1
|
Misbah-ul-Haq M, Augustinos AA, Carvalho DO, Duran de la Fuente L, Bourtzis K. The Effect of an Irradiation-Induced Recombination Suppressing Inversion on the Genetic Stability and Biological Quality of a White Eye-Based Aedes aegypti Genetic Sexing Strain. INSECTS 2022; 13:946. [PMID: 36292893 PMCID: PMC9604213 DOI: 10.3390/insects13100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aedes aegypti is the primary vector of diseases such as dengue, chikungunya, Zika fever, and yellow fever. The sterile insect technique (SIT) has been proposed as a species-specific and environment-friendly tool for the suppression of mosquito vector populations as a major component of integrated vector management strategies. As female mosquitoes are blood-feeders and may transmit pathogenic microorganisms, mosquito SIT depends on the release of sterile males. Genetic sexing strains (GSS) can be used for the efficient and robust separation of males from females. Two Ae. aegypti GSS were recently developed by exploiting eye colour mutations, resulting in the Red-eye GSS (RGSS) and the White-eye GSS (WGSS). In this study, we compared two WGSS, with and without the chromosomal inversion 35 (Inv35), and evaluated their biological quality, including genetic stability. Our results suggest that the WGSS/Inv35 presents a low recombination rate and long-term genetic stability when recombinants are removed from the colony (filtering) and a slow accumulation of recombinants when they are not removed from the colony (non-filtering). The two strains were similar with respect to fecundity, pupal and adult recovery rates, pupation curve, and pupal weight. However, differences were detected in fertility, survival rate of females, and flight ability of males. The WGSS/Inv35 presented lower fertility, higher survival rate of females, and better flight ability of males compared to the WGSS.
Collapse
Affiliation(s)
- Muhammad Misbah-ul-Haq
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
- Nuclear Institute for Food and Agriculture, Peshawar 446, Pakistan
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Danilo O. Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Lucia Duran de la Fuente
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| |
Collapse
|
2
|
Hour MJ, Chen Y, Lin CS, Baltina LA, Kan JY, Tsai YT, Kiu YT, Lai HC, Baltina LA, Petrova SF, Lin CW. Glycyrrhizic Acid Derivatives Bearing Amino Acid Residues in the Carbohydrate Part as Dengue Virus E Protein Inhibitors: Synthesis and Antiviral Activity. Int J Mol Sci 2022; 23:10309. [PMID: 36142222 PMCID: PMC9499324 DOI: 10.3390/ijms231810309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is one of the most geographically distributed mosquito-borne flaviviruses, like Japanese encephalitis virus (JEV), and Zika virus (ZIKV). In this study, a library of the known and novel Glycyrrhizic acid (GL) derivatives bearing amino acid residues or their methyl/ethyl esters in the carbohydrate part were synthesized and studied as DENV inhibitors in vitro using the cytopathic effect (CPE), viral infectivity and virus yield assays with DENV1 and DENV-2 in Vero E6 and A549 cells. Among the GL conjugates tested, compound hits GL-D-ValOMe 3, GL-TyrOMe 6, GL-PheOEt 11, and GL-LysOMe 21 were discovered to have better antiviral activity than GL, with IC50 values ranging from <0.1 to 5.98 μM on the in vitro infectivity of DENV1 and DENV2 in Vero E6 and A549 cells. Compound hits 3, 6, 11, and 21 had a concentration-dependent inhibition on the virus yield in Vero E6, in which GL-D-ValOMe 3 and GL-PheOEt 11 were the most active inhibitors of DENV2 yield. Meanwhile, the time-of-addition assay indicated that conjugates GL-D-ValOMe 3 and GL-PheOEt 11 exhibited a substantial decrease in the DENV2 attachment stage. Subsequently, chimeric single-round infectious particles (SRIPs) of DENV2 C-prM-E protein/JEV replicon and DENV2 prM-E/ZIKV replicon were utilized for the DENV envelope I protein-mediated attachment assay. GL conjugates 3 and 11 significantly reduced the attachment of chimeric DENV2 C-prM-E/JEV and DENV2 prM-E/ZIKV SRIPs onto Vero E6 cells in a concentration-dependent manner but did not impede the attachment of wild-type JEV CprME/JEV and ZIKV prM-E/ZIKV SRIPs, indicating the inhibition of Compounds 3 and 11 on DENV2 E-mediated attachment. Molecular docking data revealed that Compounds 3 and 11 have hydrophobic interactions within a hydrophobic pocket among the interfaces of Domains I, II, and the stem region of the DENV2 envelope (E) protein. These results displayed that Compounds 3 and 11 were the lead compounds targeting the DENV E protein. Altogether, our findings provide new insights into the structure−activity relationship of GL derivatives conjugated with amino acid residues and can be the new fundamental basis for the search and development of novel flavivirus inhibitors based on natural compounds.
Collapse
Affiliation(s)
- Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117 Shatian Road, Shalu District, Taichung 43303, Taiwan
| | - Lidia A. Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Ju-Ying Kan
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shin Road, Taichung 40402, Taiwan
| | - Yan-Ting Tsai
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| | - Yan-Tung Kiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hsueh-Chou Lai
- School of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Lia A. Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Svetlana F. Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, 71 Prospect Oktyabrya, 450054 Ufa, Russia
| | - Cheng-Wen Lin
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shin Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
3
|
El-Ansary RE, El-Dabae WH, Bream AS, El Wakil A. Isolation and molecular characterization of lumpy skin disease virus from hard ticks, Rhipicephalus (Boophilus) annulatus in Egypt. BMC Vet Res 2022; 18:302. [PMID: 35932057 PMCID: PMC9354321 DOI: 10.1186/s12917-022-03398-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lumpy skin disease (LSD), a disease of cattle and buffaloes, has recently become widely prevalent in Egypt. The aim of this study was to ascertain the potential role of Rhipicephalus (Boophilus) annulatus ticks in the transmission of this disease. Samples collected from suspected lumpy skin disease virus (LSDV) infected cows that had previously been vaccinated with the Romanian sheep pox virus (SPPV) in various Egyptian governorates were obtained between May to November over two consecutive years, namely 2018 and 2019. Ticks were morphologically identified and the partial cytochrome oxidase subunit I gene (COI) were sequenced, revealing that they were closely related to R. (Boophilus) annulatus. The G-protein-coupled chemokine receptor (GPCR) gene of the LSDV was used to test hard ticks. RESULTS Two positive samples from Kafr El-Sheikh province and one positive sample from Al-Behera province were reported. BLAST analysis revealed that the positive samples were closely related to the Kazakhstani Kubash/KAZ/16 strain (accession number MN642592). Phylogenetic analysis revealed that the GPCR gene of the LSDV recently circulating in Egypt belongs to a global cluster of field LSDV with a nucleotide identity of 98-100%. LSDV isolation was successfully performed four days after inoculation using 9 to 11-day-old embryonated chicken eggs showing characteristic focal white pock lesions dispersed on the choriallantoic membrane after three blind passages. Intracytoplasmic inclusion bodies, cell rupture, vacuoles in cells, and virus particles ovoid in shape were demonstrated by electron microscopy. CONCLUSION In this study the role of hard ticks in the transmission of the LSDV to susceptible animals in Egypt was revealed and confirmed by various methods.
Collapse
Affiliation(s)
- Ramy E El-Ansary
- Zoology and Entomology Department, Faculty of Science Al-Azhar University, Cairo, Egypt.
| | - Wahid H El-Dabae
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Ahmed S Bream
- Zoology and Entomology Department, Faculty of Science Al-Azhar University, Cairo, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Loaiza-Cano V, Monsalve-Escudero LM, Restrepo MP, Quintero-Gil DC, Pulido Muñoz SA, Galeano E, Zapata W, Martinez-Gutierrez M. In Vitro and In Silico Anti-Arboviral Activities of Dihalogenated Phenolic Derivates of L-Tyrosine. Molecules 2021; 26:3430. [PMID: 34198817 PMCID: PMC8201234 DOI: 10.3390/molecules26113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the serious public health problem represented by the diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses, there are still no specific licensed antivirals available for their treatment. Here, we examined the potential anti-arbovirus activity of ten di-halogenated compounds derived from L-tyrosine with modifications in amine and carboxyl groups. The activity of compounds on VERO cell line infection and the possible mechanism of action of the most promising compounds were evaluated. Finally, molecular docking between the compounds and viral and cellular proteins was evaluated in silico with Autodock Vina®, and the molecular dynamic with Gromacs®. Only two compounds (TDC-2M-ME and TDB-2M-ME) inhibited both ZIKV and CHIKV. Within the possible mechanism, in CHIKV, the two compounds decreased the number of genome copies and in the pre-treatment strategy the infectious viral particles. In the ZIKV model, only TDB-2M-ME inhibited the viral protein and demonstrate a virucidal effect. Moreover, in the U937 cell line infected with CHIKV, both compounds inhibited the viral protein and TDB-2M-ME inhibited the viral genome too. Finally, the in silico results showed a favorable binding energy between the compounds and the helicases of both viral models, the NSP3 of CHIKV and cellular proteins DDC and β2 adrenoreceptor.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | - Manuel Pastrana Restrepo
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellín 050001, Colombia; (M.P.R.); (E.G.)
| | - Diana Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | | | - Elkin Galeano
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellín 050001, Colombia; (M.P.R.); (E.G.)
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| |
Collapse
|
5
|
Baltina LA, Hour MJ, Liu YC, Chang YS, Huang SH, Lai HC, Kondratenko RM, Petrova SF, Yunusov MS, Lin CW. Antiviral activity of glycyrrhizic acid conjugates with amino acid esters against Zika virus. Virus Res 2020; 294:198290. [PMID: 33388394 DOI: 10.1016/j.virusres.2020.198290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/15/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022]
Abstract
Zika virus (ZIKV) is a new pathogenic flavivirus transmitted by mosquitoes Aedes spp. ZIKV infection is accompanied by serious neurological complications and is especially dangerous for pregnant women, in which it can lead to congenital malformations of the fetus and microcephaly in neonates. Currently, there are no licensed vaccines or specific post-infectious therapies for ZIKV infection. This report is devoted to the study of glycyrrhizic acid (GL) derivatives as ZIKV inhibitors. The inhibitory assays on the cytopathic effect (CPE) and viral infectivity of ZIKV in three different human cell lines revealed that the conjugation of GL with amino acids and their esters (methyl, ethyl) is influenced by the antiviral activity of the compounds. GL conjugates with Glu(OMe)-OMe 11, Glu(OH)-OMe 12, Asp(OMe)-OMe 13, TyrOMe 14, LeuOEt 15, and PheOEt 16 with free COOH groups in the triterpene moiety were active against ZIKV. The most active compounds 13 and 14 have IC50 values of 0.23 μM and 0.09 μM against low doses (MOI = 0.05) of ZIKV strain PRVABC59, 1.20 μM and 0.74 μM against high doses (MOI = 10) of ZIKV strain Natal RGN single-round infectious particles, respectively. The lead compound was 14 with a high selectivity index (SI < 500). Compound 13 showed a higher inhibitory effect on the early stage (entry) of ZIKV replication than compound 14, and was less potent than compound 14 at the post-entry stage, consistent with the docking models. Compounds 13 and 14 also had a strong interaction with the active site pocket of NS5 MTase. Compounds 13 and 14 are recommended for expanded antiviral studies against ZIKV infection.
Collapse
Affiliation(s)
- Lidia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa, 450054, Russian Federation.
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Ya-Chi Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | | | - Svetlana F Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa, 450054, Russian Federation
| | - Marat S Yunusov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa, 450054, Russian Federation
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
6
|
Arthropod-Borne Disease Control at a Glance: What's New on Drug Development? Molecules 2020; 25:molecules25215175. [PMID: 33172077 PMCID: PMC7664442 DOI: 10.3390/molecules25215175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Discovering and validating effective drugs to manage arthropod-borne diseases (ABD) is a timely and important research challenge with major impacts on real-world control programs at the time of quick resistance development in the targeted pathogens. This editorial highlights major research advances in the development of drugs for the control of vector-borne diseases, with a significant focus on malaria, Chagas disease, dengue, human African trypanosomiasis, leishmaniasis, and Zika. Broad reviews providing new insights on ABD recently published in Molecules have also been covered in “The Editors’ pick” section.
Collapse
|
7
|
Regmi P, Khanal S, Neelakanta G, Sultana H. Tick-Borne Flavivirus Inhibits Sphingomyelinase ( IsSMase), a Venomous Spider Ortholog to Increase Sphingomyelin Lipid Levels for Its Survival in Ixodes scapularis Ticks. Front Cell Infect Microbiol 2020; 10:244. [PMID: 32656091 PMCID: PMC7325911 DOI: 10.3389/fcimb.2020.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Our previous study showed that cells from medically important arthropods, such as ticks, secrete extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Understanding the molecular determinants and mechanism(s) of arthropod-borne flavivirus transmission via exosome biogenesis is very important. In this current study, we showed that in the presence of tick-borne Langat Virus (LGTV; a member of tick-borne encephalitis virus complex), the expression of arthropod IsSMase, a sphingomyelinase D (SMase D) that catalyzes the hydrolytic cleavage of substrates like sphingomyelin (SM) lipids, was significantly reduced in both Ixodes scapularis ticks (in vivo) and in tick cells (in vitro). The IsSMase reduced levels correlated with down-regulation of its activity upon LGTV replication in tick cells. Our data show that LGTV-mediated suppression of IsSMase allowed accumulation of SM lipid levels that supported membrane-associated viral replication and exosome biogenesis. Inhibition of viral loads and SM lipid built up upon GW4869 inhibitor treatment reversed the IsSMase levels and restored its activity. Our results suggest an important role for this spider venomous ortholog IsSMase in regulating viral replication associated with membrane-bound SM lipids in ticks. In summary, our study not only suggests a novel role for arthropod IsSMase in tick-LGTV interactions but also provides new insights into its important function in vector defense mechanism(s) against tick-borne virus infection and in anti-viral pathway(s).
Collapse
Affiliation(s)
- Pravesh Regmi
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
8
|
Cho H, Lee WH, Kim YK, Kim KS. Extracellular vesicle-associated antigens as a new vaccine platform against scrub typhus. Biochem Biophys Res Commun 2020; 523:602-607. [DOI: 10.1016/j.bbrc.2020.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/01/2020] [Indexed: 01/12/2023]
|
9
|
Honek JF. Commentary on "Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases" by Professor Kwang-sun Kim, Pusan National University, Republic of Korea. Curr Med Chem 2019; 26:3201-3204. [PMID: 31526346 DOI: 10.2174/092986732617190820145226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|