1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024:10.1007/s00232-024-00325-0. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Morgenstern TJ, Darko-Boateng A, Afriyie E, Shanmugam SK, Zhou X, Choudhury P, Desai M, Kass RS, Clarke OB, Colecraft HM. Ion channel inhibition by targeted recruitment of NEDD4-2 with divalent nanobodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596281. [PMID: 38854018 PMCID: PMC11160594 DOI: 10.1101/2024.05.28.596281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.
Collapse
Affiliation(s)
- Travis J. Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Arden Darko-Boateng
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Afriyie
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Sri Karthika Shanmugam
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Xinle Zhou
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | | | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY
| | - Henry M. Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
3
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
4
|
Makau CM, Towett PK, Kanui TI, Abelson KSP. Effects of inhibition of Nav1.3, Nav1.7, and Nav1.8 channels on pain-related behavior in Speke's hinge-back tortoise (Kinixys spekii). J Neurosci Res 2024; 102:e25274. [PMID: 38284848 DOI: 10.1002/jnr.25274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Comparative studies using reptiles as experimental animals in pain research could expand our knowledge on the evolution and adaptation of pain mechanisms. Currently, there are no data reported on the involvement of voltage-gated sodium ion channels on nociception in reptiles. The aim of this study was to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8 ion channels in nociception in Speke's hinge-back tortoise. ICA 121341 (selective blocker for Nav1.1/Nav1.3), NAV 26 (selective blocker for Nav1.7), and A803467 (selective blocker for Nav1.8) were used to investigate the involvement of Nav1.3, Nav1.7, and Nav1.8, respectively. The chemicals were administered intracoelomically thirty minutes before the start of nociceptive tests. ICA 121341 did not cause a significant decrease in the time spent in pain-related behavior in all the nociceptive tests. NAV 26 and A8034667 caused a statistically significant decrease in the mean time spent in pain-related behavior in the formalin and capsaicin tests. Only A803467 caused a statistically significant increase in the mean latency to pain-related behavior in the hot plate test. NAV 26 and A803467 had no observable side effects. In conclusion, Nav1.7 and Nav1.8 are involved in the processing of chemically induced inflammatory pain in Speke's hinge back tortoise. In addition, Nav1.8 are also significantly involved in the development of thermal-induced pain-related behavior in this species of reptile. However, our results do not support the involvement of Nav1.3 on the development of chemical or thermal induced pain-related behavior in the Speke's hinge back tortoise.
Collapse
Affiliation(s)
- Christopher M Makau
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Philemon K Towett
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Titus I Kanui
- School of Agriculture and Veterinary Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Klas S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Karmakar S, Basak HK, Paswan U, Saha S, Mandal SK, Chatterjee A. Design, In silico Screening, Synthesis, Characterisation and DFT-based Electronic Properties of Dihydropyridine-based Molecule as L-type Calcium Channel Blocker. Curr Comput Aided Drug Des 2024; 20:1130-1146. [PMID: 39354859 DOI: 10.2174/0115734099273719231005062524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2024]
Abstract
BACKGROUND People of all nationalities and social classes are now affected by the growing issue of hypertension. Over time, there has been a consistent rise in the fatality rate. A range of therapeutic compounds, on the other hand, are often used to handle hypertension. OBJECTIVES The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. MATERIALS AND METHODS Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligand were calculated using the M06-2X/ def2- TZVP level of theory. The SwissADME website was used to study the ADMET properties. RESULTS In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. CONCLUSION Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.
Collapse
Affiliation(s)
- Sujoy Karmakar
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| | - Hriday Kumar Basak
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
- Department of Chemistry, Government General Degree College at Kushmandi, Dakhin Dinajpur, 733121, West Bengal, India
| | - Uttam Paswan
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| | - Soumen Saha
- Department of Chemistry, TDB College, Raniganj, Paschim Bardhaman, 713347, WB, India
| | - Samir Kumar Mandal
- Department of Chemistry, Saldiha College, Saldiha, Bankura, 722173, WB, India
| | - Abhik Chatterjee
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| |
Collapse
|
6
|
Mishra G, Singh P, Pottoo FH, Javed MN, Zeleke MM, Yimer YS. Nutraceuticals for Fibromyalgia and Neuropathic Pain. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:133-191. [DOI: 10.4018/978-1-7998-4120-3.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Both neuropathic pain and fibromyalgia are horrific painful conditions arising due to impairment in the somatosensory nervous system and the musculoskeletal system, respectively. They share some common symptoms like hyperalgesia, allodynia, insomnia, cognitive deficits, and mood disturbances. It is believed that fibromyalgia is the consequence of dysfunction of the central nervous system, autonomic nervous system, imbalance in neurotransmitters, and psychological and emotional stress. Henceforth, these pain syndromes have become a major challenge for healthcare professionals due to their complex etiology and poor availability and effectiveness of the drugs. Notably, the available synthetic drugs possess serious side effects including physical dependence and tolerance. Therefore, researchers are now seeking natural-based therapy for modulating chronic pain conditions. This chapter has been written with the intention of exploring the beneficial effects of various nutraceuticals including herbal dietary supplements in neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Pradeep Singh
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Faheem Hyder Pottoo
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md Noushad Javed
- School of Pharmaceutical Sciences and Research, Jamia Hamdard, India
| | - Mulugeta Molla Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | | |
Collapse
|
7
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Ghovanloo MR, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj SD, Waxman SG. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. CELL REPORTS METHODS 2023; 3:100385. [PMID: 36814833 PMCID: PMC9939380 DOI: 10.1016/j.crmeth.2022.100385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The patch-clamp technique is the gold-standard methodology for analysis of excitable cells. However, throughput of manual patch-clamp is slow, and high-throughput robotic patch-clamp, while helpful for applications like drug screening, has been primarily used to study channels and receptors expressed in heterologous systems. We introduce an approach for automated high-throughput patch-clamping that enhances analysis of excitable cells at the channel and cellular levels. This involves dissociating and isolating neurons from intact tissues and patch-clamping using a robotic instrument, followed by using an open-source Python script for analysis and filtration. As a proof of concept, we apply this approach to investigate the biophysical properties of voltage-gated sodium (Nav) channels in dorsal root ganglion (DRG) neurons, which are among the most diverse and complex neuronal cells. Our approach enables voltage- and current-clamp recordings in the same cell, allowing unbiased, fast, simultaneous, and head-to-head electrophysiological recordings from a wide range of freshly isolated neurons without requiring culturing on coverslips.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emre Kiziltug
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
9
|
Tukker AM, Vrolijk MF, van Kleef RGDM, Sijm DTHM, Westerink RHS. Mixture effects of tetrodotoxin (TTX) and drugs targeting voltage-gated sodium channels on spontaneous neuronal activity in vitro. Toxicol Lett 2023; 373:53-61. [PMID: 36375636 DOI: 10.1016/j.toxlet.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Misha F Vrolijk
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands
| | - Dick T H M Sijm
- Faculty of Health, Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, the Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, the Netherlands.
| |
Collapse
|
10
|
Nutraceuticals: A source of benefaction for neuropathic pain and fibromyalgia. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Li Y, Sheng L, Jena PK, Gilbert MC, Wan YJY, Mao H. Retinoic Acid Signaling Is Compromised in DSS-Induced Dysbiosis. Nutrients 2022; 14:2788. [PMID: 35889745 PMCID: PMC9315703 DOI: 10.3390/nu14142788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and malnutrition both cause dysbiosis and dampen retinoic acid (RA) signaling pathways, which play pivotal roles in biological processes. The current study evaluates a hypothesis that colitis-associated dysbiosis also has systemic negative impacts on RA signaling. Thus, we studied the effects of inflammation, under a vitamin A-sufficient condition, on RA signaling using mouse colitis models induced by dextran sulfate sodium. That data showed that intestinal inflammation resulted in reduced RA signaling in the liver, brain, gut, and adipose tissues measured by analyzing the expression of genes encoding for the synthesis, oxidation, transport, and receptor of RA. The expression of RA-regulated gut homing molecules including α4β7 integrin, and CCR9, along with MADCAM1 were all reduced in colitis mice revealing compromised immunity due to reduced RA signaling. The data also showed that the development of colitis was accompanied by dysbiosis featured with reduced Lactobacillaceae and Verrucomicrobiaceae but an expansion of Erysipelotrichaceae and others. Colitis resulted in reduced butyrate-producing bacteria and increased methane-generating bacteria. Additionally, dysbiosis was associated with induced Il-1β, Ifn-γ, and Tnf-α mRNA but reduced Il-22, Il-17f, and Rorγt transcripts in the colon. Together, intestinal inflammation inhibits RA signaling in multiple organs. RA is essential in regulating various biological processes, it is critical to detect RA signaling reduction in tissues even when vitamin A deficiency is absent. Moreover, probiotics can potentially prevent dysbiosis and reverse compromised RA signaling, having systemic health benefits.
Collapse
Affiliation(s)
- Yongchun Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
- Department of Infectious Diseases, The Six Affiliated Hospital, South China University of Technology, Foshan 528200, China
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA; (L.S.); (P.K.J.); (M.C.G.)
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| |
Collapse
|
12
|
Borja GB, Zhang H, Harwood BN, Jacques J, Grooms J, Chantre RO, Zhang D, Barnett A, Werley CA, Lu Y, Nagle SF, McManus OB, Dempsey GT. Highly Parallelized, Multicolor Optogenetic Recordings of Cellular Activity for Therapeutic Discovery Applications in Ion Channels and Disease-Associated Excitable Cells. Front Mol Neurosci 2022; 15:896320. [PMID: 35860501 PMCID: PMC9289666 DOI: 10.3389/fnmol.2022.896320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Optogenetic assays provide a flexible, scalable, and information rich approach to probe compound effects for ion channel drug targets in both heterologous expression systems and associated disease relevant cell types. Despite the potential utility and growing adoption of optogenetics, there remains a critical need for compatible platform technologies with the speed, sensitivity, and throughput to enable their application to broader drug screening applications. To address this challenge, we developed the SwarmTM, a custom designed optical instrument for highly parallelized, multicolor measurements in excitable cells, simultaneously recording changes in voltage and calcium activities at high temporal resolution under optical stimulation. The compact design featuring high power LEDs, large numerical aperture optics, and fast photodiode detection enables all-optical individual well readout of 24-wells simultaneously from multi-well plates while maintaining sufficient temporal resolution to probe millisecond response dynamics. The Swarm delivers variable intensity blue-light optogenetic stimulation to enable membrane depolarization and red or lime-light excitation to enable fluorescence detection of the resulting changes in membrane potential or calcium levels, respectively. The Swarm can screen ~10,000 wells/day in 384-well format, probing complex pharmacological interactions via a wide array of stimulation protocols. To evaluate the Swarm screening system, we optimized a series of heterologous optogenetic spiking HEK293 cell assays for several voltage-gated sodium channel subtypes including Nav1.2, Nav1.5, and Nav1.7. The Swarm was able to record pseudo-action potentials stably across all 24 objectives and provided pharmacological characterization of diverse sodium channel blockers. We performed a Nav1.7 screen of 200,000 small molecules in a 384-well plate format with all 560 plates reaching a Z' > 0.5. As a demonstration of the versatility of the Swarm, we also developed an assay measuring cardiac action potential and calcium waveform properties simultaneously under paced conditions using human induced pluripotent stem (iPS) cell-derived cardiomyocytes as an additional counter screen for cardiac toxicity. In summary, the Swarm is a novel high-throughput all-optical system capable of collecting information-dense data from optogenetic assays in both heterologous and iPS cell-derived models, which can be leveraged to drive diverse therapeutic discovery programs for nervous system disorders and other disease areas involving excitable cells.
Collapse
|
13
|
Chen TS, Lai MC, Huang HYI, Wu SN, Huang CW. Immunity, Ion Channels and Epilepsy. Int J Mol Sci 2022; 23:ijms23126446. [PMID: 35742889 PMCID: PMC9224225 DOI: 10.3390/ijms23126446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Epilepsy is a common chronic neurological disorder in modern society. One of the major unmet challenges is that current antiseizure medications are basically not disease-modifying. Among the multifaceted etiologies of epilepsy, the role of the immune system has attracted considerable attention in recent years. It is known that both innate and adaptive immunity can be activated in response to insults to the central nervous system, leading to seizures. Moreover, the interaction between ion channels, which have a well-established role in epileptogenesis and epilepsy, and the immune system is complex and is being actively investigated. Some examples, including the interaction between ion channels and mTOR pathways, will be discussed in this paper. Furthermore, there has been substantial progress in our understanding of the pathophysiology of epilepsy associated with autoimmune encephalitis, and numerous neural-specific autoantibodies have been found and documented. Early recognition of immune-mediated epilepsy is important, especially in cases of pharmacoresistant epilepsy and in the presence of signs of autoimmune encephalitis, as early intervention with immunotherapy shows promise.
Collapse
Affiliation(s)
- Tsang-Shan Chen
- Department of Neurology, Tainan Sin-Lau Hospital, Tainan 701002, Taiwan;
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan;
| | | | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5485)
| |
Collapse
|
14
|
Targeting Viral Ion Channels: A Promising Strategy to Curb SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:ph15040396. [PMID: 35455392 PMCID: PMC9029588 DOI: 10.3390/ph15040396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is the etiological agent COVID-19, one of the most impactful health crises afflicting humanity in recent decades. While research advances have yielded several treatment and prevention options, the pandemic is slow to abate, necessitating an expansion of our treatment arsenal. As a member of the coronaviridae, SARS-CoV-2 contains several ion channels, of which E and 3a are the best characterized. Since ion channels as a family are excellent drug targets, we sought to inhibit both viroporins as a means to curb infectivity. In a previous targeted study, we identified several blockers to each channel from an extensive drug repurposing library. Herein, we examined the ability of said compounds on the whole virus in cellulo. Gratifyingly, many of the blockers exhibited antiviral activity in a stringent assay examining protection from viral-driven death. In particular, darapladib and flumatinib, both 3a blockers, displayed potent antiviral activity. Furthermore, appreciable synergism between flumatinib and several E blockers was identified in a concentration regime in which the compounds are present in human plasma following oral administration. Taken together, targeting ion channels represents a promising approach to both augment and complement our antiviral arsenal against COVID-19.
Collapse
|
15
|
Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines 2022; 10:biomedicines10030653. [PMID: 35327454 PMCID: PMC8945026 DOI: 10.3390/biomedicines10030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Parkinson’s disease and arterial hypertension are likely to coexist in the elderly, with possible bidirectional interactions. We aimed to assess the role of antihypertensive agents in PD emergence and/or progression. (2) We performed a systematic search on the PubMed database. Studies enrolling patients with Parkinson’s disease who underwent treatment with drugs pertaining to one of the major antihypertensive drug classes (β-blockers, diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and calcium-channel blockers) prior to or after the diagnosis of parkinsonism were scrutinized. We divided the outcome into two categories: neuroprotective and disease-modifying effect. (3) We included 20 studies in the qualitative synthesis, out of which the majority were observational studies, with only one randomized controlled trial. There are conflicting results regarding the effect of antihypertensive drugs on Parkinson’s disease pathogenesis, mainly because of heterogeneous protocols and population. (4) Conclusions: There is low quality evidence that antihypertensive agents might be potential therapeutic targets in Parkinson’s disease, but this hypothesis needs further testing.
Collapse
|
16
|
|
17
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
18
|
Ameamsri U, Chaveerach A, Sudmoon R, Tanee T, Peigneur S, Tytgat J. Oleamide in Ipomoea and Dillenia Species and Inflammatory Activity Investigated through Ion Channel Inhibition. Curr Pharm Biotechnol 2021; 22:254-261. [PMID: 32515307 DOI: 10.2174/1389201021666200607185250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oleamide is an essential substance for human health. So, the plants with high oleamide content are great sources for health care products. OBJECTIVE This study is conducted to investigate the quality of oleamide in plants and test the bioactivity in the selected two studied species. METHODS The three Ipomoea and five Dillenia species including Ipomoea alba, Ipomoea aquatica and Ipomoea pes-caprae, and Dillenia indica, Dillenia obovata, Dillenia ovata, Dillenia parviflora and Dillenia pentagyna were investigated for the quantity of oleamide by high-performance liquid chromatography. The biological activity test was conducted on the powder formulation of the chosen plants, Dillenia ovata and Dillenia parviflora at a ratio of 30:70, for anti-inflammatory activity ex vivo on a panel of molecular targets through ion channel inhibition including voltage-gated sodium channel, voltage-gated potassium channel, and the cardiac ion as human ether-a-go-go related gene. RESULTS The results showed that the leaf extracts of I. aquatica and D. ovata gave the highest and subsequent oleamide quantity i.e. 7.52 and 5.17 mg/g, respectively. Out of the Dillenia formulation which contained various compounds, oleamide showed the highest percentages of inhibition at 8.0-20.0%, and 6.2-14.2% in voltage-gated sodium channel, and voltage-gated potassium channel which had slightly lower values than the oleamide standard, and no effect as 0.0% value inhibition in the cardiac ion channel. CONCLUSION The Dillenia formulation exhibits anti-inflammatory activity without affecting the heart. Accordingly, the three studied Ipomoea and three studied Dillenia species may be used for the same activity as a single component or formulation with effective solvent for disease treatments.
Collapse
Affiliation(s)
- Unchaleeporn Ameamsri
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham, Thailand
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
19
|
Moni JNR, Adnan M, Tareq AM, Kabir MI, Reza AA, Nasrin MS, Chowdhury KH, Sayem SAJ, Rahman MA, Alam AHMK, Alam SB, Sakib MA, Oh KK, Cho DH, Capasso R. Therapeutic Potentials of Syzygium fruticosum Fruit (Seed) Reflected into an Array of Pharmacological Assays and Prospective Receptors-Mediated Pathways. Life (Basel) 2021; 11:life11020155. [PMID: 33671381 PMCID: PMC7921944 DOI: 10.3390/life11020155] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Syzygium fruticosum (SF), a valuable Bangladeshi fruit, is considered an alternative therapeutic agent. Mainly, seeds are used as nutritional phytotherapy to ease physical and mental status by preventing chronic diseases. Here, we scrutinized the S. fruticosum seed's fundamental importance in traditional medicine by following an integrated approach combining in vivo, in vitro, and in silico studies. The SF was fractionated with different solvents, and the ethyl acetate fraction of SF (EaF-SF) was further studied. Mice treated with EaF-SF (200 and 400 mg/kg) manifested anxiolysis evidenced by higher exploration in elevated plus maze and hole board tests. Similarly, a dose-dependent drop of immobility time in a forced swimming test ensured significant anti-depressant activity. Moreover, higher dose treatment exposed reduced exploratory behaviour resembling decreased movement and prolonged sleeping latency with a quick onset of sleep during the open field and thiopental-induced sleeping tests, respectively. In parallel, EaF-SF significantly (p < 0.001) and dose-dependently suppressed acetic acid and formalin-induced pain in mice. Also, a noteworthy anti-inflammatory activity and a substantial (p < 0.01) clot lysis activity (thrombolytic) was observed. Gas chromatography-mass spectrometry (GC-MS) analysis resulted in 49 bioactive compounds. Among them, 12 bioactive compounds with Lipinski's rule and safety confirmation showed strong binding affinity (molecular docking) against the receptors of each model used. To conclude, the S. fruticosum seed is a prospective source of health-promoting effects that can be an excellent candidate for preventing degenerative diseases.
Collapse
Affiliation(s)
- Jannatul Nasma Rupa Moni
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.K.O.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Md. Imtiazul Kabir
- Department of Pharmaceutical Science, South Dakota State University, Bookings, SD 57006, USA;
| | - A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
- Correspondence: (A.S.M.A.R.); (D.H.C.); (R.C.)
| | - Mst. Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Kamrul Hasan Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Syed Al Jawad Sayem
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Md Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - AHM Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Seema Binte Alam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Mahfuz Ahmed Sakib
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (J.N.R.M.); (A.M.T.); (M.S.N.); (K.H.C.); (S.A.J.S.); (S.B.A.); (M.A.S.)
| | - Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.K.O.)
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (K.K.O.)
- Correspondence: (A.S.M.A.R.); (D.H.C.); (R.C.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (A.S.M.A.R.); (D.H.C.); (R.C.)
| |
Collapse
|
20
|
Perfetto M, Kirkham SG, Ayers MC, Wei S, Gallagher JEG. 4-Methylcyclohexane methanol (MCHM) affects viability, development, and movement of Xenopus embryos. Toxicol Rep 2021; 8:38-43. [PMID: 33391995 PMCID: PMC7772722 DOI: 10.1016/j.toxrep.2020.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 10/26/2022] Open
Abstract
Following chemical spill disasters, it is important to estimate the effects of spilled chemicals on humans and the environment. Here we analyzed the toxicological effects of the coal cleaning chemical, 4-methylcyclohexane methanol (MCHM), which was spilled into the Elk River water supply in 2014. The viability of HEK293 T human cell line cultures and Xenopus tropicalis embryos was negatively affected, and the addition of the antioxidants alleviated toxicity with MCHM exposure. Additionally, X. tropicalis embryos suffered developmental defects as well as reversible non-responsiveness and melanization defects. The impact MCHM has on HEK293 T cells and X. tropicalis points to the importance of continued follow-up studies of this chemical.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Scotia G Kirkham
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| | - Michael C Ayers
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| | - Shuo Wei
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jennifer E G Gallagher
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| |
Collapse
|
21
|
Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin 2020; 41:1519-1524. [PMID: 32994545 DOI: 10.1038/s41401-020-00512-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7's unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic-ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.
Collapse
|
22
|
Investigation of the Selectivity of L-Type Voltage-Gated Calcium Channels 1.3 for Pyrimidine-2,4,6-Triones Derivatives Based on Molecular Dynamics Simulation. Molecules 2020; 25:molecules25225440. [PMID: 33233858 PMCID: PMC7699898 DOI: 10.3390/molecules25225440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Human Cav1.3 (hCav1.3) is of great interest as a potential target for Parkinson’s disease. However, common medications like dihydropyridines (DHPs), a kind of classic calcium channel blocker, have poor selectivity to hCav1.3 in clinical treatment, mainly due to being implicated in cardiovascular side-effects mediated by human Cav1.2 (hCav1.2). Recently, pyrimidine-2,4,6-triones (PYTs) have received extensive attention as prominent selective inhibitors to hCav1.3. In this study, we describe the selectivity mechanism of PYTs for hCav1.2 and hCav1.3 based on molecular dynamic simulation methods. Our results reveal that the van der Waals (vdW) interaction was the most important force affecting selectivity. Moreover, the hydrophobic interaction was more conducive to the combination. The highly hydrophobic amino acid residues on hCav1.3, such as V162 (IR1), L303 (IR2), M481 (IR3), and F484 (IR3), provided the greatest contributions in the binding free energy. On the other hand, the substituents of a halogen-substituted aromatic ring, cycloalkyl and norbornyl on PYTs, which are pertinent to the steric hindrance of the compounds, played core roles in the selectivity and affinity for hCav1.3, whereas strong polar substituents needed to be avoided. The findings could provide valuable information for designing more effective and safe medicines for Parkinson’s disease.
Collapse
|
23
|
Senthilkumar S, Venugopal C, Parveen S, K S, Rai KS, Kutty BM, Dhanushkodi A. Remarkable migration propensity of dental pulp stem cells towards neurodegenerative milieu: An in vitro analysis. Neurotoxicology 2020; 81:89-100. [PMID: 32905802 DOI: 10.1016/j.neuro.2020.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Stem cell therapy provides a ray of hope for treating neurodegenerative diseases (ND). Bone marrow mesenchymal stem cells (BM-MSC) were extensively investigated for their role in neuroregeneration. However, drawbacks like painful bone marrow extraction, less proliferation and poor CNS engraftment following systemic injections of BM-MSC prompt us to search for alternate/appropriate source of MSC for treating ND. In this context, dental pulp stem cells (DPSC) could be an alternative to BM-MSC as it possess both mesenchymal and neural characteristic features due to its origin from ectoderm, ease of isolation, higher proliferation index and better neuroprotection. A study on the migration potential of DPSC compared to BM-MSC in a neurodegenerative condition is warranted. Given the neural crest origin, we hypothesize that DPSC possess better migration towards neurodegenerative milieu as compared to BM-MSC. In this prospect, we investigated the migration potential of DPSC in an in vitro neurodegenerative condition. Towards this, transwell, Matrigel and chorioallantoic membrane (CAM) migration assays were carried-out by seeding hippocampal neurons in the lower chamber and treated with 300 μM kainic acid (KA) for 6 h to induce neurodegeneration. Subsequently, the upper chamber of transwell was loaded with DPSC/BM-MSC and their migration potential was assessed following 24 h of incubation. Our results revealed that the migration potential of DPSC/BM-MSC was comparable in non-degenerative condition. However, following injury the migration potential of DPSC towards the degenerating site was significantly higher as compared to BM-MSC. Furthermore, upon exposure of naïve DPSC/BM-MSCs to culture medium derived from neurodegenerative milieu resulted in significant upregulation of homing factors like SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2 suggesting that the superior migration potential of DPSC might be due to prompt expression of homing factors in DPSC compared to BM-MSCs.
Collapse
Affiliation(s)
- Sivapriya Senthilkumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Chaitra Venugopal
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Shobha K
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Kiranmai S Rai
- Dept. of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India.
| |
Collapse
|
24
|
Allen D, Zhou Y, Wilhelm A, Blum P. Intracellular G-actin targeting of peripheral sensory neurons by the multifunctional engineered protein C2C confers relief from inflammatory pain. Sci Rep 2020; 10:12789. [PMID: 32732905 PMCID: PMC7393082 DOI: 10.1038/s41598-020-69612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
The engineered multifunctional protein C2C was tested for control of sensory neuron activity by targeted G-actin modification. C2C consists of the heptameric oligomer, C2II-CI, and the monomeric ribosylase, C2I. C2C treatment of sensory neurons and SH-SY5Y cells in vitro remodeled actin and reduced calcium influx in a reversible manner. C2C prepared using fluorescently labeled C2I showed selective in vitro C2I delivery to primary sensory neurons but not motor neurons. Delivery was dependent on presence of both C2C subunits and blocked by receptor competition. Immunohistochemistry of mice treated subcutaneously with C2C showed colocalization of subunit C2I with CGRP-positive sensory neurons and fibers but not with ChAT-positive motor neurons and fibers. The significance of sensory neuron targeting was pursued subsequently by testing C2C activity in the formalin inflammatory mouse pain model. Subcutaneous C2C administration reduced pain-like behaviors by 90% relative to untreated controls 6 h post treatment and similarly to the opioid buprenorphene. C2C effects were dose dependent, equally potent in female and male animals and did not change gross motor function. One dose was effective in 2 h and lasted 1 week. Administration of C2I without C2II-CI did not reduce pain-like behavior indicating its intracellular delivery was required for behavioral effect.
Collapse
Affiliation(s)
- Derek Allen
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Audrey Wilhelm
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA.
| |
Collapse
|
25
|
Kuo PC, Kao ZH, Lee SW, Wu SN. Effects of Sesamin, the Major Furofuran Lignan of Sesame Oil, on the Amplitude and Gating of Voltage-Gated Na + and K + Currents. Molecules 2020; 25:molecules25133062. [PMID: 32635522 PMCID: PMC7411736 DOI: 10.3390/molecules25133062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Sesamin (SSM) and sesamolin (SesA) are the two major furofuran lignans of sesame oil and they have been previously noticed to exert various biological actions. However, their modulatory actions on different types of ionic currents in electrically excitable cells remain largely unresolved. The present experiments were undertaken to explore the possible perturbations of SSM and SesA on different types of ionic currents, e.g., voltage-gated Na+ currents (INa), erg-mediated K+ currents (IK(erg)), M-type K+ currents (IK(M)), delayed-rectifier K+ currents (IK(DR)) and hyperpolarization-activated cation currents (Ih) identified from pituitary tumor (GH3) cells. The exposure to SSM or SesA depressed the transient and late components of INa with different potencies. The IC50 value of SSM needed to lessen the peak or sustained INa was calculated to be 7.2 or 0.6 μM, while that of SesA was 9.8 or 2.5 μM, respectively. The dissociation constant of SSM-perturbed inhibition on INa, based on the first-order reaction scheme, was measured to be 0.93 μM, a value very similar to the IC50 for its depressant action on sustained INa. The addition of SSM was also effective at suppressing the amplitude of resurgent INa. The addition of SSM could concentration-dependently inhibit the IK(M) amplitude with an IC50 value of 4.8 μM. SSM at a concentration of 30 μM could suppress the amplitude of IK(erg), while at 10 μM, it mildly decreased the IK(DR) amplitude. However, the addition of neither SSM (10 μM) nor SesA (10 μM) altered the amplitude or kinetics of Ih in response to long-lasting hyperpolarization. Additionally, in this study, a modified Markovian model designed for SCN8A-encoded (or NaV1.6) channels was implemented to evaluate the plausible modifications of SSM on the gating kinetics of NaV channels. The model demonstrated herein was well suited to predict that the SSM-mediated decrease in peak INa, followed by increased current inactivation, which could largely account for its favorable decrease in the probability of the open-blocked over open state of NaV channels. Collectively, our study provides evidence that highlights the notion that SSM or SesA could block multiple ion currents, such as INa and IK(M), and suggests that these actions are potentially important and may participate in the functional activities of various electrically excitable cells in vivo.
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Zi-Han Kao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
| | - Shih-Wei Lee
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Z.-H.K.); (S.-W.L.)
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-5334; Fax: +886-6-2362780
| |
Collapse
|
26
|
PSIONplus m Server for Accurate Multi-Label Prediction of Ion Channels and Their Types. Biomolecules 2020; 10:biom10060876. [PMID: 32517331 PMCID: PMC7355608 DOI: 10.3390/biom10060876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of ion channels facilitates the identification of putative ion channels from protein sequences. Several predictors of ion channels and their types were developed in the last quindecennial. While they offer reasonably accurate predictions, they also suffer a few shortcomings including lack of availability, parallel prediction mode, single-label prediction (inability to predict multiple channel subtypes), and incomplete scope (inability to predict subtypes of the voltage-gated channels). We developed a first-of-its-kind PSIONplusm method that performs sequential multi-label prediction of ion channels and their subtypes for both voltage-gated and ligand-gated channels. PSIONplusm sequentially combines the outputs produced by three support vector machine-based models from the PSIONplus predictor and is available as a webserver. Empirical tests show that PSIONplusm outperforms current methods for the multi-label prediction of the ion channel subtypes. This includes the existing single-label methods that are available to the users, a naïve multi-label predictor that combines results produced by multiple single-label methods, and methods that make predictions based on sequence alignment and domain annotations. We also found that the current methods (including PSIONplusm) fail to accurately predict a few of the least frequently occurring ion channel subtypes. Thus, new predictors should be developed when a larger quantity of annotated ion channels will be available to train predictive models.
Collapse
|
27
|
Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur J Med Chem 2020; 195:112290. [PMID: 32283295 DOI: 10.1016/j.ejmech.2020.112290] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
All along the drug development process, one of the most frequent adverse side effects, leading to the failure of drugs, is the cardiac arrhythmias. Such failure is mostly related to the capacity of the drug to inhibit the human ether-à-go-go-related gene (hERG) cardiac potassium channel. The early identification of hERG inhibition properties of biological active compounds has focused most of attention over the years. In order to prevent the cardiac side effects, a great number of in silico, in vitro and in vivo assays have been performed. The main goal of these studies is to understand the reasons of these effects, and then to give information or instructions to scientists involved in drug development to avoid the cardiac side effects. To evaluate anticipated cardiovascular effects, early evaluation of hERG toxicity has been strongly recommended for instance by the regulatory agencies such as U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Thus, following an initial screening of a collection of compounds to find hits, a great number of pharmacomodulation studies on the novel identified chemical series need to be performed including activity evaluation towards hERG. We provide in this concise review clear guidelines, based on described examples, illustrating successful optimization process to avoid hERG interactions as cases studies and to spur scientists to develop safe drugs.
Collapse
Affiliation(s)
- Amanda Garrido
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Alban Lepailleur
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
28
|
Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 2019; 15:39-52. [PMID: 31674217 DOI: 10.1080/17460441.2020.1682993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Neurological diseases present a difficult challenge in drug discovery. Many of the current treatments have limited efficiency or result in a variety of debilitating side effects. The search of new therapies is of a paramount importance, since the number of patients that require a better treatment is growing rapidly. As an in vitro model, Xenopus oocytes provide the drug developer with many distinct advantages, including size, durability, and efficiency in exogenous protein expression. However, there is an increasing need to refine the recent breakthroughs.Areas covered: This review covers the usage and recent advancements of Xenopus oocytes for drug discovery in neurological diseases from expression and functional measurement techniques to current applications in Alzheimer's disease, painful neuropathies, and amyotrophic lateral sclerosis (ALS). The existing limitations of Xenopus oocytes in drug discovery are also discussed.Expert opinion: With the rise of aging population and neurological disorders, Xenopus oocytes, will continue to play an important role in understanding the mechanism of the disease, identification and validation of novel molecular targets, and drug screening, providing high-quality data despite the technical limitations. With further advances in oocytes-related techniques toward an accurate modeling of the disease, the diagnostics and treatment of neuropathologies will be becoming increasing personalized.
Collapse
Affiliation(s)
- Steven L Zeng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
The Novel Direct Modulatory Effects of Perampanel, an Antagonist of AMPA Receptors, on Voltage-Gated Sodium and M-type Potassium Currents. Biomolecules 2019; 9:biom9100638. [PMID: 31652643 PMCID: PMC6843791 DOI: 10.3390/biom9100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Abstract
Perampanel (PER) is a selective blocker of AMPA receptors showing efficacy in treating various epileptic disorders including brain tumor-related epilepsy and also potential in treating motor neuron disease. However, besides its inhibition of AMPA-induced currents, whether PER has any other direct ionic effects in different types of neurons remains largely unknown. We investigated the effects of PER and related compounds on ionic currents in different types of cells, including hippocampal mHippoE-14 neurons, motor neuron-like NSC-34 cells and U87 glioma cells. We found that PER differentially and effectively suppressed the amplitude of voltage-gated Na+ currents (INa) in mHippoE-14 cells. The IC50 values required to inhibit peak and late INa were 4.12 and 0.78 μM, respectively. PER attenuated tefluthrin-induced increases in both amplitude and deactivating time constant of INa. Importantly, PER also inhibited the amplitude of M-type K+ currents (IK(M)) with an IC50 value of 0.92 μM. The suppression of IK(M) was attenuated by the addition of flupirtine or ZnCl2 but not by L-quisqualic acid or sorafenib. Meanwhile, in cell-attached configuration, PER (3 μM) decreased the activity of M-type K+ channels with no change in single-channel conductance but shifting the activation curve along the voltage axis in a rightward direction. Supportively, PER suppressed IK(M) in NSC-34 cells and INa in U87 glioma cells. The inhibitory effects of PER on both INa and IK(M), independent of its antagonistic effect on AMPA receptors, may be responsible for its wide-spectrum of effects observed in neurological clinical practice.
Collapse
|
30
|
Focken T, Burford K, Grimwood ME, Zenova A, Andrez JC, Gong W, Wilson M, Taron M, Decker S, Lofstrand V, Chowdhury S, Shuart N, Lin S, Goodchild SJ, Young C, Soriano M, Tari PK, Waldbrook M, Nelkenbrecher K, Kwan R, Lindgren A, de Boer G, Lee S, Sojo L, DeVita RJ, Cohen CJ, Wesolowski SS, Johnson JP, Dehnhardt CM, Empfield JR. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na V1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2019; 62:9618-9641. [PMID: 31525968 DOI: 10.1021/acs.jmedchem.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Kristen Burford
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael E Grimwood
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Alla Zenova
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael Wilson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matt Taron
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Shannon Decker
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Verner Lofstrand
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Noah Shuart
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Maegan Soriano
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Parisa K Tari
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Gina de Boer
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Stephanie Lee
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Luis Sojo
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC , Westfield , New Jersey 07090 , United States
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Steven S Wesolowski
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - James R Empfield
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| |
Collapse
|
31
|
Mack AA, Gao Y, Ratajczak MZ, Kakar S, El-Mallakh RS. Review of animal models of bipolar disorder that alter ion regulation. Neurosci Biobehav Rev 2019; 107:208-214. [PMID: 31521699 DOI: 10.1016/j.neubiorev.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Accurate modeling of psychiatric disorders in animals is essential for advancement in our understanding and treatment of the severe mental illnesses. Of the multiple models available for bipolar illness, the ones that disrupt ion flux are currently the only ones that meet the three criteria for validity: face validity, construct validity, and predictive validity. METHODS A directed review was performed to evaluate animal models for mania in which ion dysregulation was the key intervention. RESULTS Three models are identified. All focus on disruption of the sodium potassium pump. One is pharmacologic and requires surgical insertion of an intracerebroventricular (ICV) cannula and subsequent administration of ouabain. Two are genetic and are based on heterozygote knockout (KO) of the alpha2 or alpha3 subunits of the sodium pump. Alpha2 KOs are believed to have altered glial function, and they do not appear to have a full array of manic symptoms. Alpha3 KOs appear to be the best characterized animal model for bipolar disorder currently available. CONCLUSION Animal models that disrupt ion regulation are more inclined to model both mania and depression; and are thus the most promising models available. However, other models are important for demonstrating mechanisms in important pathophysiologic aspect of bipolar disorder.
Collapse
Affiliation(s)
- Aaron A Mack
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA.
| | - Yonglin Gao
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- University of Louisville School of Medicine, Department of Medicine, Louisville, KY, USA
| | - Sham Kakar
- University of Louisville School of Medicine, Department of Physiology, Louisville, KY, USA
| | - Rif S El-Mallakh
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| |
Collapse
|
32
|
Tongpan S, Sukhorum W, Arun S, Sawatphanich T, Iamsaard S. Valproic acid changes the expression of tyrosine‐phosphorylated proteins in rat seminal vesicle. Andrologia 2019; 51:e13303. [DOI: 10.1111/and.13303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Saranya Tongpan
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | | | - Supatcharee Arun
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Tarinee Sawatphanich
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
33
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
34
|
Ghalehshahi HG, Balalaie S, Sohbati HR, Azizian H, Alavijeh MS. Synthesis, CYP 450 evaluation, and docking simulation of novel 4-aminopyridine and coumarin derivatives. Arch Pharm (Weinheim) 2019; 352:e1800247. [DOI: 10.1002/ardp.201800247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Hajar G. Ghalehshahi
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
- Medical Biology Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Hamid R. Sohbati
- Faculty of Pharmacy, Department of Medicinal Chemistry; Tehran University of Medical Science; Tehran Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy international Campus; Iran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
35
|
Li H, Tan X, Xue Q, Zhu JH, Chen G. Combined application of hypothermia and medical gases in cerebrovascular diseases. Med Gas Res 2019; 8:172-175. [PMID: 30713671 PMCID: PMC6352567 DOI: 10.4103/2045-9912.248269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
Cerebrovascular diseases have a heavy burden on society and the family. At present, in the treatment of cerebrovascular diseases, the recognized effective treatment method is a thrombolytic therapy after cerebral infarction, but limited to the time window problem, many patients cannot benefit. Other treatments for cerebrovascular disease are still in the exploration stage. The study found that medical gas and hypothermia have brain protection effects. Further research found that when the two are used in combination, the therapeutic effect has a superimposed effect. This article reviews the current research progress of hypothermia therapy combined with medical gas therapy for cerebrovascular disease.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qun Xue
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jue-Hua Zhu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
36
|
Miranda ASD, Miranda ASD, Teixeira AL. Lamotrigine as a mood stabilizer: insights from the pre-clinical evidence. Expert Opin Drug Discov 2018; 14:179-190. [PMID: 30523725 DOI: 10.1080/17460441.2019.1553951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Lamotrigine (LTG) is a well-established anticonvulsant that is also approved for the prevention of mood relapses in bipolar disorder. However, the mechanisms underlying LTG mood stabilizing effects remain unclear. Areas covered: Herein, the pre-clinical evidence concerning LTG's' mode of action in depression and mania is reviewed. Bottlenecks and future perspectives for this expanding and promising field are also discussed. Pre-clinical studies have indicated that neurotransmitter systems, especially serotoninergic, noradrenergic and glutamatergic, as well as non-neurotransmitter pathways such as inflammation and oxidative processes might play a role in LTG's antidepressant effects. The mechanisms underlying LTG's anti-manic properties remain to be fully explored, but the available pre-clinical evidence points out to the role of glutamatergic neurotransmission, possibly through AMPA-receptors. Expert opinion: A major limitation of current pre-clinical investigations is that there are no experimental models that recapitulate the complexity of bipolar disorder. Significant methodological differences concerning time and dose of LTG treatment, administration route, animal strains, and behavioral paradigms also hamper the reproducibility of the findings, leading to contradictory conclusions. Moreover, the role of other mechanisms (e.g. inositol phosphate and GSK3β pathways) implicated in the mode of action of different mood-stabilizers must also be consolidated with LTG.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,b Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Amanda Silva de Miranda
- c Departamento de Química , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais , Belo Horizonte , Brasil
| | - Antônio Lúcio Teixeira
- a Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,d Neuropsychiatry Program & Immuno-Psychiatry Lab, Department of Psychiatry & Behavioral Sciences, McGovern Medical School , University of Texas Health Science Center at Houston , Houston , USA
| |
Collapse
|
37
|
Stortelers C, Pinto-Espinoza C, Van Hoorick D, Koch-Nolte F. Modulating ion channel function with antibodies and nanobodies. Curr Opin Immunol 2018; 52:18-26. [DOI: 10.1016/j.coi.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022]
|
38
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
39
|
Flores Saiffe Farías A, Mendizabal AP, Morales JA. An Ontology Systems Approach on Human Brain Expression and Metaproteomics. Front Microbiol 2018; 9:406. [PMID: 29568289 PMCID: PMC5852110 DOI: 10.3389/fmicb.2018.00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Research in the last decade has shown growing evidence of the gut microbiota influence on brain physiology. While many mechanisms of this influence have been proposed in animal models, most studies in humans are the result of a pathology–dysbiosis association and very few have related the presence of certain taxa with brain substructures or molecular pathways. In this paper, we associated the functional ontologies in the differential expression of brain substructures from the Allen Brain Atlas database, with those of the metaproteome from the Human Microbiome Project. Our results showed several coherent clustered ontologies where many taxa could influence brain expression and physiology. A detailed analysis of psychobiotics showed specific slim ontologies functionally associated with substructures in the basal ganglia and cerebellar cortex. Some of the most relevant slim ontology groups are related to Ion transport, Membrane potential, Synapse, DNA and RNA metabolism, and Antigen processing, while the most relevant neuropathology found was Parkinson disease. In some of these cases, new hypothetical gut microbiota-brain interaction pathways are proposed.
Collapse
|
40
|
Abstract
Hypertension is a prevalent and major health problem, involving a complex integration of different organ systems, including the central nervous system (CNS). The CNS and the hypothalamus in particular are intricately involved in the pathogenesis of hypertension. In fact, evidence supports altered hypothalamic neuronal activity as a major factor contributing to increased sympathetic drive and increased blood pressure. Several mechanisms have been proposed to contribute to hypothalamic-driven sympathetic activity, including altered ion channel function. Ion channels are critical regulators of neuronal excitability and synaptic function in the brain and, thus, important for blood pressure homeostasis regulation. These include sodium channels, voltage-gated calcium channels, and potassium channels being some of them already identified in hypothalamic neurons. This brief review summarizes the hypothalamic ion channels that may be involved in hypertension, highlighting recent findings that suggest that hypothalamic ion channel modulation can affect the central control of blood pressure and, therefore, suggesting future development of interventional strategies designed to treat hypertension.
Collapse
Affiliation(s)
- Vera Geraldes
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Sérgio Laranjo
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal
| | - Isabel Rocha
- Instituto de Fisiologia, Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal. .,Centro Cardiovascular da Universidade de Lisboa, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.
| |
Collapse
|
41
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
42
|
Mishra SK, Jain N, Shankar U, Tawani A, Mishra A, Kumar A. SMMDB: a web-accessible database for small molecule modulators and their targets involved in neurological diseases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:1-12. [PMID: 30219840 PMCID: PMC6146116 DOI: 10.1093/database/bay082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
Abstract
High-throughput screening and better understanding of small molecule's structure-activity relationship (SAR) using computational biology techniques have greatly expanded the face of drug discovery process in better discovery of therapeutics for various disease. Small Molecule Modulators Database (SMMDB) includes >1100 small molecules that have been either approved by US Food and Drug Administration, are under investigation or were rejected in clinical trial for any kind of neurological diseases. The comprehensive information about small molecules includes the details about their molecular targets (such as protein or enzyme, DNA, RNA, antisense RNA etc.), pharmacokinetic and pharmacodynamic properties such as binding affinity to their targets (Kd, Ki, IC50 and EC50 if available), mode of action, log P-value, number of hydrogen bond donor and acceptors, their clinical trial status, their 2D and three-dimensional structures etc. To enrich the basic annotation of every small molecule entry present in SMMDB, it is hyperlinked to their description present in PubChem, DrugBank, PubMed and KEGG database. The annotation about their molecular targets was enriched by linking it with UniProt and GenBank and STRING database that can be utilized to study the interaction and relation between various targets involved in single neurological disease. All molecules present in the SMMDB are made available to download in single file and can be further used in establishing the SAR, structure-based drug designing as well as shape-based virtual screening for developing the novel therapeutics against neurological diseases. The scope of this database majorly covers the interest of scientific community and researchers who are engaged in putting their endeavor toward therapeutic development and investigating the pathogenic mechanism of various neurological diseases. The graphical user interface of the SMMDB is accessible on http://bsbe.iiti.ac.in/bsbe/smmdb.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Arpita Tawani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| |
Collapse
|
43
|
Hernandez-Encarnacion L, Sharma P, Simon R, Zhou A. Condition-specific transcriptional regulation of neuronal ion channel genes in brain ischemia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:192-201. [PMID: 29348796 PMCID: PMC5770516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
In the context of seeking novel therapeutic targets for treating ischemic stroke, the preconditioning ischemia-induced brain ischemic tolerance has been used as a model of endogenously operative, broad-based neuroprotective mechanisms. Targeting such mechanisms is considered potentially less prone to adverse side effects, as those seen in many failed clinical trials that focus on single targets using exogenous compounds. Results from previous studies have revealed an overall decrease in potassium channel activity in tolerance development. The objective of this study is to identify ion channel genes that are differentially regulated under different brain ischemic conditions, as a mean to identify those ion channels that are associated with ischemic brain injury and ischemic tolerance. In mice in vivo, transient focal cerebral ischemia was induced by middle cerebral artery occlusion. In cultured neuronal cells in vitro, simulated ischemia was modeled by oxygen-glucose deprivation. For both in vivo and in vitro studies, three principal ischemic conditions were included: ischemic-preconditioned, injured and tolerant, respectively, plus appropriate controls. In these model systems, transcript levels of a panel of 84 neuronal ion channels genes were analyzed with a quantitative real-time PCR mini-array. The results showed that, both in vivo and in vitro, there was a predominant down regulation in neuronal ion channel genes under ischemic-tolerant conditions, and an up regulation in ischemic injury. Similar changes were observed among potassium, sodium and calcium channel genes. A number of regulated genes exhibited opposing changes under ischemic-injured and ischemic-tolerant conditions. This subset of ion channel genes exemplifies potentially novel leads for developing multi-factorial therapeutic targets for treating ischemic stroke.
Collapse
Affiliation(s)
| | - Pankaj Sharma
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| | - Roger Simon
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
- Department of Medicine, Morehouse School of MedicineAtlanta, Georgia, USA
| | - An Zhou
- Department of Neurobiology, Neuroscience Institute, Morehouse School of MedicineAtlanta, Georgia, USA
| |
Collapse
|
44
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
45
|
Palugulla S, Thakkar DN, Kayal S, Narayan SK, Dkhar SA. Association of Voltage-Gated Sodium Channel Genetic Polymorphisms with Oxaliplatin-Induced Chronic Peripheral Neuropathy in South Indian Cancer Patients. Asian Pac J Cancer Prev 2017; 18:3157-3165. [PMID: 29172294 PMCID: PMC5773806 DOI: 10.22034/apjcp.2017.18.11.3157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxaliplatin is a platinum drug active against digestive tract cancers. Among its side effects, peripheral neuropathy
is one of the dose-limiting toxicities. This affects around 50 to 70% of patients but the pathophysiology of development
of oxaliplatin-induced peripheral neuropathy (OXAIPN) remains unclear. Sodium channels (SCNAs) play major role in
neuronal electrical signaling processes and mutations in SCNAs lead to various neuronal diseases involving the central
and peripheral nervous systems. In this study, we evaluated whether SCNA genetic variants might be associated with
risk of chronic OXAIPN in patients with digestive tract cancers treated with oxaliplatin. Methodology: Blood samples
from 228 digestive tract cancer patients who had received oxaliplatin in adjuvant and neoadjuvant or metastatic settings
were obtained and genomic DNA was extracted by phenol-chloroform extraction. Genotyping was performed with
the real-time polymerase chain reaction (RT-PCR) using validated real-time TaqMan single nucleotide polymorphism
(SNP) genotyping assays. Neuropathy was evaluated and graded according to National Cancer Institute Common
Toxicity Criteria (NCI-CTC) version 4.03. Results: We found that the rs6746030 polymorphic variant of SCN9A was
significantly associated with a higher incidence of chronic OXAIPN (GA+AA vs GG: OR=1.8, 95% CI=1.04-3.4, P=0.04;
dominant model) while the rs6754031 variant was linked with a lower incidence (OR=0.45, 95% CI=0.22-0.77, P=0.005;
dominant model). The SCN 10A polymorphic variant was associated with severity of chronic OXAIPN (P=0.006,
OR=2.0, 95% CI=1.2 - 3.3). Conclusion: The results of the present prospective study provide evidence in support of
a causal relationship between chronic OXAIPN and voltage gated sodium channel polymorphisms. However, further
studies from independent groups are required to validate these results.
Collapse
Affiliation(s)
- Sreenivasulu Palugulla
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| | | | | | | | | |
Collapse
|
46
|
Schampel A, Kuerten S. Danger: High Voltage-The Role of Voltage-Gated Calcium Channels in Central Nervous System Pathology. Cells 2017; 6:E43. [PMID: 29140302 PMCID: PMC5755501 DOI: 10.3390/cells6040043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely distributed within the central nervous system (CNS) and presumed to play an important role in the pathophysiology of a broad spectrum of CNS disorders including Alzheimer's and Parkinson's disease as well as multiple sclerosis. Several calcium channel blockers have been in clinical practice for many years so that their toxicity and side effects are well studied. However, these drugs are primarily used for the treatment of cardiovascular diseases and most if not all effects on brain functions are secondary to peripheral effects on blood pressure and circulation. While the use of calcium channel antagonists for the treatment of CNS diseases therefore still heavily depends on the development of novel strategies to specifically target different channels and channel subunits, this review is meant to provide an impulse to further emphasize the importance of future research towards this goal.
Collapse
Affiliation(s)
- Andrea Schampel
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg 97070, Germany.
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
47
|
Thangappan J, Madan B, Wu S, Lee SG. Measuring the Conformational Distance of GPCR-related Proteins Using a Joint-based Descriptor. Sci Rep 2017; 7:15205. [PMID: 29123217 PMCID: PMC5680341 DOI: 10.1038/s41598-017-15513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
Joint-based descriptor is a new level of macroscopic descriptor for protein structure using joints of secondary structures as a basic element. Here, we propose how the joint-based descriptor can be applied to examine the conformational distances or differences of transmembrane (TM) proteins. Specifically, we performed three independent studies that measured the global and conformational distances between GPCR A family and its related structures. First, the conformational distances of GPCR A family and other 7TM proteins were evaluated. This provided the information on the distant and close families or superfamilies to GPCR A family and permitted the identification of conserved local conformations. Second, computational models of GPCR A family proteins were validated, which enabled us to estimate how much they reproduce the native conformation of GPCR A proteins at global and local conformational level. Finally, the conformational distances between active and inactive states of GPCR proteins were estimated, which identified the difference of local conformation. The proposed macroscopic joint-based approach is expected to allow us to investigate structural features, evolutionary relationships, computational models and conformational changes of TM proteins in a more simplistic manner.
Collapse
Affiliation(s)
- Jayaraman Thangappan
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Bharat Madan
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Sangwook Wu
- Department of Physics, Pukyong National University, Busan, 608-737, Republic of Korea.
| | - Sun-Gu Lee
- Department of Chemical Engineering, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
48
|
Membrane proteins structures: A review on computational modeling tools. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2021-2039. [DOI: 10.1016/j.bbamem.2017.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/02/2023]
|
49
|
Antidepressant, anticonvulsant and antinociceptive effects of 3′-methoxy-6-methylflavone and 3′-hydroxy-6-methylflavone may involve GABAergic mechanisms. Pharmacol Rep 2017; 69:1014-1020. [DOI: 10.1016/j.pharep.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/29/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022]
|
50
|
Interaction of Plant Extracts with Central Nervous System Receptors. MEDICINES 2017; 4:medicines4010012. [PMID: 28930228 PMCID: PMC5597072 DOI: 10.3390/medicines4010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/27/2023]
Abstract
Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal herbs. However, additional investigations related to plant extracts and their isolated compounds, as well as their application in animal models and the conducting of clinical trials, are required.
Collapse
|