1
|
Guo S, Zheng S, Liu M, Wang G. Novel Anti-Cancer Stem Cell Compounds: A Comprehensive Review. Pharmaceutics 2024; 16:1024. [PMID: 39204369 PMCID: PMC11360402 DOI: 10.3390/pharmaceutics16081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs) possess a significant ability to renew themselves, which gives them a strong capacity to form tumors and expand to encompass additional body areas. In addition, they possess inherent resistance to chemotherapy and radiation therapies used to treat many forms of cancer. Scientists have focused on investigating the signaling pathways that are highly linked to the ability of CSCs to renew themselves and maintain their stem cell properties. The pathways encompassed are Notch, Wnt/β-catenin, hedgehog, STAT3, NF-κB, PI-3K/Akt/mTOR, sirtuin, ALDH, MDM2, and ROS. Recent studies indicate that directing efforts towards CSC cells is essential in eradicating the overall cancer cell population and reducing the likelihood of tumor metastasis. As our comprehension of the mechanisms that stimulate CSC activity, growth, and resistance to chemotherapy advances, the discovery of therapeutic drugs specifically targeting CSCs, such as small-molecule compounds, holds the potential to revolutionize cancer therapy. This review article examines and analyzes the novel anti-CSC compounds that have demonstrated effective and selective targeting of pathways associated with the renewal and stemness of CSCs. We also discussed their special drug metabolism and absorption mechanisms. CSCs have been the subject of much study in cancer biology. As a possible treatment for malignancies, small-molecule drugs that target CSCs are gaining more and more attention. This article provides a comprehensive review of the current state of key small-molecule compounds, summarizes their recent developments, and anticipates the future discovery of even more potent and targeted compounds, opening up new avenues for cancer treatment.
Collapse
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Shilong Zheng
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Mingli Liu
- Department of Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
2
|
Wang J, Huang D, Nguyen TAT, Phan LM, Wei W, Rezaeian AH. CD74-AKT Axis Is a Potential Therapeutic Target in Triple-Negative Breast Cancer. BIOLOGY 2024; 13:481. [PMID: 39056676 PMCID: PMC11274071 DOI: 10.3390/biology13070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.
Collapse
Affiliation(s)
- Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thu Anh Thai Nguyen
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Liem Minh Phan
- David Grant USAF Medical Center, Clinical Investigation Facility, 60th Medical Group, Travis Air Force Base, Fairfield, CA 94535, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Zhou X, Zhang D, Lei J, Ren J, Yang B, Cao Z, Guo C, Li Y. Polyphyllin I induces rapid ferroptosis in acute myeloid leukemia through simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering of lipid peroxidation. J Nat Med 2024; 78:618-632. [PMID: 38668832 DOI: 10.1007/s11418-024-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant disease that is difficult to completely cure. Polyphyllin I (PPI), a steroidal saponin isolated from Paris polyphylla, has exhibited multiple biological activities. Here, we discovered the superior cytotoxicity of PPI on AML cells MOLM-13 with an IC50 values of 0.44 ± 0.09 μM. Mechanically, PPI could cause ferroptosis via the accumulation of intracellular iron concentration and triggering lipid peroxidation. Interestingly, PPI could induced stronger ferroptosis in a short time of about 6 h compared to erastin. Furthermore, we demonstrate that PPI-induced rapid ferroptosis is due to the simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering lipid peroxidation, and PI3K inhibitor Alpelisib can enhance the activity of erastin-induced ferroptosis. Molecular docking simulations and kinase inhibition assays demonstrated that PPI is a PI3K inhibitor. In addition, PPI significantly inhibited tumor progression and prolonged mouse survival at 4 mg/kg with well tolerance. In summary, our study highlights the therapeutic potential of PPI for AML and shows its unique dual mechanism.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jixia Ren
- College of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Bo Yang
- Department of Pharmacy, Panzhihua Central Hospital, Dali University, Panzhihua, China
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuanjie Guo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China.
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Lamichhane A, Tavana H. Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance. Cell Mol Bioeng 2024; 17:107-119. [PMID: 38737455 PMCID: PMC11082110 DOI: 10.1007/s12195-024-00798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 05/14/2024] Open
Abstract
Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.
Collapse
Affiliation(s)
- Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
5
|
Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2023; 122:110605. [PMID: 37451021 DOI: 10.1016/j.intimp.2023.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major types of lung cancer with high morbidity and mortality. The TRAF-interacting protein (TRAIP) is a ring-type E3 ubiquitin ligase which has been recently identified to play pivotal roles in various cancers. However, the expression and function of TRAIP in LUAD remain elusive. METHODS In this study, we used bioinformatic tools as well as molecular experiments to explore the exact role of TRAIP and the underlying mechanism. RESULTS Data mining across the UALCAN, GEPIA and GTEx, GEO and HPA databases revealed that TRAIP was significantly overexpressed in LUAD tissues than that in adjacent normal tissues. Kaplan-Meier curve showed that high TRAIP expression was associated with poor overall survival (OS) and relapse-free survival (RFS). Univariate and multivariate cox regression analysis revealed that TRAIP was an independent risk factor in LUAD. And the TRAIP-based nomogram further supported the prognostic role of TRAIP in LUAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that TRAIP-associated genes were mainly involved in DNA replication, cell cycle and other processes. The immune infiltration analysis indicated that TRAIP expression was tightly correlated with the infiltration of diverse immune cell types, including B cell, CD8 + T cell, neutrophil and dendritic cell. Moreover, TRAIP expression was observed to be significantly associated with tumor infiltrating lymphocytes (TILs) and immune checkpoint molecules. In vitro experiments further confirmed knockdown of TRAIP inhibited cell migration and invasion, as well as decreasing chemokine production and inhibiting M2-like macrophage recruitment. Lastly, CMap analysis identified 10 small molecule compounds that may target TRAIP, providing potential therapies for LUAD. CONCLUSIONS Collectively, our study found that TRAIP is an oncogenic gene in LUAD, which may be a potential prognostic biomarker and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Xie W, Yu J, Yin Y, Zhang X, Zheng X, Wang X. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol 2022; 12:876257. [PMID: 36033461 PMCID: PMC9399417 DOI: 10.3389/fonc.2022.876257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Octamer-binding transcription factor 4 (OCT4) is a key stem cell transcription factor involved in the development of various cancers. The role of OCT4 in ovarian cancer (OC) progression and its molecular mechanism are not fully understood. Methods First, immunohistochemistry (IHC) assays of ovarian benign cyst tissues, OC tissues, and omental metastatic tissues were performed to reveal OCT4 expression profiles. We knocked down OCT4 in two OC cell lines (SKOV3 and A2780) using a lentiviral vector and performed in vitro and in vivo experiments. OCT4 was knocked down to assess the proliferation, migration, and invasion of OC cells using CCK-8, colony formation, wound healing, and Transwell assays. In addition, the nude tumor mouse model was used for in vivo study. Mechanistically, we demonstrated that OCT4 influenced protein expression in the phosphoinositol 3-kinase (PI3K)/AKT/mTOR pathway and epithelial-mesenchymal transition (EMT)-related proteins by Western blotting and immunofluorescence (IF) assays. The interaction between OCT4 and p-AKT was further confirmed by coimmunoprecipitation (CoIP) assays. Importantly, AKT activation by its activator SC79 reversed the biological functions of OCT4 knockdown. Results OCT4 expression was significantly upregulated in OC samples and metastatic tissues. OCT4 knockdown notably inhibited the proliferation, migration, and invasion of OC cells in vitro and in vivo. Moreover, the expression of p-PI3K, p-AKT, and p-mTOR was downregulated after OCT4 knockdown. An AKT agonist reversed the effect of OCT4 knockdown on OC cells. EMT in OC samples was enhanced by OCT4. Conclusions Our study shows that OCT4 promotes the proliferation, migration, and invasion of OC cells by participating in the PI3K/AKT/mTOR signaling axis, suggesting that it could serve as a potential therapeutic target for OC patients.
Collapse
|
7
|
JIB-04, a Pan-Inhibitor of Histone Demethylases, Targets Histone-Lysine-Demethylase-Dependent AKT Pathway, Leading to Cell Cycle Arrest and Inhibition of Cancer Stem-Like Cell Properties in Hepatocellular Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23147657. [PMID: 35887001 PMCID: PMC9322929 DOI: 10.3390/ijms23147657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
JIB-04, a pan-histone lysine demethylase (KDM) inhibitor, targets drug-resistant cells, along with colorectal cancer stem cells (CSCs), which are crucial for cancer recurrence and metastasis. Despite the advances in CSC biology, the effect of JIB-04 on liver CSCs (LCSCs) and the malignancy of hepatocellular carcinoma (HCC) has not been elucidated yet. Here, we showed that JIB-04 targeted KDMs, leading to the growth inhibition and cell cycle arrest of HCC, and abolished the viability of LCSCs. JIB-04 significantly attenuated CSC tumorsphere formation, growth, relapse, migration, and invasion in vitro. Among KDMs, the deficiency of KDM4B, KDM4D, and KDM6B reduced the viability of the tumorspheres, suggesting their roles in the function of LCSCs. RNA sequencing revealed that JIB-04 affected various cancer-related pathways, especially the PI3K/AKT pathway, which is crucial for HCC malignancy and the maintenance of LCSCs. Our results revealed KDM6B-dependent AKT2 expression and the downregulation of E2F-regulated genes via JIB-04-induced inhibition of the AKT2/FOXO3a/p21/RB axis. A ChIP assay demonstrated JIB-04-induced reduction in H3K27me3 at the AKT2 promoter and the enrichment of KDM6B within this promoter. Overall, our results strongly suggest that the inhibitory effect of JIB-04 on HCC malignancy and the maintenance of LCSCs is mediated via targeting the KDM6B-AKT2 pathway, indicating the therapeutic potential of JIB-04.
Collapse
|
8
|
Zhou X, He YZ, Liu D, Lin CR, Liang D, Huang R, Wang L. An Autophagy-Related Gene Signature can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:862179. [PMID: 35846146 PMCID: PMC9280409 DOI: 10.3389/fgene.2022.862179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease, and about 30%–40% of patients will develop relapsed/refractory DLBCL. In this study, we aimed to develop a gene signature to predict survival outcomes of DLBCL patients based on the autophagy-related genes (ARGs). Methods: We sequentially used the univariate, least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses to build a gene signature. The Kaplan–Meier curve and the area under the receiver operating characteristic curve (AUC) were performed to estimate the prognostic capability of the gene signature. GSEA analysis, ESTIMATE and ssGSEA algorithms, and one-class logistic regression were performed to analyze differences in pathways, immune response, and tumor stemness between the high- and low-risk groups. Results: Both in the training cohort and validation cohorts, high-risk patients had inferior overall survival compared with low-risk patients. The nomogram consisted of the autophagy-related gene signature, and clinical factors had better discrimination of survival outcomes, and it also had a favorable consistency between the predicted and actual survival. GSEA analysis found that patients in the high-risk group were associated with the activation of doxorubicin resistance, NF-κB, cell cycle, and DNA replication pathways. The results of ESTIMATE, ssGSEA, and mRNAsi showed that the high-risk group exhibited lower immune cell infiltration and immune activation responses and had higher similarity to cancer stem cells. Conclusion: We proposed a novel and reliable autophagy-related gene signature that was capable of predicting the survival and resistance of patients with DLBCL and could guide individualized treatment in future.
Collapse
Affiliation(s)
- Xuan Zhou
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying-Zhi He
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Dan Liu
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chao-Ran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Dan Liang
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Rui Huang, ; Liang Wang,
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Huang, ; Liang Wang,
| |
Collapse
|
9
|
Mitra S, Patra T, Saha D, Ghosh P, Mustafi SM, Varghese AC, Murmu N. Sub-chronic cadmium and lead compound exposure induces reproductive toxicity and development of testicular germ cell neoplasia in situ in murine model: Attenuative effects of resveratrol. J Biochem Mol Toxicol 2022; 36:e23058. [PMID: 35362238 DOI: 10.1002/jbt.23058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Cadmium and lead are widespread, nonbiodegradable heavy metals of perpetual environmental concerns. The present study aimed to evaluate whether sub-chronic exposure to cadmium chloride (CdCl2 ) and lead acetate [Pb(CH3 COO)2 ] induces reproductive toxicity and development of testicular germ cell neoplasia in situ (GCNIS) in swiss albino mice. The effects of resveratrol to reverse the metal-induced toxicity were also analyzed. The mice were randomly divided into four groups for metal treatments and two groups received two different doses of each metal, CdCl2 (0.25 and 0.5 mg/kg) and Pb(CH3 COO)2 (3 and 6 mg/kg). The fourth group received oral doses of 20 mg/kg resveratrol in combination with 0.5 mg/kg CdCl2 or 6 mg/kg Pb(CH3 COO)2 for 16 weeks. Toxic effects of both metals were estimated qualitatively and quantitatively by the alterations in sperm parameters, oxidative stress markers, testicular histology, and protein expressions of the treated mice. Pronounced perturbation of sperm parameters, cellular redox balance were observed with severe distortion of testicular histo-architecture in metal exposed mice. Significant overexpression of Akt cascade and testicular GCNIS marker proteins were recorded in tissues treated with CdCl2 . Notable improvements were observed in all the evaluated parameters of resveratrol cotreated mice groups. Taken together, the findings of this study showed that long-term exposure to Cd and Pb compounds, induced acute reproductive toxicity and initiation of GCNIS development in mice. Conversely, resveratrol consumption abrogated metal-induced perturbation of spermatogenesis, testicular morphology, and the upregulation of Akt cascade proteins along with GCNIS markers, which could have induced the development of testicular cancer.
Collapse
Affiliation(s)
- Sreyashi Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapas Patra
- E. Doisy Research Center, Saint Louis University, St. Louis, Missouri, USA
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | - Paramita Ghosh
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
10
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis 2021; 12:749. [PMID: 34321458 PMCID: PMC8319167 DOI: 10.1038/s41419-021-04036-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
To identify drivers of sarcoma cancer stem-like cells (CSCs), we compared gene expression using RNA sequencing between HT1080 fibrosarcoma and SK-LMS-1 leiomyosarcoma spheroids (which are enriched for CSCs) compared with the parent populations. The most overexpressed survival signaling-related gene in spheroids was phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, which functions in tumorigenesis and metastasis. In a human sarcoma microarray, PIK3R3 was also overexpressed by 4.1-fold compared with normal tissues. PIK3R3 inhibition using shRNA in the HT1080, SK-LMS-1, and DDLS8817 dedifferentiated liposarcoma in spheroids and in CD133+ cells (a CSC marker) reduced expression of CD133 and the stem cell factor Nanog and blocked spheroid formation by 61-71%. Mechanistic studies showed that in spheroid cells, PIK3R3 activated AKT and ERK signaling. Inhibition of PIK3R3, AKT, or ERK using shRNA or inhibitors decreased expression of Nanog, spheroid formation by 68-73%, and anchorage-independent growth by 76-91%. PIK3R3 or ERK1/2 inhibition similarly blocked sarcoma spheroid cell migration, invasion, secretion of MMP-2, xenograft invasion into adjacent normal tissue, and chemotherapy resistance. Together, these results show that signaling through the PIK3R3/ERK/Nanog axis promotes sarcoma CSC phenotypes such as migration, invasion, and chemotherapy resistance, and identify PIK3R3 as a potential therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Jandrey EHF, Bezerra M, Inoue LT, Furnari FB, Camargo AA, Costa ÉT. A Key Pathway to Cancer Resilience: The Role of Autophagy in Glioblastomas. Front Oncol 2021; 11:652133. [PMID: 34178638 PMCID: PMC8222785 DOI: 10.3389/fonc.2021.652133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
There are no effective strategies for the successful treatment of glioblastomas (GBM). Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance is mostly driven by tumor cell plasticity: a concept associated with reactivating transcriptional programs in response to adverse and dynamic conditions from the tumor microenvironment. Autophagy, or "self-eating", pathway is an emerging target for cancer therapy and has been regarded as one of the key drivers of cell plasticity in response to energy demanding stress conditions. Many studies shed light on the importance of autophagy as an adaptive mechanism, protecting GBM cells from unfavorable conditions, while others recognize that autophagy can kill those cells by triggering a non-apoptotic cell death program, called 'autophagy cell death' (ACD). In this review, we carefully analyzed literature data and conclude that there is no clear evidence indicating the presence of ACD under pathophysiological settings in GBM disease. It seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that autophagy is an emblematic example of the 'dark-side' of a rescue pathway that contributes profoundly to a pro-tumoral adaptive response. From a standpoint of treating the real human disease, only combinatorial therapy targeting autophagy with cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and enhance the sensibility of glioma cells to conventional therapies.
Collapse
Affiliation(s)
| | - Marcelle Bezerra
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego (UCSD), San Diego, CA, United States
| | | | | |
Collapse
|
13
|
Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, Gowda R, Yue F, Huang S, Spiegelman V, Payne JL, Reeves ME, Iyer S, Dhanyamraju PK, Imamura Y, Bogush D, Bamme Y, Yang Y, Soliman M, Kane S, Dovat E, Schramm J, Hu T, McGrath M, Chroneos ZC, Payne KJ, Gowda C, Dovat S. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia 2021; 35:1267-1278. [PMID: 33531656 PMCID: PMC8102195 DOI: 10.1038/s41375-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.
Collapse
Affiliation(s)
- Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Zhongda Hospital, Medical School of Southeast University Nanjing, 210009, Nanjing, China
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Feng Yue
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Suming Huang
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Jonathon L Payne
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Mark E Reeves
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Soumya Iyer
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Yuka Imamura
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yevgeniya Bamme
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yiping Yang
- Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Mario Soliman
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shriya Kane
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Elanora Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tommy Hu
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Mary McGrath
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zissis C Chroneos
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kimberly J Payne
- Loma Linda University College of Medicine, Loma Linda, CA, 92350, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Zhou C, Du J, Zhao L, Liu W, Zhao T, Liang H, Fang P, Zhang K, Zeng H. GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Cell Death Dis 2021; 12:231. [PMID: 33658491 PMCID: PMC7930050 DOI: 10.1038/s41419-021-03504-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with high incidence and recurrence rates. Gene expression profiling has revealed that transcriptional overexpression of glioma-associated oncogene 1 (GLI1), a vital gene in the Hedgehog (Hh) signaling pathway, occurs in poor-prognosis AML, and high levels of phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) and AKT3 predict shorter overall survival in AML patients. In this study, we discovered that GLI1 overexpression promotes cell proliferation and reduces chemotherapy sensitivity in AML cells while knocking down GLI1 has the opposite effect. Moreover, GLI1 promoted cell cycle progression and led to elevated protein levels of cyclins and cyclin-dependent kinases (CDKs) in AML cells. By luciferase assays and co-immunoprecipitation, we demonstrated that the PI3K/AKT pathway is directly activated by GLI1. GLI1 overexpression significantly accelerates tumor growth and upregulated p-AKT, CDK4, and cyclinD3 in vivo. Notably, the GLI1 inhibitor GANT61 and the CDK4/6 inhibitor PD 0332991 had synergistic effects in promoting Ara-c sensitivity in AML cell lines and patient samples. Collectively, our data demonstrate that GLI1 reduces drug sensitivity by regulating cell cycle through the PI3K/AKT/GSK3/CDK pathway, providing a new perspective for involving GLI1 and CDK4/6 inhibitors in relapsed/refractory (RR) patient treatment.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Glycogen Synthase Kinase 3/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- THP-1 Cells
- Tumor Burden/drug effects
- U937 Cells
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Mice
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kaixuan Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
15
|
Lu J, Bang H, Kim SM, Cho SJ, Ashktorab H, Smoot DT, Zheng CH, Ryeom SW, Yoon SS, Yoon C, Lee JH. Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. Oncogene 2021; 40:922-936. [PMID: 33288885 DOI: 10.1038/s41388-020-01571-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
The poor prognosis of gastric cancer (GC) results largely from metastasis and chemotherapy resistance. Toward novel therapeutic strategies that target or evade these phenomena, we evaluated the function of the transcriptional regulator transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) in GC cells, including stem-like cells. In this study, the correlation of expression of TBL1XR1 and clinical features and GC patients' outcomes was evaluated. Knockdown or exogenous expression of TBL1XR1 was combined with in vitro (2D and 3D cultures) and in vivo (mouse lung and lymphatic metastasis models) assays to evaluate the function of TBL1XR1. TBL1XR1's downstream signaling was delineated by phospho-kinase array and knockdown of candidate mediators. Analysis of clinical data showed that TBL1XR1 overexpression was correlated with worse prognosis. Functional assays showed that TBL1XR1 promoted stemness, epithelial-mesenchymal transition (EMT), and lung and lymphatic metastasis in GC cells. TBL1XR1 activated ERK1/2-Sox2 signaling and was dependent on signaling via PI3K/AKT, in GC stem-like cells distinguished by CD44 expression. Moreover, inhibition of these signaling proteins reversed chemoresistance in in vitro and in vivo models. Taken together, our results indicate that TBL1XR1 promotes stemness and metastasis in GC, making it a potential prognostic indicator. The PI3K/AKT-TBL1XR1-ERK1/2-Sox2 axis may represent a target for the treatment of GC.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Heejin Bang
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, South Korea
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jun Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Yoon C, Lu J, Yi BC, Chang KK, Simon MC, Ryeom S, Yoon SS. PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis 2021; 10:12. [PMID: 33468992 PMCID: PMC7815726 DOI: 10.1038/s41389-020-00300-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
The self-renewal transcription factor Nanog and the phosphoinositide 3-kinase (PI3K)-Akt pathway are known to be essential for maintenance of mesenchymal stem cells. We evaluated their contribution to the maintenance of CD133(+) cancer stem-like cells (CSCs) and spheroid-forming cells in patient-derived cell lines from three human sarcoma subtypes: HT1080 fibrosarcoma, SK-LMS-1 leiomyosarcoma, and DDLS8817 dedifferentiated liposarcoma. Levels of Nanog and activated Akt were significantly higher in sarcoma cells grown as spheroids or sorted for CD133 expression to enrich for CSCs. shRNA knockdown of Nanog decreased spheroid formation 10- to 14-fold, and reversed resistance to both doxorubicin and radiation in vitro and in H1080 flank xenografts. In the HT1080 xenograft model, doxorubicin and Nanog knockdown reduced tumor growth by 34% and 45%, respectively, and the combination reduced tumor growth by 74%. Using a human phospho-kinase antibody array, Akt1/2 signaling, known to regulate Nanog, was found to be highly activated in sarcoma spheroid cells compared with monolayer cells. Pharmacologic inhibition of Akt using LY294002 and Akt1/2 knockdown using shRNA in sarcoma CSCs decreased Nanog expression and spheroid formation and reversed chemotherapy resistance. Akt1/2 inhibition combined with doxorubicin treatment of HT1080 flank xenografts reduced tumor growth by 73%. Finally, in a human sarcoma tumor microarray, expression of CD133, Nanog, and phospho-Akt were 1.8- to 6.8-fold higher in tumor tissue compared with normal tissue. Together, these results indicate that the Akt1/2-Nanog pathway is critical for maintenance of sarcoma CSCs and spheroid-forming cells, supporting further exploration of this pathway as a therapeutic target in sarcoma.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Brendan C Yi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Dynamic Changes of Urine Proteome in Rat Models Inoculated with Two Different Hepatoma Cell Lines. JOURNAL OF ONCOLOGY 2021; 2021:8895330. [PMID: 33505467 PMCID: PMC7810548 DOI: 10.1155/2021/8895330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Urine can accumulate systemic changes with no mechanism to be stable, which may reflect early changes associated with physiological or pathophysiological processes. To explore the potential value of the urine proteome, two rat models were established by intrahepatic injection of two different hepatoma cell lines, CBRH-7919 and RH-35. Urine samples were collected and analyzed. Compared with controls, the two models exhibited different numbers and types of differentially expressed urinary proteins despite having similar histological results. The results were compared with the urine proteome of a Walker 256 (W-256) liver tumor model. The differentially expressed urinary protein patterns in the three models were different. These findings demonstrate that changes in the urine proteomes of the two models can be detected at early stages and that the patterns of differentially expressed urinary proteins can differ even when the histological results are similar. Urinary proteins have potential utility for distinguishing among different tumor cells grown in the same organ.
Collapse
|
18
|
Guo M, Ma G, Zhang X, Tang W, Shi J, Wang Q, Cheng Y, Zhang B, Xu J. ROR2 knockdown suppresses breast cancer growth through PI3K/ATK signaling. Aging (Albany NY) 2020; 12:13115-13127. [PMID: 32614787 PMCID: PMC7377870 DOI: 10.18632/aging.103400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase like orphan receptor 2 (ROR2) has been implicated in the pathogenesis of a variety of human cancers, including breast cancer. Here, we analyzed the clinical significance of ROR2 in breast cancer (BC) progression, and its function in the regulation of BC cell proliferation and growth. Analysis of ROR2 mRNA levels in 45 BC tissues and adjacent non-tumor tissues revealed that ROR2 expression was significantly increased in BC tissues, and that it correlated with tumor diameter. Kaplan-Meier disease-free survival (DFS) analysis demonstrated that BC patients with higher ROR2 expression had lower DFS. Knockdown of ROR2 suppressed in vitro proliferation of BC cells and promoted apoptosis, while ROR2 overexpression induced BC cell proliferation and suppressed apoptosis. Importantly, ROR2 suppression also reduced the tumor growth in mouse BC xenografts, indicating that ROR2 promotes BC tumorigenesis in vivo. In addition, our data revealed that ROR2 promotes proliferation of BC cells by activating the PI3K/AKT signaling pathway. Together, our results indicate that ROR2 acts as an oncogenic gene in breast cancer, and suggest that the ROR2/PI3K/AKT regulatory network contributes to breast cancer progression.
Collapse
Affiliation(s)
- Muhong Guo
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene 2020; 39:278-292. [PMID: 31477842 PMCID: PMC6949191 DOI: 10.1038/s41388-019-0997-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Research of the past view years expanded our understanding of the various physiological functions the cell-fate determining transcription factor SOX2 exerts in ontogenesis, reprogramming, and cancer. However, while scientific reports featuring novel and exciting aspects of SOX2-driven biology are published in near weekly routine, investigations in the underlying protein-biochemical processes that transiently tailor SOX2 activity to situational demand are underrepresented and have not yet been comprehensively summarized. Largely unrecognizable to modern array or sequencing-based technology, various protein secondary modifications and concomitant function modulations have been reported for SOX2. The chemical modifications imposed onto SOX2 are inherently heterogeneous, comprising singular or clustered events of phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, PARPylation, and O-glycosylation that reciprocally affect each other and critically impact SOX2 functionality, often in a tissue and species-specific manner. One recurring regulatory principle though is the canonical PI3K/AKT signaling axis to which SOX2 relates in various entangled, albeit not exclusive ways. Here we provide a comprehensive review of the current knowledge on SOX2 protein modifications, their proposed relationship to the PI3K/AKT pathway, and regulatory influence on SOX2 with regards to stemness, reprogramming, and cancer.
Collapse
Affiliation(s)
- Thorsten Schaefer
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland.
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
- University Hospital Basel, Division of Hematology, Basel, Switzerland
| |
Collapse
|
20
|
Binal Z, Açıkgöz E, Kızılay F, Öktem G, Altay B. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells. Clin Transl Oncol 2019; 22:1040-1048. [PMID: 31630355 DOI: 10.1007/s12094-019-02229-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the gene expression profile of CSCs and to explore the key pathways and specific molecular signatures involved in the characteristic of CSCs. MATERIALS AND METHODS CD133+ /CD44+ CSCs and bulk population (non-CSCs) were isolated from DU-145 cells using fluorescence-activated cell sorting (FACS). We used Illumina HumanHT-12 v4 Expression to investigate gene expression profiling of CSCs and non-CSCs. Protein-protein interaction (PPI) network analysis was performed using the STRING database. Biomarkers selected based on gene expression profiling were visually analyzed using immunofluorescence staining method. An image analysis program, ImageJ®, was used for the analysis of fluorescence intensity. RESULTS In microarray analysis, we found that many ribosomal proteins and translation initiation factors that constitute the mTOR complex were highly expressed. PPI analysis using the 33 genes demonstrated that there was a close interaction between ribosome biogenesis, translation, and mTOR signaling. The fluorescence amount of mTOR and MLST8 were higher in CSCs compared to non-CSCs. CONCLUSIONS The increase in a number of genes associated with ribosome biogenesis, translation, and mTOR signaling may be important to evaluate prognosis and determine treatment approach for prostate cancer (PCa). A better understanding of the molecular pathways associated with CSCs may be promising to develop targeted therapies to prolong survival in PCa.
Collapse
Affiliation(s)
- Z Binal
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| | - E Açıkgöz
- Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yıl University, 65080, Van, Turkey
| | - F Kızılay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey.
| | - G Öktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - B Altay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| |
Collapse
|
21
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
22
|
Ma Z, Parris AB, Howard EW, Shi Y, Yang S, Jiang Y, Kong L, Yang X. Caloric restriction inhibits mammary tumorigenesis in MMTV-ErbB2 transgenic mice through the suppression of ER and ErbB2 pathways and inhibition of epithelial cell stemness in premalignant mammary tissues. Carcinogenesis 2019; 39:1264-1273. [PMID: 30107476 DOI: 10.1093/carcin/bgy096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric intake influences the onset of many diseases, including cancer. In particular, caloric restriction (CR) has been reported to suppress mammary tumorigenesis in various models. However, the underlying cancer preventive mechanisms have not been fully explored. To this end, we aimed to characterize the anticancer mechanisms of CR using MMTV-ErbB2 transgenic mice, a well-established spontaneous ErbB2-overexpressing mammary tumor model, by focusing on cellular and molecular changes in premalignant tissues. In MMTV-ErbB2 mice with 30% CR beginning at 8 weeks of age, mammary tumor development was dramatically inhibited, as exhibited by reduced tumor incidence and increased tumor latency. Morphogenic mammary gland analyses in 15- and 20-week-old mice indicated that CR significantly decreased mammary epithelial cell (MEC) density and proliferative index. To understand the underlying mechanisms, we analyzed the effects of CR on mammary stem/progenitor cells. Results from fluorescence-activated cell sorting analyses showed that CR modified mammary tissue hierarchy dynamics, as evidenced by decreased luminal cells (CD24highCD49flow), putative mammary reconstituting unit subpopulation (CD24highCD49fhigh) and luminal progenitor cells (CD61highCD49fhigh). Mammosphere and colony-forming cell assays demonstrated that CR significantly inhibited mammary stem cell self-renewal and progenitor cell numbers. Molecular analyses indicated that CR concurrently inhibited estrogen receptor (ER) and ErbB2 signaling. These molecular changes were accompanied by decreased mRNA levels of ER-targeted genes and epidermal growth factor receptor/ErbB2 family members and ligands, suggesting ER-ErbB2 signaling cross-talk. Collectively, our data demonstrate that CR significantly impacts ER and ErbB2 signaling, which induces profound changes in MEC reprogramming, and mammary stem/progenitor cell inhibition is a critical mechanism of CR-mediated breast cancer prevention.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Yujie Shi
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lingfei Kong
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA.,Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
23
|
Djuzenova CS, Fiedler V, Memmel S, Katzer A, Sisario D, Brosch PK, Göhrung A, Frister S, Zimmermann H, Flentje M, Sukhorukov VL. Differential effects of the Akt inhibitor MK-2206 on migration and radiation sensitivity of glioblastoma cells. BMC Cancer 2019; 19:299. [PMID: 30943918 PMCID: PMC6446411 DOI: 10.1186/s12885-019-5517-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
Background Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. Methods Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. Results We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. Conclusions Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered. Electronic supplementary material The online version of this article (10.1186/s12885-019-5517-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Simon Memmel
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Dmitri Sisario
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| | - Philippa K Brosch
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Göhrung
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Svenja Frister
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Professur für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Campus Saarbrücken, 66123, Saarbrücken, Germany.,Marine Sciences, Universidad Católica del Norte, Casa Central, Angamos 0610, Antafogasta/Coquimbo, Chile
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
24
|
Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019; 698:120-128. [PMID: 30849534 DOI: 10.1016/j.gene.2019.02.076] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/08/2019] [Accepted: 02/17/2019] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to the extracellular stimulators. Hyperactivation of PI3K signalling cascades is one among the most ordinary events in human cancers. Focusing on the PI3K pathway remains both a chance and a challenge for cancer therapy. The high recurrence of phosphoinositide 3-kinase (PI3K) pathway adjustments in cancer has led to a surge in the progression of PI3K inhibitors. Recent developments incorporate a re-assessment of the oncogenic mechanisms behind PI3K pathway modifications. Receptor tyrosine kinases upstream of PI3K, the p110a catalytic fractional unit of PI3K, the downstream kinase, AKT, and therefore the negative regulator, PTEN, are all often altered in cancer. In this review, we consider about the phosphoinositide 3-kinases family and mechanisms of PI3K-Akt stimulation in cancer.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Zhang F, Lv HZ, Liu JM, Ye XY, Wang CC. UNBS5162 inhibits colon cancer growth via suppression of PI3K/Akt signaling pathway. Med Sci (Paris) 2018; 34 Focus issue F1:99-104. [PMID: 30403183 DOI: 10.1051/medsci/201834f117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is a common cause of cancer-related death worldwide. However, the underlying mechanism of tumor progression of colon cancer remains far from being elucidated. In the present study, we report the role of UNBS5162 in colon cancer. UNBS5162 is a naphthalimide that can intercalate into DNA and suppress the expression level of CXCL chemokines. Here, we investigated its effect on cell proliferation, mobility and apoptosis in HCT116 cells, and explored the underlying mechanism. A CCK8 assay revealed that UNBS5162 can block the proliferation of colon cancer cells. Base on a Transwell assay, we showed that cell migration and invasion ability of HCT116 cells are inhibited by UNBS5162. In addition, Annexin V-FITC/PI assay and Western blot analysis were performed to detect whether UNBS5162 could induce cell apoptosis. The results indicated that UNBS5162 increases the number of apoptotic cells remarkably. Furthermore, Western blot analysis demonstrated that UNBS5162 down-regulates the expression level of Bcl2, and up-regulates that of Bax as well as the level of activated Caspase-3. Moreover, we examined the impact of UNBS5162 on PI3K/Akt signaling pathway. UNBS5162 substantially inhibited the phosphorylation of Akt and its downstream effector mTOR, and reduced the expression of p-70. Taken together, these results suggest that UNBS5162 should be considered as a potent therapeutic anticancer agent that targets the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Fan Zhang
- Gastrointestinal Surgery Department, the First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630 PR China
| | - Hui-Zeng Lv
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Ji-Ming Liu
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Xiao-Yong Ye
- Department 1 of General Surgery, the 5th Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Cun-Chuan Wang
- Gastrointestinal Surgery Department, the First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510630 PR China
| |
Collapse
|
26
|
Wang BJ, Zheng WL, Feng NN, Wang T, Zou H, Gu JH, Yuan Y, Liu XZ, Liu ZP, Bian JC. The Effects of Autophagy and PI3K/AKT/m-TOR Signaling Pathway on the Cell-Cycle Arrest of Rats Primary Sertoli Cells Induced by Zearalenone. Toxins (Basel) 2018; 10:toxins10100398. [PMID: 30274213 PMCID: PMC6215106 DOI: 10.3390/toxins10100398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022] Open
Abstract
A high concentration of Zearalenone (ZEA) will perturb the differentiation of germ cells, and induce a death of germ cells, but the toxic mechanism and molecular mechanism remain unclear. The Sertoli cells (SCs) play an irreplaceable role in spermatogenesis. In order to explore the potential mechanism of ZEA male reproductive toxicity, we studied the effects of ZEA on cell proliferation, cell-cycle distribution, cell-cycle-related proteins and autophagy-related pathway the PI3K/Akt/mTOR signaling in primary cultured rats SCs, and the effects of autophagy and PI3K/AKT/m TOR signaling pathway on the SCs cell-cycle arrest induced by ZEA treated with the autophagy promoter RAPA, autophagy inhibitor CQ, and the PI3K inhibitor LY294002, respectively. The data revealed that ZEA could inhibit the proliferation of SCs by arresting the cell cycle in the G2/M phase and trigger the autophagy via inhibiting the PI3K/Akt/m TOR signaling pathway. Promoting or inhibiting the level of autophagy could either augment or reverse the arrest of cell cycle. And it was regulated by PI3K/Akt/m TOR signaling pathway. Taken together, this study provides evidence that autophagy and PI3K/Akt/m TOR signaling pathway are involved in regulating rats primary SCs cell-cycle arrest due to ZEA in vitro. To some extent, ZEA-induced autophagy plays a protective role in this process.
Collapse
Affiliation(s)
- Bing-Jie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Wang-Long Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Nan-Nan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Jian-Hong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xue-Zhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Jian-Chun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
27
|
Shea MP, O'Leary KA, Wegner KA, Vezina CM, Schuler LA. High collagen density augments mTOR-dependent cancer stem cells in ERα+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Lett 2018; 433:1-9. [PMID: 29935374 DOI: 10.1016/j.canlet.2018.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022]
Abstract
Metastatic estrogen receptor alpha positive (ERα+) cancers account for most breast cancer mortality. Cancer stem cells (CSCs) and dense/stiff extracellular matrices are implicated in aggression and therapy resistance. We examined this interplay and response to mTOR inhibition using ERα+ adenocarcinomas from NRL-PRL females in combination with Col1a1tmJae/+ (mCol1a1) mice, which accumulate collagen-I around growing tumors. Orthotopic transplantation of tumor cells to mCol1a1 but not wildtype hosts resulted in striking desmoplasia. Mammary tumors in mCol1a1 recipients displayed higher CSC activity and enhanced AKT-mTOR and YAP activation, and these animals developed more and larger lung metastases. Treatment with the mTOR inhibitor, rapamycin, with or without the anti-estrogen, ICI182780, rapidly diminished mammary tumors, which rapidly reversed when treatment ceased. In contrast, lung metastases, which exhibited lower proliferation and pS6RP, indicating lower mTOR activity, were unresponsive, and mCol1a1 hosts continued to sustain greater metastatic burdens. These findings shed light on the influence of desmoplastic tumor microenvironments on the CSC niche and metastatic behavior in ERα+ breast cancer. The differential mTOR dependence of local mammary tumors and pulmonary lesions has implications for success of mTOR inhibitors in advanced ERα+ disease.
Collapse
Affiliation(s)
- Michael P Shea
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyle A Wegner
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Linda A Schuler
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
28
|
Shi Y, Pang X, Wang J, Liu G. NanoTRAIL-Oncology: A Strategic Approach in Cancer Research and Therapy. Adv Healthc Mater 2018. [PMID: 29527836 DOI: 10.1002/adhm.201800053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
TRAIL is a member of the tumor necrosis factor superfamily that can largely trigger apoptosis in a wide variety of cancer cells, but not in normal cells. However, insufficient exposure to cancer tissues or cells and drug resistance has severely impeded the clinical application of TRAIL. Recently, nanobiotechnology has brought about a revolution in advanced drug delivery for enhanced anticancer therapy using TRAIL. With the help of materials science, immunology, genetic engineering, and protein engineering, substantial progress is made by expressing fusion proteins with TRAIL, engineering TRAIL on biological membranes, and loading TRAIL into functional nanocarriers or conjugating it onto their surfaces. Thus, the nanoparticle-based TRAIL (nanoTRAIL) opens up intriguing opportunities for efficient and safe bioapplications. In this review, the mechanisms of action and biological function of TRAIL, as well as the current status of TRAIL treatment, are comprehensively discussed. The application of functional nanotechnology combined with TRAIL in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
- Collaborative Innovation Center of Guangxi Biological Medicine and the; Medical and Scientific Research Center; Guangxi Medical University; Nanning 530021 China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361102 China
| |
Collapse
|
29
|
Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 2018; 42:384-392. [PMID: 29205673 DOI: 10.1002/cbin.10915] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a conserved sensor of cellular energy change and is activated by increased AMP/ATP and/or ADP/ATP ratios. AMPK maintains the energy balance by decreasing the ATP-consuming processes such as transcription of synthetic fat genes and rRNA, the translation of ribosomal proteins, synthesis of cholesterol and fatty acid, while the metabolic pathways such as glucose and fatty transport, fatty acid oxidation, autophagy, mitochondrial synthesis and oxidative metabolism are increased to preserve ATP during energy deficiency. Recent advance has demonstrated that AMPK activity has a close association with the initiation and progression in various cancers. Here we review the mechanisms that AMPK controls energy metabolism through regulating ATP synthesis and consumption, and further discuss the deregulation of AMPK in cancers.
Collapse
Affiliation(s)
- Rong Ke
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Qicao Xu
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Cong Li
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng St., Nanchang, Jiangxi, 330006, China
| |
Collapse
|
30
|
Yoon C, Cho SJ, Chang KK, Park DJ, Ryeom SW, Yoon SS. RETRACTED: Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res 2017; 15:1106-1116. [PMID: 28461325 PMCID: PMC5540756 DOI: 10.1158/1541-7786.mcr-17-0053] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 02/01/2023]
Abstract
Rac1, a Rho GTPase family member, is dysregulated in a variety of tumor types including gastric adenocarcinoma, but little is known about its role in cancer stem-like cells (CSCs). Therefore, Rac1 activity and inhibition were examined in gastric adenocarcinoma cells and mouse xenograft models for epithelial-to-mesenchymal transition (EMT) and CSC phenotypes. Rac1 activity was significantly higher in spheroid-forming or CD44+ gastric adenocarcinoma CSCs compared with unselected cells. Rac1 inhibition using Rac1 shRNA or a Rac1 inhibitor (NSC23766) decreased expression of the self-renewal transcription factor, Sox-2, decreased spheroid formation by 78%-81%, and prevented tumor initiation in immunodeficient mice. Gastric adenocarcinoma CSCs had increased expression of the EMT transcription factor Slug, 4.4- to 8.3-fold greater migration, and 4.2- to 12.6-fold greater invasion than unselected cells, and these increases could be blocked completely with Rac1 inhibition. Gastric adenocarcinoma spheroid cells were resistant to 5-fluorouracil and cisplatin chemotherapy, and this chemotherapy resistance could be reversed with Rac1 shRNA or NSC23766. The PI3K/Akt pathway may be upstream of Rac1, and JNK may be downstream of Rac1. In the MKN-45 xenograft model, cisplatin inhibited tumor growth by 50%, Rac1 inhibition by 35%, and the combination by 77%. Higher Rac1 activity, in clinical specimens from gastric adenocarcinoma patients who underwent potentially curative surgery, correlated with significantly worse survival (P = 0.017). In conclusion, Rac1 promotes the EMT program in gastric adenocarcinoma and the acquisition of a CSC state. Rac1 inhibition in gastric adenocarcinoma cells blocks EMT and CSC phenotypes, and thus may prevent metastasis and augment chemotherapy.Implications: In gastric adenocarcinoma, therapeutic targeting of the Rac1 pathway may prevent or reverse EMT and CSC phenotypes that drive tumor progression, metastasis, and chemotherapy resistance. Mol Cancer Res; 15(8); 1106-16. ©2017 AACR.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Soo-Jeong Cho
- Center for Gastric Cancer, National Cancer Center, Goyang, South Korea
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Do Joong Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
31
|
Di J, Gao K, Qu D, Wu Y, Yang J, Zheng J. Rap2B promotes angiogenesis via PI3K/AKT/VEGF signaling pathway in human renal cell carcinoma. Tumour Biol 2017; 39:1010428317701653. [PMID: 28691643 DOI: 10.1177/1010428317701653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human renal cell carcinoma which is a highly vascular tumor is the leading cause of death from urologic cancers. Angiogenesis has a pivotal role in oncogenesis and in the viability and expansion of renal cell carcinoma. Rap2B, as a small guanosine triphosphate–binding protein of the Ras family, was first discovered in the early 1990s during the screening of a platelet complementary DNA library. Previous studies have shown that Rap2B aberrantly expressed in human carcinogenesis and promoted the development of tumors via multiple signaling pathways. However, the function of Rap2B in tumor angiogenesis that is necessary for tumor growth and metastasis remains unknown. In this study, we examined the role of Rap2B in angiogenesis in renal cell carcinoma by Western blot, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, human umbilical vascular endothelial cells growth assay, and endothelial cell tube formation assay. We found that Rap2B promoted angiogenesis in vitro and in vivo. Moreover, our data illustrated that phosphoinositide 3-kinase/AKT signaling pathway is involved in Rap2B-mediated upregulation of vascular endothelial growth factor and renal cell carcinoma angiogenesis. Taken together, these results revealed that Rap2B promotes renal cell carcinoma angiogenesis via phosphoinositide 3-kinase/AKT/vascular endothelial growth factor signaling pathway, which suggests that Rap2B is a novel therapeutic target for renal cell carcinoma anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- The School of Life Science and Technology, Harbin Institute of
Technology, Harbin, China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Department of Urology, Affiliated Hospital of Xuzhou Medical
University, Xuzhou, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yaoyao Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
| | - Jing Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R. China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, P.R.China
| |
Collapse
|
32
|
Yun JH, Kim KA, Yoo G, Kim SY, Shin JM, Kim JH, Jung SH, Kim J, Nho CW. Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 30:42-49. [PMID: 28545668 DOI: 10.1016/j.phymed.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/31/2016] [Accepted: 01/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subset of cells within the bulk of a tumor that have the ability to self-renew and differentiate, and are thus associated with cancer invasion, metastasis, and recurrence. Phenethyl isothiocyanate (PEITC) is a natural compound found in cruciferous vegetables such as broccoli and is used as a cancer chemopreventive agent; however, its effects on CSCs are little known. PURPOSE To evaluate the effect of PEITC on CSCs in this study by examining CSC properties. METHODS NCCIT human embryonic carcinoma cells were treated with PEITC, and the expression of pluripotency factors Oct4, Sox-2, and Nanog were evaluated by luciferase assay and western blot. Effect of PEITC on self-renewal capacity and clonogenicity were assessed with the sphere formation, soft agar assay, and clonogenic assay in an epithelial cell adhesion molecule (EpCAM)-expressing CSC model derived from HCT116 colon cancer cells using a cell sorting system. The effect of PEITC was also investigated in a mouse xenograft model obtained by injecting nude mice with EpCAM-expressing cells. RESULTS We found that PEITC treatment suppressed expression of the all three pluripotency factors in the NCCIT cells, in which pluripotency factors are highly expressed. Moreover, PEITC suppressed the self-renewal capacity and clonogenicity in the EpCAM-expressing CSC model. EpCAM was used as a specific CSC marker in this study. Importantly, PEITC markedly suppressed both tumor growth and expression of three pluripotency factors in a mouse xenograft model. CONCLUSION These results demonstrate that PEITC might be able to slow down or prevent cancer recurrence by suppressing CSC stemness.
Collapse
Affiliation(s)
- Ji Ho Yun
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Kyung-A Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Gyhye Yoo
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Sun Young Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Ji Min Shin
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jung Hoon Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Sang Hoon Jung
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Chu Won Nho
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea.
| |
Collapse
|
33
|
Fu YF, Liu X, Gao M, Zhang YN, Liu J. Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway. Oncotarget 2017; 8:61093-61106. [PMID: 28977849 PMCID: PMC5617409 DOI: 10.18632/oncotarget.17862] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of endoplasmic reticulum stress (ERS) on autophagy, proliferation, apoptosis, and drug resistance in multiple myeloma (MM). MM patients enrolled in our study (n = 268) were classified into sensitive and resistant groups based on chemotherapy efficacy, and their serum levels of β2-MG, albumin (ALB), lactic dehydrogenase (LDH), Ca2+ and hemoglobin were determined. In addition, human MM U266 and MOLP-2/R cells were divided into blank, tunicamycin (TM), TM + insulin-like growth factor-1 (IGF-1), and TM + rapamycin groups, and measured expression of ERS-related, PI3K/Akt/mTOR pathway-related, and autophagy-related mRNA and proteins. Serum levels of β2-MG, LDH and Ca2+, and expression of PI3K, Akt, and mTOR were higher in the resistant than sensitive group. Serum levels of ALB and hemoglobin, and expression of glucose-regulated protein 78 (GRP78), GRP94, microtubule associated protein 1 light chain 3 (LC3), and Beclin1, were lower in the resistant than sensitive group. In U266 cells treated with TM and IGF-1 or rapamycin, ERS promoted autophagy and apoptosis while inhibiting proliferation through inhibition of PI3K/Akt/mTOR signaling. ERS also reversed drug resistance in MOLP-2/R cells via the PI3K/Akt/mTOR signaling pathway. These data suggest that ERS activation could be exploited for therapeutic benefits in the treatment of MM.
Collapse
Affiliation(s)
- Yun-Feng Fu
- The Third Xiangya Hospital of Central South University, Changsha 410013, P.R. China
| | - Xiao Liu
- The Third Xiangya Hospital of Central South University, Changsha 410013, P.R. China
| | - Meng Gao
- The Third Xiangya Hospital of Central South University, Changsha 410013, P.R. China
| | - Ya-Nan Zhang
- The Third Xiangya Hospital of Central South University, Changsha 410013, P.R. China
| | - Jing Liu
- The Third Xiangya Hospital of Central South University, Changsha 410013, P.R. China
| |
Collapse
|
34
|
miR-195 Regulates Proliferation and Apoptosis through Inhibiting the mTOR/p70s6k Signaling Pathway by Targeting HMGA2 in Esophageal Carcinoma Cells. DISEASE MARKERS 2017; 2017:8317913. [PMID: 28487599 PMCID: PMC5402242 DOI: 10.1155/2017/8317913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
miR-195 is related to tumorigenesis and frequently inhibits cell proliferation and promotes apoptosis in various cancers, including esophageal carcinoma (EC). The mTOR/p70s6k signaling pathway, which is the major target pathway for HMGA2, regulates the survival and cell proliferation of many tumors and is commonly active in EC. The relationships of miR-195, HMGA2, and the mTOR/p70s6k signaling pathway in EC, however, remain unknown. In the present study, we found that the miR-195 level was significantly downregulated in EC tissues, while the mRNA expressions of HMGA2 were significantly upregulated. Dual-luciferase reporter assay demonstrated that HMGA2 is a target of miR-195. MTT assay and flow cytometry revealed that miR-195 overexpression inhibited cell proliferation and induced apoptosis by targeting HMGA2. We also found that HMGA2 restored the inhibitory effect of miR-195 on phosphorylation of mTOR and p70S6K. Furthermore, rapamycin, a specific inhibitor of the mTOR/p70S6K signaling pathway, decreased the levels of Ki-67 and Bcl-2/Bax ratio, inhibited cell proliferation, and promoted apoptosis in EC cells. In conclusion, upregulation of miR-195 significantly suppressed cell growth and induced apoptosis of EC cells via suppressing the mTOR/p70s6k signaling pathway by targeting HMGA2.
Collapse
|
35
|
Li W, Zhou Y, Zhang X, Yang Y, Dan S, Su T, She S, Dong W, Zhao Q, Jia J, Yao H, Zheng M, Kang B, Wang YJ. Dual inhibiting OCT4 and AKT potently suppresses the propagation of human cancer cells. Sci Rep 2017; 7:46246. [PMID: 28383051 PMCID: PMC5382782 DOI: 10.1038/srep46246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
AKT serves as an epigenetic modulator that links epigenetic regulation to cell survival and proliferation while the epigenetic mediator OCT4 critically controls stem cell pluripotency and self-renewal. Emerging evidence indicated their complicated interplays in cancer cells and cancer stem cells (CSCs), and inhibiting either one may activate the other. Thus, in this study, we propose a strategy to targeting both factors simultaneously. Firstly, a combination of an OCT4-specific shRNA and the specific AKT inhibitor Akti-1/2 potently suppressed the propagation of human embryonal carcinoma cells, adherent cancer cells and stem-like cancer cells, establishing the proof-of-concept that dual inhibiting OCT4 and AKT can effectively target various cancer cells. Next, we combined Akti-1/2 with metformin, a widely-prescribed drug for treating type 2 diabetes, which was reported to down-regulate OCT4 expression. The metformin + Akti-1/2 combo significantly altered multiple signaling and epigenetic pathways, induced growth arrest and cell death of adherent and stem-like glioblastoma U87 cells, and attenuated their tumorigenicity in vivo. Taken together, we demonstrate here that simultaneously targeting an epigenetic mediator and an epigenetic modulator, by dual inhibiting OCT4 and AKT, can have significantly improved efficacies over single treatment in suppressing the propagation of CSCs as well as the entire bulk of differentiated cancer cells.
Collapse
Affiliation(s)
- Wenxin Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanwen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Tong Su
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Weilai Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingwei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Department of Pharmacy, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jia Jia
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
36
|
Ahmad G, Amiji MM. Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opin Drug Deliv 2016; 14:997-1008. [DOI: 10.1080/17425247.2017.1263615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gulzar Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 2016; 129:177-187. [PMID: 27777238 DOI: 10.1182/blood-2016-05-707653] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Philadelphia chromosome (Ph)-like B-cell acute lymphoblastic leukemia (Ph-like ALL) is associated with activated JAK/STAT, Abelson kinase (ABL), and/or phosphatidylinositol 3-kinase (PI3K) signaling and poor clinical outcomes. PI3K pathway signaling inhibitors have been minimally investigated in Ph-like ALL. We hypothesized that targeted inhibition of PI3Kα, PI3Kδ, PI3K/mTOR, or target of rapamycin complex 1/2 (TORC1/TORC2) would decrease leukemia proliferation and abrogate aberrant kinase signaling and that combined PI3K pathway and JAK inhibition or PI3K pathway and SRC/ABL inhibition would have superior efficacy compared to inhibitor monotherapy. We treated 10 childhood ALL patient-derived xenograft models harboring various Ph-like genomic alterations with 4 discrete PI3K pathway protein inhibitors and observed marked leukemia reduction and in vivo signaling inhibition in all models. Treatment with dual PI3K/mTOR inhibitor gedatolisib resulted in near eradication of ALL in cytokine receptor-like factor 2 (CRLF2)/JAK-mutant models with mean 92.2% (range, 86.0%-99.4%) reduction vs vehicle controls (P < .0001) and in prolonged animal survival. Gedatolisib also inhibited ALL proliferation in ABL/platelet-derived growth factor receptor (PDGFR)-mutant models with mean 66.9% (range, 42.0%-87.6%) reduction vs vehicle (P < .0001). Combined gedatolisib and ruxolitinib treatment of CRLF2/JAK-mutant models more effectively inhibited ALL proliferation than either inhibitor alone (P < .001) and further enhanced survival. Similarly, superior efficacy of combined gedatolisib and dasatinib was observed in ABL/PDGFR-mutant models (P < .001). Overall, PI3K/mTOR inhibition potently decreased ALL burden in vivo; antileukemia activity was further enhanced with combination inhibitor therapy. Clinical trials testing combinations of kinase inhibitors in Ph-like ALL patients are indicated.
Collapse
|
38
|
Schaefer T, Wang H, Mir P, Konantz M, Pereboom TC, Paczulla AM, Merz B, Fehm T, Perner S, Rothfuss OC, Kanz L, Schulze-Osthoff K, Lengerke C. Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget 2016; 6:43540-56. [PMID: 26498353 PMCID: PMC4791249 DOI: 10.18632/oncotarget.6183] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/10/2015] [Indexed: 01/04/2023] Open
Abstract
The transcription factor SOX2 is a key regulator of pluripotency in embryonic stem cells and plays important roles in early organogenesis. Recently, SOX2 expression was documented in various cancers and suggested as a cancer stem cell (CSC) marker. Here we identify the Ser/Thr-kinase AKT as an upstream regulator of SOX2 protein turnover in breast carcinoma (BC). SOX2 and pAKT are co-expressed and co-regulated in breast CSCs and depletion of either reduces clonogenicity. Ectopic SOX2 expression restores clonogenicity and in vivo tumorigenicity of AKT-inhibited cells, suggesting that SOX2 acts as a functional downstream AKT target. Mechanistically, we show that AKT physically interacts with the SOX2 protein to modulate its subcellular distribution. AKT kinase inhibition results in enhanced cytoplasmic retention of SOX2, presumably via impaired nuclear import, and in successive cytoplasmic proteasomal degradation of the protein. In line, blockade of either nuclear transport or proteasomal degradation rescues SOX2 expression in AKT-inhibited BC cells. Finally, AKT inhibitors efficiently suppress the growth of SOX2-expressing putative cancer stem cells, whereas conventional chemotherapeutics select for this population. Together, our results suggest the AKT/SOX2 molecular axis as a regulator of BC clonogenicity and AKT inhibitors as promising drugs for the treatment of SOX2-positive BC.
Collapse
Affiliation(s)
- Thorsten Schaefer
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hui Wang
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany
| | - Perihan Mir
- Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany
| | - Martina Konantz
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Tamara C Pereboom
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Anna M Paczulla
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Britta Merz
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Tanja Fehm
- Women's Hospital, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck, Luebeck, Germany
| | - Oliver C Rothfuss
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Lothar Kanz
- Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany.,Clinic for Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Oh SJ, Noh KH, Lee YH, Hong SO, Song KH, Lee HJ, Kim S, Kim TM, Jeon JH, Seo JH, Kim DW, Kim TW. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells. Oncotarget 2016; 6:40255-67. [PMID: 26517679 PMCID: PMC4741893 DOI: 10.18632/oncotarget.5434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022] Open
Abstract
The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.
Collapse
Affiliation(s)
- Se Jin Oh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Hee Noh
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Young-Ho Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Soon-Oh Hong
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea.,Division of Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwon-Ho Song
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Hyo-Jung Lee
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Soyeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Korea
| | - Jae Hong Seo
- Division of Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Woo Kim
- Laboratory of Infection and Immunology, Graduate School of Medicine, Korea University, Seoul, Korea.,Department of Biochemistry & Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
40
|
Cho YJ, Woo JH, Lee JS, Jang DS, Lee KT, Choi JH. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells. J Pharmacol Sci 2016; 132:6-14. [DOI: 10.1016/j.jphs.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 12/29/2015] [Accepted: 02/18/2016] [Indexed: 02/09/2023] Open
|
41
|
Zhang HF, Wu C, Alshareef A, Gupta N, Zhao Q, Xu XE, Jiao JW, Li EM, Xu LY, Lai R. The PI3K/AKT/c-MYC Axis Promotes the Acquisition of Cancer Stem-Like Features in Esophageal Squamous Cell Carcinoma. Stem Cells 2016; 34:2040-51. [PMID: 27144349 DOI: 10.1002/stem.2395] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 02/05/2023]
Abstract
The importance of intratumoral heterogeneity has been highlighted by the identification and characterization of cancer stem cells (CSCs). Based on the differential responsiveness to a Sox2 reporter, SRR2, we had found a novel dichotomy in esophageal squamous cell carcinoma (ESCC) cells, with reporter-responsive (RR) cells showing more CSC-like features than reporter-unresponsive (RU) cells. Specifically, RR cells exhibited significantly higher tumorsphere formation capacity, proportions of CD44(High) cells, chemoresistance to cisplatin, and tumorigenic potential in vivo. H2 O2 , a potent inducer of oxidative stress and reactive oxygen species, was found to induce a conversion from RU to RR cells; importantly, converted RR cells acquired CSC-like features. The PI3K/AKT/c-MYC signalling axis is important in this context, since pharmacologic blockade of PI3K-AKT or siRNA knockdown of c-MYC effectively inhibited the RR phenotype and its associated CSC-like features, as well as the H2 O2 -induced RU/RR conversion. In a cohort of 188 ESCC patient samples, we found a significant correlation between strong c-MYC expression and a short overall survival (p = .009). In conclusion, we have described a novel intratumoral heterogeneity in ESCC. The identification of the PI3K/AKT/c-MYC axis as a driver of CSC-like features carries therapeutic implications. Stem Cells 2016;34:2040-2051.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Qing Zhao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ji-Wei Jiao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Gkountela S, Aceto N. Stem-like features of cancer cells on their way to metastasis. Biol Direct 2016; 11:33. [PMID: 27457474 PMCID: PMC4960876 DOI: 10.1186/s13062-016-0135-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED More than 90 % of cancer-related deaths are due to the development of a systemic metastatic disease. Clearly, much remains to be understood about the biological principles that govern human cancer metastasis, aiming at the ambitious objective to decrease metastasis-related mortality in patients. For many years, research on metastasis has been conducted in great part on experimental mouse models, mainly because of the difficulties in sampling, longitudinal studies, and molecular interrogation of a human metastatic disease. However, recently, extraordinary advances in microfluidic technologies are allowing the isolation and characterization of human circulating tumor cells (CTCs) that escaped a primary tumor mass and are in the process of seeding a distant metastasis. Analysis of human CTCs has now revealed important features of cancer metastasis, such as the high metastatic potential of CTC-clusters compared to single CTCs, the dynamic expression of epithelial and mesenchymal markers on CTCs during treatment, and the possibility to culture CTCs from patients for a real-time and individualized testing of drug susceptibility. Nevertheless, several aspects of CTC biology remain unsolved, such as the characterization of the stem-like cell population among human CTCs. Here, we focus on describing the latest findings in the CTC field, and discuss them in the context of cancer stem cell biology. Defining the molecular features of those few metastasis-initiating, stem-like CTCs holds the exceptional promise to develop metastasis-tailored therapies for patients with cancer. REVIEWERS This article was reviewed by Elisa Cimetta, Luca Pellegrini and Sirio Dupont (nominated by LP).
Collapse
Affiliation(s)
- Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
43
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
44
|
Yoon C, Cho SJ, Aksoy BA, Park DJ, Schultz N, Ryeom SW, Yoon SS. RETRACTED: Chemotherapy Resistance in Diffuse-Type Gastric Adenocarcinoma Is Mediated by RhoA Activation in Cancer Stem-Like Cells. Clin Cancer Res 2016; 22:971-83. [PMID: 26482039 PMCID: PMC4823002 DOI: 10.1158/1078-0432.ccr-15-1356] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE The Lauren diffuse type of gastric adenocarcinoma (DGA), as opposed to the intestinal type (IGA), often harbors mutations in RHOA, but little is known about the role of RhoA in DGA. EXPERIMENTAL DESIGN We examined RhoA activity and RhoA pathway inhibition in DGA cell lines and in two mouse xenograft models. RhoA activity was also assessed in patient tumor samples. RESULTS RhoA activity was higher in DGA compared with IGA cell lines and was further increased when grown as spheroids to enrich for cancer stem-like cells (CSCs) or when sorted using the gastric CSC marker CD44. RhoA shRNA or the RhoA inhibitor Rhosin decreased expression of the stem cell transcription factor, Sox2, and decreased spheroid formation by 78% to 81%. DGA spheroid cells had 3- to 5-fold greater migration and invasion than monolayer cells, and this activity was Rho-dependent. Diffuse GA spheroid cells were resistant in a cytotoxicity assay to 5-fluorouracil and cisplatin chemotherapy, and this resistance could be reversed with RhoA pathway inhibition. In two xenograft models, cisplatin inhibited tumor growth by 40% to 50%, RhoA inhibition by 32% to 60%, and the combination by 77% to 83%. In 288 patient tumors, increased RhoA activity correlated with worse overall survival in DGA patients (P = 0.017) but not in IGA patients (P = 0.612). CONCLUSIONS RhoA signaling promotes CSC phenotypes in DGA cells. Increased RhoA activity is correlated with worse overall survival in DGA patients, and RhoA inhibition can reverse chemotherapy resistance in DGA CSC and in tumor xenografts. Thus, the RhoA pathway is a promising new target in DGA patients.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Soo-Jeong Cho
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Bülent Arman Aksoy
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York. Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York
| | - Do Joong Park
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York. Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
45
|
Rodolfo C, Di Bartolomeo S, Cecconi F. Autophagy in stem and progenitor cells. Cell Mol Life Sci 2016; 73:475-96. [PMID: 26502349 PMCID: PMC11108450 DOI: 10.1007/s00018-015-2071-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Sabrina Di Bartolomeo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Francesco Cecconi
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy.
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
46
|
Es-Haghi M, Soltanian S, Dehghani H. Perspective: Cooperation of Nanog, NF-κΒ, and CXCR4 in a regulatory network for directed migration of cancer stem cells. Tumour Biol 2015; 37:1559-65. [PMID: 26715265 DOI: 10.1007/s13277-015-4690-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022] Open
Abstract
Directed cell migration is a crucial mobility phase of cancer stem cells having stemness and tumorigenic characteristics. It is known that CXCR4 plays key roles in the perception of chemotactic gradients throughout the directed migration of CSCs. There are a number of complex signaling pathways and transcription factors that coordinate with CXCR4/CXCL12 axis during directed migration. In this review, we focus on some transcription factors such as Nanog, NF-κB, and Bmi-1 that cooperate with CXCR4/CXCL12 for the maintenance of stemness and induction of metastasis behavior in cancer stem cells.
Collapse
Affiliation(s)
- Masoumeh Es-Haghi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Embryonic and Stem Cell Biology and Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
47
|
Lai Y, Yu X, Lin X, He S. Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int J Mol Med 2015; 37:369-77. [PMID: 26707081 PMCID: PMC4716789 DOI: 10.3892/ijmm.2015.2441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
The sensitization of breast cancer stem cells (BrCSCs) to the inhibitive effects of radiotherapy through adjuvant therapy which targets oncogenic pathways represents a prospective strategy for improving the effect of radiation in patients with triple-negative breast cancer (TNBC). Mammalian target of rapamycin (mTOR) activation is one of the most frequent events in human malignancies, and is critical for sustaining the self-renewing ability of cancer stem cells (CSCs); inhibition by rapamycin is an effective and promising strategy in anticancer treatments. In the present study, we found that mTOR activity was closely related to the self-renewal ability of BrCSCs, and in triple negative MDA-MB-453 and MDA-MB-468 cells, rapamycin repression of mTOR phosphorylation decreased the number of mammospheres and helped to sensitize the resistant CSCs to low-dose radiation therapy. By inhibiting mTOR and mitochondrial manganese superoxide dismutase (MnSOD), we confirmed that rapamycin functioned through the mTOR/MnSOD/reactive oxygen species (ROS) signaling pathway, and the existence of Akt governed the rapamycin-induced asymmetric division (AD) of stem cells in cases of radiation-treated breast cancer. The synergic effects of rapamycin and low-dose radiation induced the AD of stem cells, which then resulted in a decrease in the number of mammospheres, and both were mediated by MnSOD. Governed by Akt, the consequent inhibition of ROS formation and oxidative stress preserved the AD mode of stem cells, which is critical for an improved radiotherapy response in clinical treatment, as the tumor group is thus easier to eliminate with radiation therapy. We posit that an in-depth understanding of the interaction of radiation with CSCs has enormous potential and will make radiation even better and more effective.
Collapse
Affiliation(s)
- Yuanhui Lai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Xinpei Yu
- Department of Geriatric Infection and Organ Function Support Laboratory, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xiaohong Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Shanyang He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
48
|
Mongiorgi S, Finelli C, Yang YR, Clissa C, McCubrey JA, Billi AM, Manzoli L, Suh PG, Cocco L, Follo MY. Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes. Expert Opin Ther Targets 2015; 20:677-87. [PMID: 26610046 DOI: 10.1517/14728222.2016.1125885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Nuclear inositide signaling pathways specifically regulate cell proliferation and differentiation. Interestingly, the modulation of nuclear inositides in hematological malignancies can differentially affect erythropoiesis or myelopoiesis. This is particularly important in patients with myelodysplastic syndromes (MDS), who show both defective erythroid and myeloid differentiation, as well as an increased risk of evolution into acute myeloid leukemia (AML). AREAS COVERED This review focuses on the structure and function of specific nuclear inositide enzymes, whose impairment could be linked with disease pathogenesis and cancer. The authors, stemming from literature and published data, discuss and describe the role of nuclear inositides, focusing on specific enzymes and demonstrating that targeting these molecules could be important to develop innovative therapeutic approaches, with particular reference to MDS treatment. EXPERT OPINION Demethylating therapy, alone or in combination with other drugs, is the most common and current therapy for MDS patients. Nuclear inositide signaling molecules have been demonstrated to be important in hematopoietic differentiation and are promising new targets for developing a personalized MDS therapy. Indeed, these enzymes can be ideal targets for drug design and their modulation can have several important downstream effects to regulate MDS pathogenesis and prevent MDS progression to AML.
Collapse
Affiliation(s)
- Sara Mongiorgi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Carlo Finelli
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Yong Ryoul Yang
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Cristina Clissa
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy.,d Hematology and Transplant Center , AORMN , Pesaro , Italy
| | - James A McCubrey
- e Department of Microbiology & Immunology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Anna Maria Billi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Lucia Manzoli
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Pann-Ghill Suh
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Lucio Cocco
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Matilde Y Follo
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
49
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35 Suppl:S25-S54. [PMID: 25892662 PMCID: PMC4898971 DOI: 10.1016/j.semcancer.2015.02.006] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, Temple University, Philadelphia, PA, United States.
| | - Alla Arzumanyan
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Stacy W Blain
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, United States
| | - Randall F Holcombe
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Jamal Mahajna
- MIGAL-Galilee Technology Center, Cancer Drug Discovery Program, Kiryat Shmona, Israel
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Maria L Martinez-Chantar
- Metabolomic Unit, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dipali Sharma
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj K Saxena
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Neetu Singh
- Tissue and Cell Culture Unit, CSIR-Central Drug Research Institute, Council of Scientific & Industrial Research, Lucknow, India
| | | | - Shanchun Guo
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, Al-Ain, United Arab Emirates
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sophie Chen
- Department of Research and Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey GU2 7YG, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Asfar S Azmi
- Department of Pathology, Karmonas Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dorota Halicka
- Brander Cancer Research Institute, Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| |
Collapse
|
50
|
Liu GT, Chen HT, Tsou HK, Tan TW, Fong YC, Chen PC, Yang WH, Wang SW, Chen JC, Tang CH. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells. Oncotarget 2015; 5:10718-31. [PMID: 25301739 PMCID: PMC4279405 DOI: 10.18632/oncotarget.2532] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022] Open
Abstract
Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guan-Ting Liu
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan. Department of Early Childhood Care and Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Tzu-Wei Tan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chen Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan. Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jui-Chieh Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan. Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|