulate the expression of ABCC1 by directly or indirectly up-regulating or down-regulating the expression of targeted mRNAs, making cancer cells more susceptible to drug resistance. A growing number of studies have shown that ncRNAs have effects on cancer cell proliferation, invasion, metastasis, and drug sensitivity, by regulating the expression of ABCC1. In this review, we will discuss the emerging roles of ncRNAs regulating ABCC1 in chemotherapy resistance and mechanisms to reverse drug resistance as well as provide potential targets for future cancer treatment.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
5
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
7
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
8
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|
9
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
10
|
Cascajosa-Lira A, Medrano-Padial C, Pichardo S, de la Torre JM, Baños A, Jos Á, Cameán AM. Identification of in vitro metabolites of an Allium organosulfur compound and environmental toxicity prediction as part of its risk assessment. ENVIRONMENTAL RESEARCH 2023; 229:116001. [PMID: 37116679 DOI: 10.1016/j.envres.2023.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Propyl-propane-thiosulfonate (PTSO) is an organosulfur compound found inAllium spp. Due to its antioxidant and antimicrobial activities, PTSO has been proposed for applications in the agri-food sector, such as feed additive. However, its use with commercial purposes depends on its toxicity evaluation. The present work aimed to perform a pilot-study of toxicokinetic profile of PTSO combining in silico and in vitro techniques, important steps in the risk assessment process. In silico ecotoxicity studies were also performed considering the importance of the environmental impact of the compound before its commercial use. First, an analytical method has been developed and validated to determine the original compound and its metabolites by ultra-performance liquid chromatography-tandem mass spectrometry. The phase I and II metabolism of PTSO was predicted using Meta-Pred Web Server. For the phase I metabolism, rat (male and female) and human liver microsomes were incubated with PTSO and NADPH regeneration system. Furthermore, in the phase II, microsomes were incubated with PTSO and glutathione or uridine 5'- diphosphoglucuronic acid. The analysis revealed the presence of propylpropane thiosulfinate (PTS) originated by redox reaction in phase I, and two conjugates from the phase II: S-propylmercaptoglutathione (GSSP) and S-propylmercaptocysteine (CSSP). Additionally, considering the environmental fate of PTSO and its metabolites, the ADME parameters and the potential ecotoxicity were also predicted using in silico softwares. The results of the ecotoxicity in silico study evidenced that the metabolism induced the formation of detoxified metabolites from the parent compound, except for dimercaprol and 3-mercaptopropane1,2-diol. Further in vivo assays are needed to confirm this prediction.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012, Seville, Spain
| | - Concepción Medrano-Padial
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012, Seville, Spain
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012, Seville, Spain.
| | | | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620, Granada, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012, Seville, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012, Seville, Spain
| |
Collapse
|
11
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
12
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
13
|
ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 2023; 28:103537. [PMID: 36801375 DOI: 10.1016/j.drudis.2023.103537] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Of the many known multidrug resistance (MDR) mechanisms, ATP-binding cassette (ABC) transporters expelling drug molecules out of cells is a major factor limiting the efficacy of present-day anticancer drugs. In this review, we highlights updated information on the structure, function, and regulatory mechanisms of major MDR-related ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), and the effect of modulators on their functions. We also provide focused information on different modulators of ABC transporters that could be utilized against the emerging MDR crisis in cancer treatment. Finally, we discuss the importance of ABC transporters as therapeutic targets in light of future strategic planning for translating ABC transporter inhibitors into clinical practice.
Collapse
|
14
|
Murugaiyaa Pandiyan S, Shanmugaraj P, Manoharan JP, Vidyalakshmi S. A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer. J Biomol Struct Dyn 2022; 40:13527-13546. [PMID: 34669561 DOI: 10.1080/07391102.2021.1990130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug Resistance (MDR) in tumors is caused by the over-expression of ATP Binding Cassette transporter proteins such as Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein 1. This in silico study focuses on identifying a MDR inhibitor among acetogenins (AGEs) of Annona muricata and also aims at predicting colorectal cancer (CRC) core targets of AGEs through a network pharmacological approach. Twenty-four AGEs were initially screened for their ADME properties. Molecular interaction studies were performed with the two proteins MRP1 and BCRP1. As the structure of MRP1 was not available, an inward-facing conformation of MRP1 was modeled. A Protein-protein interaction network was constructed for the correlating targets of CRC. KEGG pathway and Gene Ontology analysis were performed for the predicted CRC targets. We identified four lead AGEs: Muricatocin B, Annonacinone, Annonacin A and Annomuricin E having a higher binding affinity towards MDR proteins. MD simulation studies performed with the three lead AGEs and the MDR proteins showed that MRP1(DBD): Annomuricin E complex was stable throughout the simulation. Our analysis revealed ABCG2, ERBB2, STAT3, AR, SRC and ABCC1 as CRC targets of the lead molecules. The top 10 signaling pathways and functions of correlative CRC targets were also predicted. We conclude that the identified lead molecules might act as competitive inhibitors for reversing MDR in CRC. Additionally, network pharmacological studies established the correlative CRC targets and their mechanisms of action. Further experimental studies are needed to validate our findings. Communicated by Ramaswamy H. Sarma.
Collapse
|
15
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
16
|
Wu T, Ji Z, Lin H, Wei B, Xie G, Ji G, Fu S, Huang W, Liu H. Noncoding RNA PVT1 in osteosarcoma: The roles of lncRNA PVT1 and circPVT1. Cell Death Dis 2022; 8:456. [DOI: 10.1038/s41420-022-01192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
AbstractOsteosarcoma (OS) is the most common primary malignant bone tumor in children and teenagers and is characterized by high malignant potential, rapid disease progression and high disability and mortality rates. Recently, noncoding RNAs (ncRNAs) have attracted the attention of many scholars due to their major regulatory roles in gene expression. Among them, lncRNA PVT1 and circPVT1 encoded by the PVT1 gene have been the focus of many studies; they are upregulated in OS, and abundant evidence indicates that lncRNA PVT1 and circPVT1 play key roles in the occurrence and development of OS. This review summarizes the mechanisms of action of lncRNA PVT1 and circPVT1 in regulating apoptosis, proliferation, glycolysis, invasion, migration and epithelial–mesenchymal transition (EMT) in OS and discusses their clinical applications in diagnosis, prognosis determination and drug resistance treatment, with the aim of helping researchers better understand the regulatory roles of lncRNA PVT1 and circPVT1 in OS progression and providing a theoretical basis for the development of early screening and accurate targeted treatment strategies and prognostic biomarkers for OS based on lncRNA PVT1 and circPVT1.
Collapse
|
17
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
18
|
Comparison of EMT-Related and Multi-Drug Resistant Gene Expression, Extracellular Matrix Production, and Drug Sensitivity in NSCLC Spheroids Generated by Scaffold-Free and Scaffold-Based Methods. Int J Mol Sci 2022; 23:ijms232113306. [PMID: 36362093 PMCID: PMC9657250 DOI: 10.3390/ijms232113306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Multicellular 3D tumor models are becoming a powerful tool for testing of novel drug products and personalized anticancer therapy. Tumor spheroids, a commonly used 3D multicellular tumor model, more closely reproduce the tumor microenvironment than conventional 2D cell cultures. It should be noted that spheroids can be produced using different techniques, which can be subdivided into scaffold-free (SF) and scaffold-based (SB) methods. However, it remains unclear, to what extent spheroid properties depend on the method of their generation. In this study, we aimed to carry out a head-to-head comparison of drug sensitivity and molecular expression profile in SF and SB spheroids along with a monolayer (2D) cell culture. Here, we produced non-small cell lung cancer (NSCLC) spheroids based on human lung adenocarcinoma cell line A549. Drug sensitivity analysis of the tested cell cultures to five different chemotherapeutics resulted in IC50 (A549-SB) > IC50 (A549-SF) > IC50 (A549-2D) trend. It was found that SF and SB A549 spheroids displayed elevated expression levels of epithelial-to-mesenchymal transition (EMT) markers and proteins associated with drug resistance compared with the monolayer A549 cell culture. Enhanced drug resistance of A549-SB spheroids can be a result of larger diameters and elevated deposition of extracellular matrix (ECM) that impairs drug penetration into spheroids. Thus, the choice of the spheroid production method can influence the properties of the generated 3D cell culture and their drug resistance. This fact should be considered for correct interpretation of drug testing results.
Collapse
|
19
|
Hou W, Xu D, Wang L, Chen Y, Chen Z, Zhou C, Chen Y. Plastic structures for diverse substrates: A revisit of human
ABC
transporters. Proteins 2022; 90:1749-1765. [DOI: 10.1002/prot.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Tao Hou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Da Xu
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Liang Wang
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yu Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Zhi‐Peng Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Cong‐Zhao Zhou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yuxing Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
20
|
Liu Q, Wang Y, Tan D, Liu Y, Zhang P, Ma L, Liang M, Chen Y. The Prevention and Reversal of a Phenytoin-Resistant Model by N-acetylcysteine Therapy Involves the Nrf2/P-Glycoprotein Pathway at the Blood-Brain Barrier. J Mol Neurosci 2022; 72:2125-2135. [PMID: 36028602 DOI: 10.1007/s12031-022-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The transporter hypothesis is one of the most popular hypotheses of drug-resistant epilepsy (DRE). P-glycoprotein (P-gp), a channel protein at the blood-brain barrier (BBB), plays an important role in the transport of some anti-seizure drugs from brain tissue into vessels, which reduces drug concentrations and diminishes the effects of drug treatment. We performed this study to test whether P-gp is overexpressed in DRE and identify ways to prevent and reverse DRE. In this study, we established a phenytoin (PHT)-resistant mouse model and revealed that P-gp was overexpressed at the BBB in PHT-resistant mice. The P-gp inhibitor nimodipine decreased the resistance of phenytoin. Antioxidative preventive treatment with N-acetylcysteine (NAC) prevented the mice from entering a PHT-resistant state, and NAC therapy tended to reverse PHT resistance into sensitivity. We were also able to induce PHT resistance by activating the Nrf2/P-gp pathway, which indicates that oxidative stress plays an important role in drug resistance. Taken together, these findings suggest that antioxidative therapy may be a promising strategy for overcoming DRE.
Collapse
Affiliation(s)
- Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
21
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
22
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
23
|
Gartrell J, Panetta JC, Baker SD, Chen YL, Hawkins DS, Ostrenga A, Scharschmidt TJ, Spunt SL, Wang D, Weiss AR. The effects of pazopanib on doxorubicin pharmacokinetics in children and adults with non-rhabdomyosarcoma soft tissue sarcoma: a report from Children's Oncology Group and NRG Oncology study ARST1321. Cancer Chemother Pharmacol 2022; 89:551-557. [PMID: 35083502 PMCID: PMC8958317 DOI: 10.1007/s00280-022-04397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE The use of tyrosine kinase inhibitors for the treatment for soft tissue sarcomas is increasing given promising signals of activity in a variety of tumor types. The recently completed study in non-rhabdomyosarcoma soft tissue sarcomas, ARST1321, demonstrated that the addition of pazopanib to neoadjuvant ifosfamide, doxorubicin, and radiation improved the pathological near complete response rate compared with chemoradiotherapy alone. Pharmacokinetic (PK) evaluation of doxorubicin with pazopanib has not been previously reported. As an exploratory aim, doxorubicin PK data were collected during the dose-finding phase of the study in patients receiving chemotherapy and pazopanib to assess the effect of pazopanib on doxorubicin PK parameters. METHODS Blood samples were collected during cycle 2 (week 4) of chemotherapy at the following time points from doxorubicin administration: predose, 5, 30, and 60 min, and 2, 4, 8, 24 ± 3, and 48 ± 3 h after dosing. The population pharmacokinetic and individual post hoc estimates of doxorubicin and doxorubicinol were determined by nonlinear mixed-effects modeling. RESULTS There were 52 doxorubicin and doxorubicinol samples from 7 individuals in this study (median age: 17 years; range 14-23). The doxorubicin clearance was 26.9 (16.1, 36.4, and 33.9) L/h/m2 (post hoc median and range) and 25.8 (23.3%) L/h/m2 [population estimate and IIV (CV%)]. The doxorubicinol apparent clearance was 67.5 (18.2, 1701) L/h/m2 (post hoc median and range) and 58.7 (63.7%) L/h/m2 [population estimate and IIV (CV%)]. CONCLUSION The PK data of seven patients treated on ARST1321 is consistent with previously reported population and post hoc doxorubicin clearance and doxorubicinol apparent clearance estimates, showing that the addition of pazopanib does not significantly alter doxorubicin pharmacokinetics. These data support the safety of administration of pazopanib with doxorubicin-containing chemotherapy.
Collapse
Affiliation(s)
- J Gartrell
- Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - J C Panetta
- Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - S D Baker
- Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Y L Chen
- Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - D S Hawkins
- Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - A Ostrenga
- Pharmacy, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - S L Spunt
- Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - D Wang
- Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - A R Weiss
- Pediatrics, Maine Medical Center, Portland, ME, USA
| |
Collapse
|
24
|
Wang B, Ding Y, Zhao P, Li W, Li M, Zhu J, Ye S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143:105241. [PMID: 35114443 PMCID: PMC8789666 DOI: 10.1016/j.compbiomed.2022.105241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the value of natural products has been extensively considered because these resources can potentially be applied to prevent and treat coronavirus pneumonia 2019 (COVID-19). However, the discovery of nature drugs is problematic because of their complex composition and active mechanisms. METHODS This comprehensive study was performed on flavonoids, which are compounds with anti-inflammatory and antiviral effects, to show drug discovery and active mechanism from natural products in the treatment of COVID-19 via a systems pharmacological model. First, a chemical library of 255 potential flavonoids was constructed. Second, the pharmacodynamic basis and mechanism of action between flavonoids and COVID-19 were explored by constructing a compound-target and target-disease network, targets protein-protein interaction (PPI), MCODE analysis, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RESULTS In total, 105 active flavonoid components were identified, of which 6 were major candidate compounds (quercetin, epigallocatechin-3-gallate (EGCG), luteolin, fisetin, wogonin, and licochalcone A). 152 associated targets were yielded based on network construction, and 7 family proteins (PTGS, GSK3β, ABC, NOS, EGFR, and IL) were included as central hub targets. Moreover, 528 GO items and 178 KEGG pathways were selected through enrichment of target functions. Lastly, molecular docking demonstrated good stability of the combination of selected flavonoids with 3CL Pro and ACEⅡ. CONCLUSION Natural flavonoids could enable resistance against COVID-19 by regulating inflammatory, antiviral, and immune responses, and repairing tissue injury. This study has scientific significance for the selective utilization of natural products, medicinal value enhancement of flavonoids, and drug screening for the treatment of COVID-19 induced by SARS-COV-2.
Collapse
Affiliation(s)
- Bin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| | - Penghui Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
25
|
Haque A, Baig GA, Alshawli AS, Sait KHW, Hafeez BB, Tripathi MK, Alghamdi BS, Mohammed Ali HSH, Rasool M. Interaction Analysis of MRP1 with Anticancer Drugs Used in Ovarian Cancer: In Silico Approach. Life (Basel) 2022; 12:383. [PMID: 35330134 PMCID: PMC8954655 DOI: 10.3390/life12030383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is one of the major therapeutic challenges that limits the efficacy of chemotherapeutic response resulting in poor prognosis of ovarian cancer (OC). The multidrug resistance protein 1 (MRP1) is a membrane-bound ABC transporter involved in cross resistance to many structurally and functionally diverse classes of anticancer drugs including doxorubicin, taxane, and platinum. In this study, we utilize homology modelling and molecular docking analysis to determine the binding affinity and the potential interaction sites of MRP1 with Carboplatin, Gemcitabine, Doxorubicin, Paclitaxel, and Topotecan. We used AutoDock Vina scores to compare the binding affinities of the anticancer drugs against MRP1. Our results depicted Carboplatin < Gemcitabine < Topotecan < Doxorubicin < Paclitaxel as the order of binding affinities. Paclitaxel has shown the highest binding affinity whereas Carboplatin displayed the lowest affinity to MRP1. Interestingly, our data showed that Carboplatin, Paclitaxel, and Topotecan bind specifically to Asn510 residue in the transmembrane domains 1 of the MRP1. Our results suggest that Carboplatin could be an appropriate therapeutic choice against MRP1 in OC as it couples weakly with Carboplatin. Further, our findings also recommend opting Carboplatin with Gemcitabine as a combinatorial chemotherapeutic approach to overcome MDR phenotype associated with recurrent OC.
Collapse
Affiliation(s)
- Absarul Haque
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (G.A.B.); (A.S.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ghazanfar Ali Baig
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (G.A.B.); (A.S.A.); (B.S.A.)
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulelah Saleh Alshawli
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (G.A.B.); (A.S.A.); (B.S.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khalid Hussain Wali Sait
- Gynecology Oncology Unit, Obstetrics and Gynecology Department, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (B.B.H.); (M.K.T.)
| | - Manish Kumar Tripathi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (B.B.H.); (M.K.T.)
| | - Badrah Saeed Alghamdi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (G.A.B.); (A.S.A.); (B.S.A.)
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Mahmood Rasool
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
27
|
Filipiak-Duliban A, Brodaczewska K, Kajdasz A, Kieda C. Spheroid Culture Differentially Affects Cancer Cell Sensitivity to Drugs in Melanoma and RCC Models. Int J Mol Sci 2022; 23:ijms23031166. [PMID: 35163092 PMCID: PMC8835769 DOI: 10.3390/ijms23031166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
2D culture as a model for drug testing often turns to be clinically futile. Therefore, 3D cultures (3Ds) show potential to better model responses to drugs observed in vivo. In preliminary studies, using melanoma (B16F10) and renal (RenCa) cancer, we confirmed that 3Ds better mimics the tumor microenvironment. Here, we evaluated how the proposed 3D mode of culture affects tumor cell susceptibility to anti-cancer drugs, which have distinct mechanisms of action (everolimus, doxorubicin, cisplatin). Melanoma spheroids showed higher resistance to all used drugs, as compared to 2D. In an RCC model, such modulation was only observed for doxorubicin treatment. As drug distribution was not affected by the 3D shape, we assessed the expression of MDR1 and mTor. Upregulation of MDR1 in RCC spheroids was observed, in contrast to melanoma. In both models, mTor expression was not affected by the 3D cultures. By NGS, 10 genes related with metabolism of xenobiotics by cytochrome p450 were deregulated in renal cancer spheroids; 9 of them were later confirmed in the melanoma model. The differences between 3D models and classical 2D cultures point to the potential to uncover new non-canonical mechanisms to explain drug resistance set by the tumor in its microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Survival
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Aleksandra Filipiak-Duliban
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Correspondence:
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Arkadiusz Kajdasz
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Claudine Kieda
- Center for Molecular Biophysics UPR 4301 CNRS, CEDEX 2, 45071 Orleans, France;
| |
Collapse
|
28
|
Bieczynski F, Painefilú JC, Venturino A, Luquet CM. Expression and Function of ABC Proteins in Fish Intestine. Front Physiol 2021; 12:791834. [PMID: 34955897 PMCID: PMC8696203 DOI: 10.3389/fphys.2021.791834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Julio C. Painefilú
- Instituto Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M. Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET – UNCo), Junín de los Andes, Argentina
| |
Collapse
|
29
|
Martin-Broto J, Lopez-Alvarez M, Moura DS, Ramos R, Collini P, Romagosa C, Bagué S, Renne SL, Barisella M, Velasco V, Coindre JM, Lopez-Lopez D, Dopazo J, Gambarotti M, Braglia L, Merlo DF, Palmerini E, Stacchiotti S, Quagliuolo VL, Lopez-Pousa A, Grignani G, Blay JY, Brunello A, Gutierrez A, Valverde C, Hindi N, Dei Tos AP, Picci P, Casali PG, Gronchi A. Predictive Value of MRP-1 in Localized High-Risk Soft Tissue Sarcomas: A Translational Research Associated to ISG-STS 1001 Randomized Phase III Trial. Mol Cancer Ther 2021; 20:2539-2552. [PMID: 34552008 DOI: 10.1158/1535-7163.mct-21-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
MRP-1 is implicated in multidrug resistance and was described as prognostic in high-risk patients with soft-tissue sarcoma (STS) in a previous study. The current research aimed to validate MRP-1 prognostic/predictive value in localized sarcomas treated with anthracyclines plus ifosfamide within the ISG-1001 phase III study. In addition, the inhibitory activity on MRP-1 was investigated in preclinical studies to identify new combinations able to increase the efficacy of standard chemotherapy in STS. MRP-1 expression was assessed by IHC in tissue microarrays from patients with STS and tested for correlation with disease-free survival (DFS) and overall survival (OS). In vitro studies tested the efficacy of MRP-1 inhibitors (nilotinib, ripretinib, selumetinib, and avapritinib) in sarcoma cell lines. The effect of combinations of the most active MRP-1 inhibitors and chemotherapy was measured on the basis of apoptosis. MRP-1 was evaluable in 231 of 264 cases who entered the study. MRP-1 expression (strong intensity) was independently associated with worse DFS [HR, 1.78; 95% confidence interval (CI), 1.11-2.83; P = 0.016], in the multivariate analysis, with a trend for a worse OS (HR, 1.78; 95% CI, 0.97-3.25; P = 0.062). In vitro studies showed that the addition of MRP-1 inhibitors (nilotinib or avapritinib) to doxorubicin plus palifosfamide, significantly increased cell death in SK-UT-1 and CP0024 cell lines. MRP-1 is an adverse predictive factor in localized high-risk patients with STS treated with neoadjuvant anthracyclines plus ifosfamide followed by surgery. In vitro findings support the clinical assessment of the combination of chemotherapy and MRP-1 inhibitors as a promising strategy to overcome the drug ceiling effect for chemotherapy.
Collapse
Affiliation(s)
- Javier Martin-Broto
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, Madrid, Spain.
- University Hospital General de Villalba, Madrid, Spain
- Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD), Madrid, Spain
| | - Maria Lopez-Alvarez
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - David S Moura
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
| | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, Mallorca, Spain
| | - Paola Collini
- Soft Tissue and Bone Pathology, Histopathology and Pediatric Pathology Unit, Diagnostic Pathology and Laboratory Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, Milan, Italy
| | - Cleofe Romagosa
- Pathology Department, University Hospital Vall D'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en RED (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Bagué
- Pathology Department, Santa Creu I Sant Pau Hospital, Barcelona, Spain
| | - Salvatore L Renne
- Anatomic Pathology Unit, Humanitas Clinical and Research Center - IRCCS -, Rozzano (MI), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Marta Barisella
- Soft Tissue and Bone Pathology, Histopathology and Pediatric Pathology Unit, Diagnostic Pathology and Laboratory Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, Milan, Italy
| | - Valerie Velasco
- Pathology Department, Service d'Anatomie Pathologique, Institut Bergonié, Bordeaux, France
| | - Jean-Michel Coindre
- Bergonie Institute, Department of Biopathology, Bordeaux, and Bordeaux University, Talence, France
| | - Daniel Lopez-Lopez
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Sevilla, Spain
| | - Joaquin Dopazo
- Institute of Biomedicine of Sevilla (IBIS, HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Sevilla, Spain
- INB-ELIXIR-es FPS, Hospital Virgen del Rocío, Sevilla, Spain
| | - Marco Gambarotti
- Department of Anatomy and Pathological Histology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Braglia
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Domenico Franco Merlo
- Research and Statistics Infrastructure, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Silvia Stacchiotti
- Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | | | - Antonio Lopez-Pousa
- Medical Oncology Department, Santa Creu I Sant Pau Hospital, Barcelona, Spain
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I, Lyon, France
| | - Antonella Brunello
- Department of Oncology, Medical Oncology 1 Unit, Istituto Oncologico Veneto IOV, IRCCS, Padova, Italy
| | - Antonio Gutierrez
- Hematology Department, Son Espases University Hospital, Mallorca, Spain
| | - Claudia Valverde
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Nadia Hindi
- Medical Oncology Department, University Hospital Fundación Jimenez Diaz, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain
- Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS/FJD), Madrid, Spain
| | - Angelo Paolo Dei Tos
- Department of Pathology, Treviso General Hospital, Treviso, Italy
- University of Padua, Padova, Italy
| | - Piero Picci
- Laboratory of Oncologic Research, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo G Casali
- Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
30
|
Sami Bawazeer, Rauf A, Mabkhot YN, Al-Showiman SS, Patel S, Gul S, Raza M, Molnar J, Szabo D, Csonka Á, Mujeeb-ur-Rehman, Mubarak MS, Zengin G, Ramadan MF. Isolation of Bioactive Compounds from Pistacia integerrima with Promising Effects on Reverse Cancer Multidrug Resistance. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu Y, Xia H, Wang Y, Han W, Qin J, Gao W, Qu X, Wang X. Targeted paclitaxel-octreotide conjugates inhibited the growth of paclitaxel-resistant human non-small cell lung cancer A549 cells in vitro. Thorac Cancer 2021; 12:3053-3061. [PMID: 34617400 PMCID: PMC8590899 DOI: 10.1111/1759-7714.14182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The application of chemotherapy in non‐small cell lung cancer (NSCLC) is limited by the toxicity to normal cells and the development of multi‐drug resistance. Targeted chemotherapy using cytotoxic analogs against specific receptors on cancer cells could be a less toxic and more efficacious approach. We identified that the expressions of somatostatin receptor (SSTR) 2 and 5 in tumor tissues from NSCLC patients were higher than those in the adjacent normal tissues by immunohistochemistry, and therefore, cytotoxic somatostatin analogues might be applied for SSTRs‐mediated targeted therapy against NSCLC. Two cytotoxic analogs, paclitaxel‐octreotide (PTX‐OCT) and 2paclitaxel‐octreotide (2PTX‐OCT), were synthesized by linking one or two molecules of paclitaxel to one molecule of somatostatin analog octreotide. PTX‐OCT and 2PTX‐OCT significantly inhibited the growth and induced apoptosis of SSTR2‐ and SSTR5‐positive A549 cells, compared with the control (p < 0.01), and had less inhibitory effect on SSTR2‐ and SSTR5‐negative H157 cells than paclitaxel (p < 0.01). Moreover, compared with paclitaxel, PTX‐OCT conjugates induced lower expression of MDR‐1 gene both in vitro and in vivo. Three A549 paclitaxel‐resistant cell lines were established through different approaches, and the paclitaxel‐resistant cell showed higher sensitivity to PTX‐OCT conjugates than to paclitaxel, which might be because of the differential MDR‐related gene expressions and cell‐cycle distribution in paclitaxel‐resistant A549 cells. Our results suggested that PTX‐OCT conjugates could be potentially used for SSTRs‐mediated targeted therapy for NSCLC, especially for those with paclitaxel resistance and induced less multidrug resistance.
Collapse
Affiliation(s)
- Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Handai Xia
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yawei Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenfei Han
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Qin
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Gao
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
Elfadadny A, El-Husseiny HM, Abugomaa A, Ragab RF, Mady EA, Aboubakr M, Samir H, Mandour AS, El-Mleeh A, El-Far AH, Abd El-Aziz AH, Elbadawy M. Role of multidrug resistance-associated proteins in cancer therapeutics: past, present, and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49447-49466. [PMID: 34355314 DOI: 10.1007/s11356-021-15759-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Cancer, a major public health problem, is one of the world's top leading causes of death. Common treatments for cancer include cytotoxic chemotherapy, surgery, targeted drugs, endocrine therapy, and immunotherapy. However, despite the outstanding achievements in cancer therapies during the last years, resistance to conventional chemotherapeutic agents and new targeted drugs is still the major challenge. In the present review, we explain the different mechanisms involved in cancer therapy and the detailed outlines of cancer drug resistance regarding multidrug resistance-associated proteins (MRPs) and their role in treatment failures by common chemotherapeutic agents. Further, different modulators of MRPs are presented. Finally, we outlined the models used to analyze MRP transporters and proposed a future impact that may set up a base or pave the way for many researchers to investigate the cancer MRP further.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Rokaia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed S Mandour
- Department of Veterinary Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, 22511, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt.
| |
Collapse
|
33
|
ATP-binding cassette transporters and neurodegenerative diseases. Essays Biochem 2021; 65:1013-1024. [PMID: 34415015 DOI: 10.1042/ebc20210012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.
Collapse
|
34
|
Circular RNA circPVT1 Contributes to Doxorubicin (DXR) Resistance of Osteosarcoma Cells by Regulating TRIAP1 via miR-137. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7463867. [PMID: 33981772 PMCID: PMC8088374 DOI: 10.1155/2021/7463867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Background Chemoresistance is a major obstacle to the treatment of osteosarcoma patients. Circular RNA (circRNA) circPVT1 has been reported to be related to the doxorubicin (DXR) resistance in osteosarcoma. This study is designed to explore the role and mechanism of circPVT1 in the DXR resistance of osteosarcoma. Methods circPVT1, microRNA-137 (miR-137), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of ATP-binding cassette, subfamily C, member 1 (ABCC1), multidrug resistance-associated protein 1 (MRP-1), cleaved- (c-) caspase-3, B-cell lymphoma-2 (Bcl-2), and TRIAP1 were examined by a western blot assay. Cell viability, proliferation, and apoptosis were detected by cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays, severally. The binding relationship between miR-137 and circPVT1 or TRIAP1 was predicted by starbase 3.0 and then verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circPVT1 in osteosarcoma tumor growth and drug resistance was examined by the xenograft tumor model in vivo. Results. circPVT1 and TRIAP1 were highly expressed, and miR-137 was decreased in DXR-resistant osteosarcoma tissues and cells. Moreover, circPVT1 knockdown could boost DXR sensitivity by inhibiting DXR-caused proliferation and DXR-induced apoptosis in DXR-resistant osteosarcoma cells in vitro. The mechanical analysis discovered that circPVT1 acted as a sponge of miR-137 to regulate TRIAP1 expression. circPVT1 silencing increased the drug sensitivity of osteosarcoma in vivo. Conclusion. circPVT1 boosted DXR resistance of osteosarcoma cells partly by regulating the miR-137/TRIAP1 axis, hinting a promising therapeutic target for the osteosarcoma treatment.
Collapse
|
35
|
Shawky AM, Abdalla AN, Ibrahim NA, Abourehab MAS, Gouda AM. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur J Med Chem 2021; 218:113403. [PMID: 33823396 DOI: 10.1016/j.ejmech.2021.113403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Targeting P-glycoprotein (P-gp, ABCB1 transporter), which plays an essential role in multi-drug resistance (MDR) in cancers, with new cytotoxic agents is a promising strategy in cancer chemotherapy. In the current study, we report the synthesis of thirteen novel pyrimidopyrrolizine, pyrimidoindolizine, and diazepinopyrrolizine derivatives. The new compounds exhibited cytotoxic activities against MCF7, A2780 and HT29 cancer cell lines (IC50 = 0.02-19.58 μM) and MRC5 (IC50 = 0.17-20.57 μM). The six most active compounds (23b, 24a,b and, 31c-e) were evaluated for their MDR reversal activities in MCF7/ADR cells. Mechanistic study using real-time PCR revealed the ability of compound 31c to inhibit P-gp. In addition, compound 31c increased the accumulation of Rho123 inside MCF7/ADR cells in a dose-dependent manner compared to verapamil. Compound 31c arrested the cell cycle of MCF7 cells at the G1 phase. Compound 31c also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for compound 31c toward P-gp. Like zosuquidar, compound 31c displayed one hydrogen bond and several hydrophobic interactions with amino acids in P-gp. These results indicated that compound 31c represents a potential anticancer candidate with MDR reversal activity.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Central Laboratory for Micro-analysis, Minia University, Minia, 61519, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Departmentof Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
36
|
Nedeljković M, Tanić N, Prvanović M, Milovanović Z, Tanić N. Friend or foe: ABCG2, ABCC1 and ABCB1 expression in triple-negative breast cancer. Breast Cancer 2021; 28:727-736. [PMID: 33420675 DOI: 10.1007/s12282-020-01210-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are responsible for the efflux of a wide variety of anti-cancer agents and have been implicated in the chemoresistance of various solid tumors. Chemoresistance is a major cause of therapeutic failure, especially in the highly aggressive triple-negative breast cancer (TNBC) in which, unlike estrogen receptor-expressing (ER+) BC, both endocrine and targeted treatments are ineffectual. We aimed to investigate the level and frequency of expression of the three most important ABC transporter, ABCG2, ABCC1, and ABCB1, according to breast cancer subtype. METHODS We evaluated ABCG2, ABCC1, and ABCB1 protein expressions in 124 primary breast tumors (78 samples were classified as TNBC, while 46 were classified as ER+) by immunohistochemistry and correlated it to clinicopathological characteristics and outcome. RESULTS All three transporters had significantly higher expression and were more frequently expressed in TNBC compared to ER+ tumors (p < 0.0001). ABCG2 and ABCC1 had a very high level of expression in TNBC that was significantly greater compared to ABCB1 (p < 0.0001). ABCB1 expression was associated with TNBC metastatic spread (p = 0.03). In contrast, TNBC patients with high ABCG2 expression level had significantly longer disease-free interval (p = 0.03) and overall survival (p = 0.007). CONCLUSION ABCG2, ABCC1, and ABCB1 expression in breast cancer is subtype-specific and associated with triple-negative tumors. The expression of ABCB1 may be useful as a marker of metastatic spread. Moreover, unexpectedly, our results showed a beneficial effect of ABCG2 expression on TNBC clinical behavior. These findings could have implications for the implementation of future TNBC treatment strategies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Nasta Tanić
- Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences "Vinča", National Institute of Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Belgrade, Serbia
| | - Mirjana Prvanović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Doktora Subotića 1, 11000, Belgrade, Serbia
| | - Zorka Milovanović
- Department for Pathology and Cytology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Nikola Tanić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000, Belgrade, Serbia
| |
Collapse
|
37
|
Ruan T, Zhang Y, Liu W, Li Y, Wang D, Du Z, Tao K, Wu C. Expression of DCP1a in gastric cancer and its biological function and mechanism in chemotherapy resistance in gastric cancer cells. Dig Liver Dis 2020; 52:1351-1358. [PMID: 32646734 DOI: 10.1016/j.dld.2020.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS To detect the role of DCP1a in gastric cancer. To estimate the effect of DCP1a in gastric cancer cells on proliferation, invasion, migration and anti-drug behavior in vitro by down-regulating its expression. METHODS Using IHC staining and Western blot to check the expression of DCP1a in tissues and the cell lines. SGC7901 and BGC823 cells were transfected with DCP1a siRNA, and the expression of DCP1a protein and mRNA were detected. The cell proliferation rate was detected by MTT assay and plate cloning assay. Transwell assay was used to detect the change of cell metastasis. The inhibition rates of cells to chemotherapy were detected by MTT assay. And signal pathways were also detected. RESULTS The expression of DCP1a in cancer tissues is higher (p < 0.05), and higher expression of DCP1a is related to poor prognosis. After down-regulating the expression of DCP1a in cells, the proliferation rates, migration abilities and chemotherapy resistance decrease. We find that the expression of MRP-1 and the activation of AKT and STAT3 pathways might be involved in regulation. CONCLUSION The high expression of DCP1a might be associated with cancer development and prognosis. Down-regulating the expression of DCP1a will help to reduce chemotherapy resistance, which will help with further improvement of chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Yazhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Yuan Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Dianshi Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Zhouyuan Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China.
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, PR China.
| |
Collapse
|
38
|
Zhao ZJ, Gao XY, Zeng JC, Zhang SL, Meng XM, Shen YJ, Sheng XH. Theoretical Insights into the Cotransport Mechanism of GSH with Anticancer Drugs by MRP1. J Phys Chem B 2020; 124:9803-9811. [DOI: 10.1021/acs.jpcb.0c06662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zi-Jing Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin-Ying Gao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jia-Cheng Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shao-Long Zhang
- College of Physics and Electronics, Shandong Normal University, 88 Wenhuadonglu, Jinan, Shandong 250014, China
| | - Xian-Mai Meng
- College of Physics and Electronics, Shandong Normal University, 88 Wenhuadonglu, Jinan, Shandong 250014, China
| | - Yan-Jun Shen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
39
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
40
|
Kreutzer D, Ritter CA, Hilgeroth A. Novel Nonsymmetrical 1,4-Dihydropyridines as Inhibitors of Nonsymmetrical MRP-Efflux Pumps for Anticancer Therapy. Pharmaceuticals (Basel) 2020; 13:ph13070146. [PMID: 32660005 PMCID: PMC7407134 DOI: 10.3390/ph13070146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022] Open
Abstract
Cancer is a strong global burden with increasing numbers of diseases and ongoing anticancer drug resistance. The number of structurally novel anticancer drugs is strongly limited. They cause high costs for the social health systems. Most critical so-called multidrug resistances (MDR) are caused by transmembrane efflux pumps that transport drugs with various structures out of the cancer cells. Multidrug resistance proteins (MRPs) type 1 and 2 are found overexpressed in various kinds of cancer. There is a strong need for inhibitors of those efflux pumps. We developed novel nonsymmetrical 1,4-dihydropyridines as novel inhibitors of cancer relevant MRP types 1 and 2. The structure-dependent activities of the differently substituted derivatives were evaluated in cellular assays of respective cancer cells and are discussed. Promising candidates were identified. One candidate was demonstrated to resensitize a cisplatin resistant cancer cell line and thus to overcome the anticancer drug resistance.
Collapse
Affiliation(s)
- David Kreutzer
- Institute of Pharmacy, Research Group of Drug Development, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Christoph A. Ritter
- Institute of Pharmacy, Department of Clinical Pharmacy, University of Greifswald, 17489 Greifswald, Germany;
| | - Andreas Hilgeroth
- Institute of Pharmacy, Research Group of Drug Development, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany;
- Correspondence: ; Tel.: +49-345-55-25168
| |
Collapse
|
41
|
van Stuijvenberg J, Proksch P, Fritz G. Targeting the DNA damage response (DDR) by natural compounds. Bioorg Med Chem 2020; 28:115279. [PMID: 31980363 DOI: 10.1016/j.bmc.2019.115279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022]
Abstract
Natural compounds (NC) are an important source of anticancer drugs. The genomic DNA of tumor cells is a major target of conventional anticancer therapeutics (cAT). DNA damage elicits a complex stress response programme termed DNA damage response (DDR), with the PI3-like kinase ATM and ATR being the key regulators. Since the DDR coordinates mechanisms of DNA repair and apoptosis, hence regulating the balance between death and survival, it is an attractive target of novel anticancer strategies. The aim of the study was to identify natural compounds derived from endophytic fungi, lichens, marine sponges or plants that interfere with mechanisms of the DDR. To this end, the cytotoxic and DDR modulating potency of 296 natural compounds, used alone or in combination with the cAT cisplatin (Cis) and doxorubicin (Doxo) was investigated by fluorescence-based analysis of the ATM/ATR-catalyzed S139 phosphorylation of histone 2AX (γH2AX), a surrogate marker of DNA damage-triggered DDR. After initial screening, a total of ten natural compounds were identified that were toxic in pancreatic carcinoma cells and activated the DDR on their own and/or promoted the DDR if used in combination with cAT. Their mode of action was shown to be independent of drug transport mechanisms. Based on their chemical structures, DDR modulatory activity and published data we suggest the marine NC 5-epi-nakijiquinone Q and 5-epi-ilimaquinone as well as the fungal compound secalonic acid F as most promising NC-based drug candidates for future synthesis of DDR-modulating chemical derivatives and their preclinical in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jana van Stuijvenberg
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
42
|
Soldevilla MM, Villanueva H, Meraviglia-Crivelli D, Menon AP, Ruiz M, Cebollero J, Villalba M, Moreno B, Lozano T, Llopiz D, Pejenaute Á, Sarobe P, Pastor F. ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity. Mol Ther 2019; 27:1878-1891. [PMID: 31405808 PMCID: PMC6838990 DOI: 10.1016/j.ymthe.2019.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) blockade therapy is able to induce long-lasting antitumor responses in a fraction of cancer patients. Nonetheless, there is still room for improvement in the quest for new therapeutic combinations. ICOS costimulation has been underscored as a possible target to include with CTLA-4 blocking treatment. Herein, we describe an ICOS agonistic aptamer that potentiates T cell activation and induces stronger antitumor responses when locally injected at the tumor site in combination with anti-CTLA-4 antibody in different tumor models. Furthermore, ICOS agonistic aptamer was engineered as a bi-specific tumor-targeting aptamer to reach any disseminated tumor lesions after systemic injection. Treatment with the bi-specific aptamer in combination with CTLA-4 blockade showed strong antitumor immunity, even in a melanoma tumor model where CTLA-4 treatment alone did not display any significant therapeutic benefit. Thus, this work provides strong support for the development of combinatorial therapies involving anti-CTLA-4 blockade and ICOS agonist tumor-targeting agents.
Collapse
Affiliation(s)
- Mario Martínez Soldevilla
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Marta Ruiz
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain; Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Javier Cebollero
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - María Villalba
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Teresa Lozano
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain; Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Diana Llopiz
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain; Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Álvaro Pejenaute
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain
| | - Pablo Sarobe
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain; Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
| |
Collapse
|
43
|
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 2019; 10:1445. [PMID: 31379756 PMCID: PMC6647914 DOI: 10.3389/fmicb.2019.01445] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette (ABC) superfamily members have a key role as nutrient importers and exporters in bacteria. However, their role as drug exporters in eukaryotes brought this superfamily member to even greater prominence. The capacity of ABC transporters to efflux a broad spectrum of xenobiotics represents one of the major mechanisms of clinical multidrug resistance in pathogenic fungi including Candida species. Candida auris, a newly emerged multidrug-resistant fungal pathogen of humans, has been responsible for multiple outbreaks of drug-resistant infections in hospitals around the globe. Our study has analyzed the entire complement of ABC superfamily transporters to assess whether these play a major role in drug resistance mechanisms of C. auris. Our bioinformatics analyses identified 28 putative ABC proteins encoded in the genome of the C. auris type-strain CBS 10913T; 20 of which contain transmembrane domains (TMDs). Quantitative real-time PCR confirmed the expression of all 20 TMD transporters, underlining their potential in contributing to the C. auris drug-resistant phenotype. Changes in transcript levels after short-term exposure of drugs and in drug-resistant C. auris isolates suggested their importance in the drug resistance phenotype of this pathogen. CAUR_02725 orthologous to CDR1, a major multidrug exporter in other yeasts, showed consistently higher expression in multidrug-resistant strains of C. auris. Homologs of other ABC transporter genes, such as CDR4, CDR6, and SNQ2, also displayed raised expression in a sub-set of clinical isolates. Together, our analysis supports the involvement of these transporters in multidrug resistance in C. auris.
Collapse
Affiliation(s)
- Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Remya Nair
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Gustavo Bravo Ruiz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Zoe K. Ross
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Lorenz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Andrew M. Lynn
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| |
Collapse
|
44
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
45
|
Mechanisms of Anticancer Drug Resistance in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11030407. [PMID: 30909445 PMCID: PMC6468761 DOI: 10.3390/cancers11030407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.
Collapse
|
46
|
Jiang L, Meng F, Qiu Z, Zhang K, Ding Y, Li H, Ren Y, Yu P, Peng J. Comparison of UPLC-MS/MS-based targeted quantitation and conventional quantitative methods for the analysis of MRP1 expression in tumor cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:10-18. [DOI: 10.1016/j.jchromb.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
|
47
|
Sabapathy V, Cheru NT, Corey R, Mohammad S, Sharma R. A Novel Hybrid Cytokine IL233 Mediates regeneration following Doxorubicin-Induced Nephrotoxic Injury. Sci Rep 2019; 9:3215. [PMID: 30824764 PMCID: PMC6397151 DOI: 10.1038/s41598-019-39886-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Nardos Tesfaye Cheru
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rebecca Corey
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA.
| |
Collapse
|
48
|
Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:cancers10120503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
|
49
|
Zhang C, Wang M, Shi C, Shi F, Pei C. Long non-coding RNA Linc00312 modulates the sensitivity of ovarian cancer to cisplatin via the Bcl-2/Caspase-3 signaling pathway. Biosci Trends 2018; 12:309-316. [PMID: 29952351 DOI: 10.5582/bst.2018.01052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy is one of the main treatments for ovarian cancer (OC). Cisplatin combined with paclitaxel is a commonly used chemotherapy regimen. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. The mechanism that potentially leads to that resistance is unclear. The current study examined the mechanism by which Linc00312 is involved in resistance to cisplatin in OC. Quantitative real-time PCR (RT-qPCR) was used to test for expression of Linc00312 in freshly frozen tissue samples of OC and in SKOV3 and SKOV3/DDP cells. In situ hybridization was performed to examine the distribution of Linc00312 expression in paraffin-embedded histological sections that were sensitive or resistant to cisplatin. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell apoptosis. RT-qPCR was performed to confirm changes in expression of MDR1, MRP1, Bcl-2, Bax, Caspase-3, and Caspase-9 mRNA. Levels of MDR1, Bcl-2, Bax, Caspase-3, and Caspase-9 protein were detected with Western blotting. Experiments indicated that the expression of Linc00312 decreased significantly in SKOV3/DDP cells compared to that in SKOV3 cells. Upregulation of Linc00312 can considerably increase the sensitivity of SKOV3/DDP cells to cisplatin, while down-regulation of Linc00312 has the exact opposite effect in SKOV3 cells. Linc00312 enhanced the sensitivity of SKOV3/DDP cells to cisplatin by promoting cell apoptosis via the Bcl-2/Caspase-3 signaling pathway. These findings suggest that Linc00312 may be a promising clinical strategy for the treatment of drug-resistant OC.
Collapse
Affiliation(s)
- Chuanqi Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Cong Shi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Fanli Shi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| | - Cheng Pei
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University
| |
Collapse
|
50
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|