1
|
Kutumova EO, Akberdin IR, Egorova VS, Kolesova EP, Parodi A, Pokrovsky VS, Zamyatnin, Jr AA, Kolpakov FA. Physiologically based pharmacokinetic model for predicting the biodistribution of albumin nanoparticles after induction and recovery from acute lung injury. Heliyon 2024; 10:e30962. [PMID: 38803942 PMCID: PMC11128879 DOI: 10.1016/j.heliyon.2024.e30962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin Medical Research Center of Oncology, 115522, Moscow, Russia
- Patrice Lumumba People's Friendship University, 117198, Moscow, Russia
| | - Andrey A. Zamyatnin, Jr
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Fedor A. Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| |
Collapse
|
2
|
Yilmazer A, Eroglu Z, Gurcan C, Gazzi A, Ekim O, Sundu B, Gokce C, Ceylan A, Giro L, Unal MA, Arı F, Ekicibil A, Ozgenç Çinar O, Ozturk BI, Besbinar O, Ensoy M, Cansaran-Duman D, Delogu LG, Metin O. Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment. Mater Today Bio 2023; 23:100825. [PMID: 37928252 PMCID: PMC10622883 DOI: 10.1016/j.mtbio.2023.100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Thanks to its intrinsic properties, two-dimensional (2D) bismuth (bismuthene) can serve as a multimodal nanotherapeutic agent for lung cancer acting through multiple mechanisms, including photothermal therapy (PTT), magnetic field-induced hyperthermia (MH), immunogenic cell death (ICD), and ferroptosis. To investigate this possibility, we synthesized bismuthene from the exfoliation of 3D layered bismuth, prepared through a facile method that we developed involving surfactant-assisted chemical reduction, with a specific focus on improving its magnetic properties. The bismuthene nanosheets showed high in vitro and in vivo anti-cancer activity after simultaneous light and magnetic field exposure in lung adenocarcinoma cells. Only when light and magnetic field are applied together, we can achieve the highest anti-cancer activity compared to the single treatment groups. We have further shown that ICD-dependent mechanisms were involved during this combinatorial treatment strategy. Beyond ICD, bismuthene-based PTT and MH also resulted in an increase in ferroptosis mechanisms both in vitro and in vivo, in addition to apoptotic pathways. Finally, hemolysis in human whole blood and a wide variety of assays in human peripheral blood mononuclear cells indicated that the bismuthene nanosheets were biocompatible and did not alter immune function. These results showed that bismuthene has the potential to serve as a biocompatible platform that can arm multiple therapeutic approaches against lung cancer.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Zafer Eroglu
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
| | - Cansu Gurcan
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Buse Sundu
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
| | - Cemile Gokce
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Linda Giro
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | | | - Fikret Arı
- Department of Electrical Electronic Engineering, Faculty of Engineering, 06830, Ankara, Türkiye
| | - Ahmet Ekicibil
- Department of Physics, Faculty of Arts and Sciences, Cukurova University, 01330, Adana, Türkiye
| | - Ozge Ozgenç Çinar
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Türkiye
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
| | - Omur Besbinar
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, 06830 Ankara, Türkiye
- Stem Cell Institute, Ankara University, 06520, Ankara, Türkiye
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, 06135, Ankara, Türkiye
| | | | - Lucia Gemma Delogu
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, UAE
- Department of Biomedical Sciences, University of Padua, 35129, Padua, Italy
| | - Onder Metin
- Department of Chemistry, Faculty of Science, Koç University, 34450, Istanbul, Türkiye
- Koç University Surface Science and Technology Center (KUYTAM), Istanbul, 34450, Türkiye
| |
Collapse
|
3
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Zhang Z, Bahaji Azami NL, Liu N, Sun M. Research Progress of Intestinal Microecology in the Pathogenesis of Colorectal Adenoma and Carcinogenesis. Technol Cancer Res Treat 2023; 22:15330338221135938. [PMID: 36740990 PMCID: PMC9903042 DOI: 10.1177/15330338221135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal adenoma is a precancerous lesion that may progress to colorectal cancer. Patients with colorectal adenoma had a 4-fold higher risk of developing colorectal malignancy than the rest of the population, with approximately 80% of colorectal cancer originating from colorectal adenoma. Therefore, preventing the occurrence and progression of colorectal adenoma is crucial in reducing the risk for colorectal cancer. The human intestinal microecology is a complex system consisting of numerous microbial communities with a sophisticated structure. Interactions among intestinal microorganisms play crucial roles in maintaining normal intestinal structure, digestion, absorption, metabolism, and other functions. The colorectal system is the largest microbial bank or fermentation system in the human body. Studies suggest that intestinal microecological imbalance, one of the most important environmental factors, may play an essential role in the occurrence and development of colorectal adenoma and colorectal cancer. Based on the complexity of studying the gut microbiota ecosystem, its specific role in the occurrence and development of colorectal adenoma is yet to be elucidated. In addition, further studies are expected to provide new insights regarding the prevention and treatment of colorectal adenoma. This article reviews the relationship and mechanism of the diversity of the gut microbiota, the relevant inflammatory response, immune regulation, and metabolic changes in the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ningning Liu, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Mingyu Sun, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-Kozakiewicz AM. Cancer-associated inflammation: pathophysiology and clinical significance. J Cancer Res Clin Oncol 2022; 149:2657-2672. [PMID: 36260158 PMCID: PMC9579684 DOI: 10.1007/s00432-022-04399-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
Purpose Cancer cells, despite stemming from the own cells of their host, usually elicit an immune response. This response usually enables elimination of cancer at its earliest stages. However, some tumors develop mechanisms of escaping immune destruction and even profiting from tumor-derived inflammation. Methods We summarized the roles of different immune cell populations in various processes associated with cancer progression and possible methods of reshaping tumor-associated inflammation to increase the efficacy of cancer therapy. Results Changes in various signaling pathways result in attraction of immunosuppressive, pro-tumorigenic cells, such as myeloid-derived suppressor cells, tumor-associated macrophages, and neutrophils, while at the same time suppressing the activity of lymphocytes, which have the potential of destroying cancer cells. These changes promote tumor progression by increasing angiogenesis and growth, accelerating metastasis, and impairing drug delivery to the tumor site. Conclusion Due to its multi-faceted role in cancer, tumor-associated inflammation can serve as a valuable therapy target. By increasing it, whether through decreasing overall immunosuppression with immune checkpoint inhibitor therapy or through more specific methods, such as cancer vaccines, oncolytic viruses, or chimeric antigen receptor T cells, cancer-derived immunosuppression can be overcome, resulting in immune system destroying cancer cells. Even changes occurring in the microbiota can influence the shape of antitumor response, which could provide new attractive diagnostic or therapeutic methods. Interestingly, also decreasing the distorted tumor-associated inflammation with non-steroidal anti-inflammatory drugs can lead to positive outcomes.
Collapse
Affiliation(s)
- Piotr Pęczek
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gajda
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Kacper Rutkowski
- Department of Cancer Prevention, Students' Scientific Organization of Cancer Cell Biology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Erazma Ciołka 27, Warsaw, Poland.,Department of Oncology and Haematology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | | |
Collapse
|
6
|
Jha NK, Arfin S, Jha SK, Kar R, Dey A, Gundamaraju R, Ashraf GM, Gupta PK, Dhanasekaran S, Abomughaid MM, Das SS, Singh SK, Dua K, Roychoudhury S, Kumar D, Ruokolainen J, Ojha S, Kesari KK. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin Cancer Biol 2022; 86:1086-1104. [PMID: 35218902 DOI: 10.1016/j.semcancer.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-β/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded nanoparticles have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Saniya Arfin
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, College Street, Kolkata 700073, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot 32-34, Knowledge Park III, Greater Noida 201310, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215 Ranchi, Jharkhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | | | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland.
| |
Collapse
|
7
|
Zhang F, Luo BH, Wu QH, Li QL, Yang KD. LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b. Mol Med 2022; 28:2. [PMID: 34983361 PMCID: PMC8725507 DOI: 10.1186/s10020-021-00415-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear. Methods shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells. Quantitative real-time PCR (qRT–PCR) was used to detect levels of HCG18, miR-29a/b, and mRNAs. MTT, colony formation, wound healing and Transwell assays were used to evaluate cell proliferation, migration and invasion, respectively. A luciferase reporter assay was utilized to evaluate NF-κB activity and the binding of miRNAs with HCG18 or TRAF4/5. BALB nude mice injected with cells stably expressing shHCG18 or shNC were used for in vivo modelling. Subcutaneous tumour growth was monitored in nude mice, and immunohistochemistry (IHC) was used to determine expression of the proliferation marker Ki67. Results Abnormal expression of HCG18 and miR-29a/b was observed in EOC tissues. Knockdown of HCG18 using shRNA inhibited proliferation, migration, EMT and the proinflammatory pathway in EOC cells. miR-29a/b mimics and TRAF4/5 knockdown exhibited effects similar to HCG18 knockdown. Further experiments suggested that HCG18 directly targets miR-29a/b and upregulates TRAF4/5 expression, which are inhibited by targeting miR-29a/b. Moreover, overexpression of TRAF4/5 antagonized the inhibitory effect of HCG18 knockdown, suggesting that they are involved in HCG18-mediated oncogenic effects. Silencing HCG18 reduced tumour size and levels of Ki67 and TRAF4/5 while increasing miR-29a/b levels in vivo. Conclusions Taken together, our data revealed an oncogenic signalling pathway mediated by HCG18 in ovarian cell lines, which functions as a ceRNA of miR-29a/b and thus derepresses expression levels of TRAF4/5, facilitating NF-κB pathway-mediated promotion of EOC cell proliferation and migration. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00415-y.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Bai-Hua Luo
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qi-Hui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qing-Ling Li
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke-Da Yang
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
8
|
Greco A, Garoffolo G, Chiesa E, Riva F, Dorati R, Modena T, Conti B, Pesce M, Genta I. Nanotechnology, a booster for the multitarget drug verteporfin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
10
|
Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19? NANOMATERIALS 2020; 10:nano10112301. [PMID: 33233748 PMCID: PMC7699958 DOI: 10.3390/nano10112301] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19.
Collapse
|
11
|
Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev 2020; 157:161-178. [PMID: 32697950 PMCID: PMC7369016 DOI: 10.1016/j.addr.2020.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Inflammation, a common feature of many diseases, is an essential immune response that enables survival and maintains tissue homeostasis. However, in some conditions, the inflammatory process becomes detrimental, contributing to the pathogenesis of a disease. Targeting inflammation by using nanomedicines (i.e. nanoparticles loaded with a therapeutic active principle), either through the recognition of molecules overexpressed onto the surface of activated macrophages or endothelial cells, or through enhanced vasculature permeability, or even through biomimicry, offers a promising solution for the treatment of inflammatory diseases. After providing a brief insight on the pathophysiology of inflammation and current therapeutic strategies, the review will discuss, at a pre-clinical stage, the main innovative nanomedicine approaches that have been proposed in the past five years for the resolution of inflammatory disorders, finally focusing on those currently in clinical trials.
Collapse
|
12
|
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin Loaded on Gold Nanoparticles as a Drug Delivery System for a Successful Biocompatible, Anti-Cancer, Anti-Inflammatory and Phagocytosis Inducer Model. Sci Rep 2020; 10:9362. [PMID: 32518242 PMCID: PMC7283242 DOI: 10.1038/s41598-020-66419-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
Hesperidin is a flavonoid glycoside with proven therapeutic activities for various diseases, including cancer. However, its poor solubility and bioavailability render it only slightly absorbed, requiring a delivery system to reach its therapeutic target. Hesperidin loaded on gold nanoparticles (Hsp-AuNPs) was prepared by a chemical synthesis method. Various characterization techniques such as UV-VIS spectroscopy, FTIR, XRD, FESEM, TEM and EDX, Zeta potential analysis, particle size analysis, were used to confirm the synthesis of Hsp-AuNPs. The cytotoxic effect of Hsp-AuNPs on human breast cancer cell line (MDA-MB-231) was assessed using MTT and crystal violet assays. The results revealed significant decrease in proliferation and inhibition of growth of the treated cells when compared with human normal breast epithelial cell line (HBL-100). Determination of apoptosis by fluorescence microscope was also performed using acridine orange-propidium iodide dual staining assay. The in vivo study was designed to evaluate the toxicity of Hsp-AuNPs in mice. The levels of hepatic and kidney functionality markers were assessed. No significant statistical differences were found for the tested indicators. Histological images of liver, spleen, lung and kidney showed no apparent damages and histopathological abnormalities after treatment with Hsp-AuNPs. Hsp-AuNPs ameliorated the functional activity of macrophages against Ehrlich ascites tumor cells-bearing mice. The production of the pro-inflammatory cytokines was also assessed in bone marrow–derived macrophage cells treated with Hsp-AuNPs. The results obviously demonstrated that Hsp-AuNPs treatment significantly inhibited the secretion of IL-1β, IL-6 and TNF.
Collapse
Affiliation(s)
- Ghassan M Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq.
| | - Hanaa M Waheeb
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Majid S Jabir
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Shaymaa H Khazaal
- Applied Chemistry Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Yaser Hassan Dewir
- King Saud University, College of Food and Agriculture Sciences, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.,Kafrelsheikh University, Faculty of Agriculture, Kafr El-Sheikh, 33516, Egypt
| | - Yougasphree Naidoo
- University of KwaZulu-Natal, School of Life Sciences, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
13
|
Kupcova Skalnikova H, Vodickova Kepkova K, Vodicka P. Luminex xMAP Assay to Quantify Cytokines in Cancer Patient Serum. Methods Mol Biol 2020; 2108:65-88. [PMID: 31939171 DOI: 10.1007/978-1-0716-0247-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytokines, chemokines, and growth factors are key mediators of cell proliferation, migration, and immune response, and in tumor microenvironment, such factors contribute to regulation of tumor growth, immune cell recruitment, angiogenesis, and metastasis. In body fluids, levels of inflammatory mediators reflect the patient immune response to the disease and may predict the effects of targeted therapies. Significant improvements in cytokine detection techniques have been made during last 10 years leading to sensitive quantification of such potent molecules present in low pg/mL levels. Among the techniques, Luminex xMAP® multiplex assays allow for simultaneous quantification of up to 100 analytes with high sensitivity, broad dynamic range of quantification, high throughput, and minimal sample requirements. In this chapter we describe a detailed protocol for the application of xMAP assays using Luminex® 200™ analyzer with xPonent® acquisition software to quantify cytokines, chemokines, and growth factors secreted to blood serum and plasma of cancer patients. We also discuss how sample preparation, instrument settings, and standard curve fitting algorithms can influence validity of obtained results. Special attention is paid to data analysis using open source R statistical environment and we provide an example dataset of cytokine levels measured in serum and corresponding R script for standard curve fitting and concentration estimates.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Libechov, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Libechov, Czech Republic.
| |
Collapse
|
14
|
Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V, Tasciotti E. Exosome-like Nanovectors for Drug Delivery in Cancer. Curr Med Chem 2019; 26:6132-6148. [PMID: 30182846 DOI: 10.2174/0929867325666180831150259] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
Cancer treatment still represents a formidable challenge, despite substantial advancements in available therapies being made over the past decade. One major issue is poor therapeutic efficacy due to lack of specificity and low bioavailability. The progress of nanotechnology and the development of a variety of nanoplatforms have had a significant impact in improving the therapeutic outcome of chemotherapeutics. Nanoparticles can overcome various biological barriers and localize at tumor site, while simultaneously protecting a therapeutic cargo and increasing its circulation time. Despite this, due to their synthetic origin, nanoparticles are often detected by the immune system and preferentially sequestered by filtering organs. Exosomes have recently been investigated as suitable substitutes for the shortcomings of nanoparticles due to their biological compatibility and particularly small size (i.e., 30-150 nm). In addition, exosomes have been found to play important roles in cell communication, acting as natural carriers of biological cargoes throughout the body. This review aims to highlight the use of exosomes as drug delivery vehicles for cancer and showcases the various attempts used to exploit exosomes with a focus on the delivery of chemotherapeutics and nucleic acids.
Collapse
Affiliation(s)
- Noemi Arrighetti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Claudia Corbo
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, United States
| | - Anna Pastò
- Istituto Oncologico Veneto-IRCCS, Padova, Italy
| | - Valentina Zuco
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, United States.,Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, United States
| |
Collapse
|
15
|
Molinaro R, Martinez JO, Zinger A, De Vita A, Storci G, Arrighetti N, De Rosa E, Hartman KA, Basu N, Taghipour N, Corbo C, Tasciotti E. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater Sci 2019; 8:333-341. [PMID: 31714542 DOI: 10.1039/c9bm01766f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer. Recently we have shown the use of biomimetic nanovesicles, called leukosomes, which combine both the physical and biological properties of liposomes and leukocytes, respectively, to selectively deliver drugs to the inflamed vasculature. Here we report the use of leukosomes to target and deliver doxorubicin, a model chemotherapeutic, to tumors in syngeneic murine models of breast cancer and melanoma. Exploiting the inflammatory pathway responsible for recruiting immune cells to the site of injury, leukosomes exhibited increased targeting of cancer vasculature and stroma. Furthermore, delivery of doxorubicin with leukosomes enabled significant tumor growth inhibition compared with free doxorubicin in both breast and melanoma tumors. This study demonstrates the promise of using biomimetic nanovesicles for effective cancer management in solid tumors.
Collapse
Affiliation(s)
- Roberto Molinaro
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jonathan O Martinez
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Gianluca Storci
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Departmentof Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica De Rosa
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Kelly A Hartman
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nupur Basu
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nima Taghipour
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Claudia Corbo
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy.
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
16
|
Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, Noor N, Krinsky N, Simon A, Gibori H, Krayem M, Mumblat Y, Kasten S, Ofir S, Fridman E, Milman N, Lübtow MM, Liba L, Shklover J, Shainsky-Roitman J, Binenbaum Y, Hershkovitz D, Gil Z, Dvir T, Luxenhofer R, Satchi-Fainaro R, Schroeder A. Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS NANO 2019; 13:11008-11021. [PMID: 31503443 PMCID: PMC6837877 DOI: 10.1021/acsnano.9b02395] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site. Collagen is the main component of the PDAC stroma, reaching 12.8 ± 2.3% vol in diseased mice pancreases, compared to 1.4 ± 0.4% in healthy mice. Upon intravenous injection of the collagozome, ∼1% of the injected dose reached the pancreas over 8 h, reducing the level of fibrotic tissue to 5.6 ± 0.8%. The collagozome pretreatment allowed increased drug penetration into the pancreas and improved PDAC treatment. PDAC tumors, pretreated with the collagozome followed by paclitaxel micelles, were 87% smaller than tumors pretreated with empty liposomes followed by paclitaxel micelles. Interestingly, degrading the ECM did not increase the number of circulating tumor cells or metastasis. This strategy holds promise for degrading the extracellular stroma in other diseases as well, such as liver fibrosis, enhancing tissue permeability before drug administration.
Collapse
Affiliation(s)
- Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Mohammed Alyan
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Noor
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Simon
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Majd Krayem
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Mumblat
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Kasten
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Sivan Ofir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Eran Fridman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Neta Milman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Michael M. Lübtow
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Lior Liba
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Binenbaum
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Ziv Gil
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Tal Dvir
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Robert Luxenhofer
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Corresponding author: (AS)
| |
Collapse
|
17
|
Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019; 311-312:125-137. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma (OC) is one of the leading causes of death among gynecologic malignancies all over the world. It is characterized by high mortality rate because of the lack of early diagnosis. The first-line chemotherapeutic regimen for late stage epithelial ovarian cancer is paclitaxel in combination to carboplatin. However, in most of cases, relapse occurs within six months despite the initial success of this chemotherapeutic combination. A lot of challenges have been encountered with the conventional delivery of paclitaxel in addition to the occurrence of severe off-target toxicity. One major problem is poor paclitaxel solubility which was improved by addition of Cremophor EL that unfortunately resulted in hypersensitivity side effects. Another obstacle is the multi drug resistance which is the main cause of OC recurrence. Accordingly, incorporation of paclitaxel, solely or in combination to other drugs, in nanocarrier systems has grabbed attention of many researchers to circumvent all these hurdles. The current review is the first article that provides a comprehensive overview on multi-faceted implementations of paclitaxel loaded nanoplatforms to solve delivery obstacles of paclitaxel in management of ovarian carcinoma. Moreover, challenges in physicochemical properties, biological activity and targeted delivery of PTX were depicted with corresponding solutions using nanotechnology. Different categories of nanocarriers employed were collected included lipid, protein, polymeric, solid nanoemulsion and hybrid systems. Future perspectives including imperative research considerations in ovarian cancer therapy were proposed as well.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Manal A Elsheikh
- Department of pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Amr M Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Yosra S R Elnaggar
- Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
18
|
Pasto A, Giordano F, Evangelopoulos M, Amadori A, Tasciotti E. Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med 2019; 8:8. [PMID: 30877412 PMCID: PMC6420595 DOI: 10.1186/s40169-019-0224-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.
Collapse
Affiliation(s)
- Anna Pasto
- Veneto Institute of Oncology-IRCCS, Padua, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Federica Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Alberto Amadori
- Veneto Institute of Oncology-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA. .,Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
19
|
Pasto A, Giordano F, Evangelopoulos M, Amadori A, Tasciotti E. Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med 2019. [PMID: 30877412 DOI: 10.1186/s40169019-0224-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.
Collapse
Affiliation(s)
- Anna Pasto
- Veneto Institute of Oncology-IRCCS, Padua, Italy
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Federica Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Alberto Amadori
- Veneto Institute of Oncology-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
20
|
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E. Trends towards Biomimicry in Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E637. [PMID: 30134564 PMCID: PMC6164646 DOI: 10.3390/nano8090637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.
Collapse
Affiliation(s)
- Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Alessandro Parodi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Ma L, Chen S, Mao X, Lu Y, Zhang X, Lao X, Qin X, Li S. The association between TNFR gene polymorphisms and the risk of Hepatitis B Virus-Related Liver Diseases in Chinese population. Sci Rep 2018; 8:9240. [PMID: 29915336 PMCID: PMC6006281 DOI: 10.1038/s41598-018-27623-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor receptor superfamily 2 (TNFR2) plays an important role in controlling the progression of antiviral and antitumorr. Evidence suggests that TNFR2 is involved in the pathogenesis of HBV-induced liver injury. We therefore examined whether TNFR2 polymorphisms are associated with the risk of HBV-related liver disease in Chinese population. In this case-control study, 115 chronic hepatitis B (CHB) patients, 86 HBV-related liver cirrhosis patients (LC), 272 HBV-related hepatocellular carcinoma patients (HCC) and 269 healthy controls were recruited. TNFR2 rs1061622 and rs1061624 polymorphisms were examined using a polymerase chain reaction-restriction fragment length polymorphism analysis. Binary logistic regression analyses revealed that the A allele of rs1061624 was positively associated with the risk of CHB (AA vs. GG, P = 0.026; AA vs. GA+GG, P = 0.021), LC (AA vs. GG, P = 0.027; AA+GA vs. GG, P = 0.036), and HCC (GA vs. GG, P = 0.046; GA+AA vs. GG, P = 0.031). Moreover, subgroup analysis indicated that male subjects have increased risk in developing CHB and LC. Nevertheless, no association was found between rs1061622 polymorphism and HBV-related liver diseases in the overall or subgroup analyses. Our retrospective study suggests that the TNFR2 rs1061624 polymorphism is associated with HBV-related CHB, LC, and HCC in Chinese population, particularly in males.
Collapse
Affiliation(s)
- Liping Ma
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyuan Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianjun Lao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|