1
|
Lin X, Zou X, Hu B, Sheng D, Zhu T, Yin M, Xia H, Hu H, Liu H. Bi Xie Fen Qing Yin decoction alleviates potassium oxonate and adenine induced-hyperuricemic nephropathy in mice by modulating gut microbiota and intestinal metabolites. Biomed Pharmacother 2024; 170:116022. [PMID: 38147734 DOI: 10.1016/j.biopha.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
This study aimed to evaluate the preventive effect of Bi Xie Fen Qing Yin (BXFQY) decoction on hyperuricemic nephropathy (HN). Using an HN mouse model induced by oral gavage of potassium oxonate and adenine, we found that BXFQY significantly reduced plasma uric acid levels and improved renal function. Further study shows that BXFQY suppressed the activation of the NLRP3 inflammasome and decreased the mRNA expressions of pro-inflammatory and fibrosis-associated factors in renal tissues of HN mice. Also, BXFQY prevented the damage to intestinal tissues of HN mice, indicative of suppressed colonic inflammation and increased gut barrier integrity. By 16 S rDNA sequencing, BXFQY significantly improved gut microbiota dysbiosis of HN mice. On the one hand, BXFQY down-regulated the abundance of some harmful bacteria, like Desulfovibrionaceae, Enterobacter, Helicobacter, and Desulfovibrio. On the other hand, BXFQY up-regulated the contents of several beneficial microbes, such as Ruminococcaceae, Clostridium sensu stricto 1, and Streptococcus. Using gas or liquid chromatography-mass spectrometry (GC/LC-MS) analysis, BXFQY reversed the changes in intestinal bacterial metabolites of HN mice, including indole and BAs. The depletion of intestinal flora from HN or HN plus BXFQY mice confirmed the significance of gut microbiota in BXFQY-initiated treatment of HN. In conclusion, BXFQY can alleviate renal inflammation and fibrosis of HN mice by modulating gut microbiota and intestinal metabolites. This study provides new insight into the underlying mechanism of BXFQY against HN.
Collapse
Affiliation(s)
- Xianghao Lin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; Xianning Medical College, Hubei University of Science and Technology, Xianning Avenue 88, Xianning 437100, PR China
| | - Xiaojuan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Dongyun Sheng
- Department of Traditional Chinese Medicine, General Hospital of China Resources WISCO, Metallurgy Avenue 29, Wuhan 430080, PR China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Sun M, Cui C, Chen H, Wang D, Zhang W, Guo W. Enzymatic and Non-Enzymatic Uric Acid Electrochemical Biosensors: A Review. Chempluschem 2023; 88:e202300262. [PMID: 37551133 DOI: 10.1002/cplu.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
In recent years, the development of electrochemical biosensors for uric acid has made great achievements. Firstly, uric acid electrochemical biosensors were classified according to their reaction mechanism. Then, the reaction mechanism of the uric acid sensor and the application of nano-modified materials were deeply analyzed from the perspective of non-enzyme and enzymes. In this paper, the catalytic oxidation capacity, enzyme adsorption effect, conductivity, robustness, detection range, and detection limit of uric acid sensors were discussed and compared. Finally, the advantages of acid-sensitive electrochemical biosensors were summarized, and the constructive recommendations were proposed for improving the deficiencies of acid biosensors. The potential for further development in this area was also discussed.
Collapse
Affiliation(s)
- Miao Sun
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Chuanjin Cui
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Hongshuo Chen
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Dengling Wang
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Wensi Zhang
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| | - Wenjin Guo
- North China University of Science and Technology, College of Electrical Engineering, Tangshan, 063210, P. R. China
| |
Collapse
|
3
|
Choi Y, Jacobs Jr DR, Kramer HJ, Shroff GR, Chang AR, Duprez DA. Racial Differences and Contributory Cardiovascular and Non-Cardiovascular Risk Factors Towards Chronic Kidney Disease Progression. Vasc Health Risk Manag 2023; 19:433-445. [PMID: 37465230 PMCID: PMC10350429 DOI: 10.2147/vhrm.s416395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Background The prevalence of advanced chronic kidney disease (CKD) is higher in Black than in White Americans. We evaluated CKD progression in Black and White participants and the contribution of biological risk factors. We included the study of lung function (measured by forced vital capacity [FVC]), which is part of the emerging notion of interorgan cross-talk with the kidneys to racial differences in CKD progression. Methods This longitudinal study included 2175 Black and 2207 White adult Coronary Artery Risk Development in Young Adults (CARDIA) participants. Estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) were measured at study year 10 (age 27-41y) and every five years for 20 years. The outcome was CKD progression through no CKD, low, moderate, high, or very high-risk categories based on eGFR and UACR in combination. The association between race and CKD progression as well as the contribution of risk factors to racial differences were assessed in multivariable-adjusted Cox models. Results Black participants had higher CKD transition probabilities than White participants and more prevalent risk factors during the 20-year period studied. Hazard ratios for CKD transition for Black (vs White participants) were 1.38 from No CKD into ≥ low risk, 2.25 from ≤ low risk into ≥ moderate risk, and 4.49 from ≤ moderate risk into ≥ high risk. Racial differences in CKD progression from No CKD into ≥ low risk were primarily explained by FVC (54.8%), hypertension (30.9%), and obesity (20.8%). In contrast, racial differences were less explained in more severe transitions. Conclusion Black participants had a higher risk of CKD progression, and this discrepancy may be partly explained by FVC and conventional risk factors.
Collapse
Affiliation(s)
- Yuni Choi
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - David R Jacobs Jr
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Gautam R Shroff
- Division of Cardiology and Department of Medicine, Hennepin Healthcare, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander R Chang
- Departments of Population of Health Sciences and Nephrology, Geisinger, Danville, PA, USA
| | - Daniel A Duprez
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Choi Y, Jacobs DR, Kramer HJ, Shroff GR, Chang AR, Duprez DA. Nontraditional Risk Factors for Progression Through Chronic Kidney Disease Risk Categories: The Coronary Artery Risk Development in Young Adults Study. Am J Med 2023; 136:380-389.e10. [PMID: 36565799 PMCID: PMC10038875 DOI: 10.1016/j.amjmed.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND There may be nontraditional pathways of chronic kidney disease (CKD) progression that are complementary to classical pathways. Therefore, we aimed to examine nontraditional risk factors for incident CKD and its progression. METHODS We used the generally healthy population (n = 4382) starting at age 27-41 years in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort, which is an observational longitudinal study. Nontraditional risk factors included forced vital capacity, inflammation, serum urate, and serum carotenoids. CKD risk category was classified using the estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) measured in 1995-1996 and repeated every 5 years for 20 years: No CKD, low risk, moderate risk, high risk, and very high risk. RESULTS At baseline, 84.8% had no CKD (eGFR ≥60 mL/min/1.73 m2 and UACR <10 mg/g), 10.3% were in the low risk (eGFR ≥60 and UACR 10-29), and 4.9% had CKD (eGFR <60 and/or UACR ≥ 30). Nontraditional risk factors were significantly associated with the progression of CKD to higher categories. Hazard ratios per standard deviation of the predictor for incident CKD and its progression from the No CKD and low and moderate risk into CKD were inverse for forced vital capacity and serum carotenoids and positive for serum urate, GlycA, and C-reactive protein, the first 3 even after adjustment for conventional risk factors. CONCLUSION Several nontraditional markers were significantly associated with an increased risk of progression to higher CKD categories in generally healthy young to middle-aged adults.
Collapse
Affiliation(s)
- Yuni Choi
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, Ill
| | - Gautam R Shroff
- Division of Cardiology and Department of Medicine, Hennepin Healthcare, University of Minnesota Medical School, Minneapolis
| | - Alexander R Chang
- Department of Population of Health Sciences, Kidney Health Research Institute, Department of Nephrology, Geisinger Medical Center, Danville, Penn
| | - Daniel A Duprez
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis.
| |
Collapse
|
5
|
Mechanism of Xiezhuo Huayu Yiqi Tongluo Formula in the Treatment of Uric Acid Nephropathy Based on Network Pharmacology, Molecular Docking, and In Vivo Experiments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6931644. [PMID: 36865745 PMCID: PMC9974263 DOI: 10.1155/2023/6931644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Background Xiezhuo Huayu Yiqi Tongluo Formula (XHYTF) consists of 14 Chinese herbal medicines. In this study, we investigated the potential mechanism of XHYTF in the treatment of uric acid nephropathy (UAN) through network pharmacology, molecular docking, and in vivo methods. Methods Using various pharmacological databases and analysis platforms, information on the active ingredients and targets of Chinese herbal medicine was collected, and UAN disease targets were retrieved using OMIM, Gene Cards, and NCBI. Then common target proteins were integrated. A Drug-Component-Target (D-C-T) map was constructed to screen core compounds and build a protein-protein interaction (PPI) network. Further, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for common targets, and a Drug-Component-Target-Pathway (D-C-T-P) network diagram was constructed. The molecular docking simulation was performed to verify the binding affinity between core components and hub targets. Subsequently, the UAN rat model was established, followed by the collection of serum and renal tissues. The expression levels of indicators in the serum were determined using an enzyme-linked immunosorbent assay. The pathological changes of renal tissues were detected using H & E staining and Masson staining. The expression of related proteins in renal tissue was detected by western blot. Results In the study, 216 active ingredients and 439 targets in XHYTF were screened, and 868 targets were identified as being related to UAN. Among them, 115 were common targets. Based on the D-C-T network, quercetin, luteolin, β-sitosterol, and stigmasterol were observed to be the key active ingredients of XHYTF that were effective against UAN. The analysis of the PPI network revealed TNF, IL6, AKT1, PPARG, and IL1β as the 5 key targets. GO enrichment analysis revealed that the pathways were mainly concentrated in cell killing, regulation of signaling receptor activity, and other activities. Subsequently, KEGG pathway analysis revealed that multiple signaling pathways, including the HIF-1, PI3K-Akt, IL-17, and other signaling pathways, were closely related to the action of XHYTF. All 5 key targets were confirmed to interact with all core active ingredients. In vivo experiments indicated that XHYTF significantly reduced blood uric acid and creatinine levels, alleviated inflammatory cell infiltration in kidney tissues, reduced the levels of serum inflammatory factors such as TNF-α and IL1β, and ameliorated renal fibrosis in rats with UAN. Finally, western blot revealed decreased levels of PI3K and AKT1 proteins in the kidney, which confirmed the hypothesis. Conclusion Collectively, our observations demonstrated that XHYTF significantly protects kidney function, including alleviation of inflammation and renal fibrosis via multiple pathways. This study provided novel insights into the treatment of UAN using traditional Chinese medicines.
Collapse
|
6
|
Liu P, Ma G, Wang Y, Wang L, Li P. Therapeutic effects of traditional Chinese medicine on gouty nephropathy: Based on NF-κB signalingpathways. Biomed Pharmacother 2023; 158:114199. [PMID: 36916428 DOI: 10.1016/j.biopha.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
As the final product of purine metabolism, excess serum uric acid (SUA) aggravates the process of some metabolic diseases. SUA causes renal tubule damage, interstitial fibrosis, and glomerular hardening, leading to gouty nephropathy (GN). A growing number of investigations have shown that NF-κB mediated inflammation and oxidative stress have been directly involved in the pathogenesis of GN. Traditional Chinese medicine's treatment methods of GN have amassed a wealth of treatment experience. In this review, we first describe the mechanism of NF-κB signaling pathways in GN. Subsequently, we highlight traditional Chinese medicine that can treat GN through NF-κB pathways. Finally, commenting on promising candidate targets of herbal medicine for GN treatment via suppressing NF-κB signaling pathways was summarized.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
7
|
Amatjan M, Li N, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats. Drug Des Devel Ther 2023; 17:107-128. [PMID: 36712944 PMCID: PMC9880016 DOI: 10.2147/dddt.s389811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background Cichorium intybus L. formula (CILF) is a traditional Chinese medicine (TCM) widely used in the treatment of gout and hyperuricemic nephropathy (HN). The aim of this research was to investigate the potential protective effect of CILF against HN and elucidated the underlying mechanism. Methods CILF water extract was administered to an HN rat model established by adenine combined with ethambutol. The levels of uric acid (UA), serum urea nitrogen (UREA), and creatinine (CREA) were detected. Changes in the pathology and histology of the kidney were observed by hematoxylin-eosin staining. The 16S rRNA of the gut microbiota was sequenced. The binding ability of the main ingredients of CILF to key targets was analyzed by network pharmacology and molecular docking. The expression levels of the related mRNAs and proteins in the kidney were evaluated by RT-qPCR and immunohistochemistry analysis. Results CILF administration significantly alleviated increases in UA, UREA, and CREA, structural damage, and kidney dysfunction. Gut microbiota analysis was applied to explore the pharmacological mechanism of the effects of CILF on bacterial diversity and microbiota structure in HN. CILF decreased the abundance of Bacteroides. In addition, it increased the abundance of Lactobacillaceae, Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Bifidobacterium. Based on network pharmacology and molecular docking analysis, CILF profoundly influenced the IL17, TNF and AGE-RAGE signaling pathway. Additionally, CILF inhibited the expression of STAT3, VEGFA and SIRT1 to improve the symptoms of nephropathy. Our research suggested that CILF protects against kidney dysfunction in rats with HN induced by adenine combined with ethambutol. Conclusion Our findings on the anti-HN effects of CILF and its mechanism of action, from the viewpoint of systems biology, and elaborated that CILF can alter the diversity and community structure of the gut microbiota in HN, providing new approaches for the prevention and treatment of HN.
Collapse
Affiliation(s)
- Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| |
Collapse
|
8
|
Li Q, Liu P, Wu C, Bai L, Zhang Z, Bao Z, Zou M, Ren Z, Yuan L, Liao M, Lan Z, Yin S, Chen L. Integrating network pharmacology and pharmacological validation to explore the effect of Shi Wei Ru Xiang powder on suppressing hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115679. [PMID: 36058481 DOI: 10.1016/j.jep.2022.115679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Maochuan Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
9
|
Abstract
Eating a net acid-producing diet can produce an "acid stress" of severity proportional to the diet net acid load, as indexed by the steady-state renal net acid excretion rate. Depending on how much acid or base is ingested or produced from endogenous metabolic processes and how well our homeostatic mechanisms can buffer or eliminate the additional acids or bases, we can alter our systemic acid-base balance. With increasing age, the kidney's ability to excrete daily net acid loads declines (a condition similar to that of mild CKD), invoking increased utilization of potential base stores (eg, bone, skeletal muscle) on a daily basis to mitigate the acid accumulation, thereby contributing to development of osteoporosis, loss of muscle mass, and age-related renal insufficiency. Patients suffering from more advanced CKD often present with more severe acid stress or metabolic acidosis, as the kidney can no longer excrete the entire acid load. Alkaline diets based on fruits and vegetables may have a positive effect on long-term preservation of renal function while maintaining nutritional status. This chapter discusses the biochemistry of dietary precursors that affect acid or base production.
Collapse
Affiliation(s)
- Lynda Frassetto
- Department of Medicine, University of California San Francisco, San Francisco, CA.
| | - Thomas Remer
- Department of Nutrition and Lifestyle Sciences, University of Bonn, Bonn, Germany
| | - Tanushree Banerjee
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Han Y, Han K, Han X, Yin Y, Di H, Wu J, Zhang Y, Zeng X. Serum Uric Acid Might Be Positively Associated With Hypertension in Chinese Adults: An Analysis of the China Health and Nutrition Survey. Front Med (Lausanne) 2022; 8:755509. [PMID: 35071258 PMCID: PMC8766717 DOI: 10.3389/fmed.2021.755509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Previous studies have clarified the relationship between serum uric acid (SUA) and hypertension; most of previous studies suggest that elevated uric acid levels are associated with an increased risk of hypertension, while in China, there are relatively few studies to explore above association. The objective of this longitudinal study is to investigate the correlation of SUA and hypertension in Chinese adults with a nationwide large-scale sample. Methods: Data from the China Health and Nutrition Survey 2009, 2011, and 2016 were used; a total of 8,469 participants (3,973 men and 4,496 women) were involved. This study was conducted separately by gender. Clinical characteristics of the participants among different uric acid groups are compared. The binary logistic regression analysis was conducted to examine the association between SUA and hypertension. Restricted cubic spline analysis with three knots of the SUA concentration were used to characterize the dose-response relationship. Additionally, we compared the incidence of hypertension in the different baseline uric acid groups during follow-up in 2011 and 2015. Results: After the covariates were fully adjusted, we found that elevated uric acid levels were correlated with increased risk of hypertension in both males (p < 0.01) and females (p < 0.01). With 2-year or 6-year of follow-up, we found participants with higher baseline uric acid levels had a higher incidence of hypertension (p < 0.01). In stratified analysis by obesity, above relationship remained significant in nonobesity population (males: p < 0.05, females: p < 0.01) and became nonsignificant in obesity people. In stratified analysis by age, above positively correlation remained significant in middle-aged men (p < 0.05) and elderly women (p < 0.01). Restricted cubic spline revealed the dose-response relationship between SUA and hypertension; we also found that above relationship was much stronger in females. Conclusion: This study suggests that elevated SUA levels might be positively associated with an increased risk of hypertension in general Chinese adults.
Collapse
Affiliation(s)
- Yingdong Han
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Kaidi Han
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xinxin Han
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Yin
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Di
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Wu
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhang
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuejun Zeng
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Pan J, Shi M, Guo F, Ma L, Fu P. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sci 2021; 285:119946. [PMID: 34516993 DOI: 10.1016/j.lfs.2021.119946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD), where hyperuricemia is a key independent risk factor. Considerable evidence indicated that STAT3 is one of the crucial signaling pathways in the progression of kidney fibrosis. Here, we investigated that pharmacological blockade of STAT3 delayed the progression of renal fibrosis in hyperuricemia-induced CKD. MAIN METHODS In the study, we used the mixture of adenine and potassium oxonate to perform kidney injury and fibrosis in hyperuricemic mice, accompanied by STAT3 activation in tubular and interstitial cells. KEY FINDINGS Treatment with STAT3 inhibitor S3I-201 improved renal dysfunction, reduced serum uric acid level, and delayed the progression of kidney fibrosis. Furthermore, S3I-201 could suppress fibrotic signaling pathway of TGF-β/Smads, JAK/STAT and NF-κB, as well as inhibit the expression of multiple profibrogenic cytokines/chemokines in the kidneys of hyperuricemic mice. SIGNIFICANCE These data suggested that STAT3 inhibition was a potent anti-fibrotic strategy in hyperuricemia-related CKD.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Thoracic Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Wu YL, Chen JF, Jiang LY, Wu XL, Liu YH, Gao CJ, Wu Y, Yi XQ, Su ZR, Cai J, Chen JN. The Extract of Sonneratia apetala Leaves and Branches Ameliorates Hyperuricemia in Mice by Regulating Renal Uric Acid Transporters and Suppressing the Activation of the JAK/STAT Signaling Pathway. Front Pharmacol 2021; 12:698219. [PMID: 34483901 PMCID: PMC8415165 DOI: 10.3389/fphar.2021.698219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Sonneratia apetala Buch-Ham., an exotic mangrove species with antidiabetic, antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal areas in China. The present work investigated the protective effects of Sonneratia apetala leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice. Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA model by challenge for consecutive 7 days. Results revealed that SAL inhibited the increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase (XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes. Moreover, it regulated oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content. Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), and transforming growth factor-β (TGF-β). SAL remarkably reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B (NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA transporters of organic anion transporter (OAT1), urate reabsorption transporter 1 (URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate excretion, which are related to oxidative stress and inflammation, and the possible molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway. Thus, SAL might be developed into a promising agent for HUA treatments.
Collapse
Affiliation(s)
- Yu-Lin Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Fen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin-Yun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Li Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Jun Gao
- Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
| | - Yan Wu
- Guangdong Academy of Forestry, Guangzhou, China
| | | | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Cai
- Guangdong Academy of Forestry, Guangzhou, China.,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
The Role of Oxidative Stress in Hyperuricemia and Xanthine Oxidoreductase (XOR) Inhibitors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470380. [PMID: 33854690 PMCID: PMC8019370 DOI: 10.1155/2021/1470380] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Uric acid is the end product of purine metabolism in humans. Hyperuricemia is a metabolic disease caused by the increased formation or reduced excretion of serum uric acid (SUA). Alterations in SUA homeostasis have been linked to a number of diseases, and hyperuricemia is the major etiologic factor of gout and has been correlated with metabolic syndrome, cardiovascular disease, diabetes, hypertension, and renal disease. Oxidative stress is usually defined as an imbalance between free radicals and antioxidants in our body and is considered to be one of the main causes of cell damage and the development of disease. Studies have demonstrated that hyperuricemia is closely related to the generation of reactive oxygen species (ROS). In the human body, xanthine oxidoreductase (XOR) catalyzes the oxidative hydroxylation of hypoxanthine to xanthine to uric acid, with the accompanying production of ROS. Therefore, XOR is considered a drug target for the treatment of hyperuricemia and gout. In this review, we discuss the mechanisms of uric acid transport and the development of hyperuricemia, emphasizing the role of oxidative stress in the occurrence and development of hyperuricemia. We also summarize recent advances and new discoveries in XOR inhibitors.
Collapse
|
14
|
Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling. PHYTOMEDICINE 2021; 87:153552. [PMID: 33994251 DOI: 10.1016/j.phymed.2021.153552] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The naturally occurring flavonol fisetin (3,3',4',7-tetrahydroxyflavone), widely dispersed in fruits, vegetables and nuts, has been reported to exert anti-inflammatory, antioxidant and anti-angiogenic effects. Our previous study indicated fisetin ameliorated inflammation and apoptosis in septic kidneys. However, the potential nephroprotective effect of fisetin in hyperuricemic mice remains unknown. PURPOSE The current study was designed to investigate the effect of fisetin on hyperuricemic nephropathy (HN) and explore the underlying mechanisms. METHODS The HN was induced in mice by mixing of potassium oxonate (2400 mg/kg) and adenine (160 mg/kg) in male C57BL/6J mice. Fisetin (50 or 100 mg/kg) was orally administrated either simultaneously with the establishment of HN or after HN was induced. As a positive control, allopurinol of 10 mg/kg was included. Uric acid levels in the serum and urine as well as renal function parameters were measured. Renal histological changes were measured by periodic acid-Schiff (PAS) and Masson's trichrome stainings. The expression of gene/protein in relation to inflammation, fibrosis, and uric acid excretion in the kidneys of HN mice or uric acid-treated mouse tubular epithelial (TCMK-1) cells were measured by RNA-seq, RT-PCR, western blot and immunohistochemical analysis. RESULTS Treatment with fisetin, regardless of administration regimen, dose-dependently attenuated hyperuricemia-induced kidney injury as indicated by the improved renal function, preserved tissue architecture, and decreased urinary albumin-to-creatinine ratio. Additionally, fisetin lowered uricemia by modulating the expression of kidney urate transporters including urate transporter 1(URAT1), organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3) and ATP binding cassette subfamily G member 2 (ABCG2). Moreover, hyperuricemia-induced secretions of proinflammatory factors including tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and monocyte chemoattractant protein-1(MCP-1) in HN mice and uric acid-stimulated TCMK-1 cells were mitigated by fisetin treatment. Meanwhile, fisetin attenuated kidney fibrosis in HN mice with restored expressions of alpha-smooth muscle actin (α-SMA), collagen I and fibronectin. Mechanistically, fisetin regulated the aberrant activation of signal transducer and activator of transcription-3 (STAT3) signaling and transforming growth factor-β (TGF-β) signaling in the HN kidneys and uric acid-stimulated TCMK-1 cells. CONCLUSION Fisetin lowered uricemia, suppressed renal inflammatory response, and improved kidney fibrosis to protect against hyperuricemic nephropathy via modulation of STAT3 and TGF-β signaling pathways. The results highlighted that fisetin might represent a potential therapeutic strategy against hyperuricemic nephropathy.
Collapse
|
15
|
Russo E, Verzola D, Leoncini G, Cappadona F, Esposito P, Pontremoli R, Viazzi F. Treating Hyperuricemia: The Last Word Hasn't Been Said Yet. J Clin Med 2021; 10:819. [PMID: 33671406 PMCID: PMC7922319 DOI: 10.3390/jcm10040819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Gout as well as asymptomatic hyperuricemia have been associated with several traditional cardiovascular risk factors and chronic kidney disease. Both in vitro studies and animal models support a role for uric acid mediating both hemodynamic and tissue toxicity leading to glomerular and tubule-interstitial damage, respectively. Nevertheless, two recent well designed and carried out trials failed to show the benefit of allopurinol treatment on kidney outcomes, casting doubts on expectations of renal protection by the use of urate lowering treatment. With the aim of providing possible explanations for the lack of effect of urate lowering treatment on chronic kidney disease progression, we will critically review results from all available randomized controlled trials comparing a urate-lowering agent with placebo or no study medication for at least 12 months and report renal clinical outcomes.
Collapse
Affiliation(s)
- Elisa Russo
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
| | - Giovanna Leoncini
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
- Internal Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Cappadona
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
- Nephrologic Clinic, Sant’ Andrea Hospital, Via Vittorio Veneto 197, 19121 La Spezia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
- Internal Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy; (E.R.); (D.V.); (G.L.); (F.C.); (P.E.); (R.P.)
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
16
|
Pharmacological inhibition of fatty acid-binding protein 4 alleviated kidney inflammation and fibrosis in hyperuricemic nephropathy. Eur J Pharmacol 2020; 887:173570. [PMID: 32949603 DOI: 10.1016/j.ejphar.2020.173570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease (CKD). Excessive uric acid (UA) level in the blood leads to hyperuricemic nephropathy (HN), which is characterized by glomerular hypertension, arteriolosclerosis and tubulointerstitial fibrosis. Fatty acid binding protein 4 (FABP4) is a potential mediator of inflammatory responses which contributes to renal interstitial fibrosis. However, the roles of FABP4 in HN remains unknown. In the study, a mouse model of HN induced by feeding a mixture of adenine and potassium oxonate, severe kidney injury and interstitial fibrosis, as well as the increased kidney-expressed FABP4 protein level were evident, accompanied by the activation of inflammatory responses. Oral administration of BMS309403, a highly selective FABP4 inhibitor, improved renal dysfunction, inhibited the mRNA level of KIM-1 and NGAL, as well as reduced the expression of proinflammatory cytokines and fibrotic proteins in the injured kidneys. BMS309403 treatment also inhibited the FABP4 activity and further suppressed the activation of JAK2-STAT3 and NF-kB P65 signaling pathways in the hyperuricemia-injured kidneys and UA-stimulated human tubular epithelial (HK-2) cells, respectively. In summary, our study for the first time demonstrated that FABP4 played a crucial role in kidney inflammation and fibrosis via the regulation of JAK2-STAT3 and NF-kB P65 pathways in HN mice. The results suggested that FABP4 inhibition might be a promising therapeutic strategy for HN.
Collapse
|
17
|
Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5817348. [PMID: 32685502 PMCID: PMC7336201 DOI: 10.1155/2020/5817348] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Uric acid is the end product of purine metabolism in humans, and its excessive accumulation leads to hyperuricemia and urate crystal deposition in tissues including joints and kidneys. Hyperuricemia is considered an independent risk factor for cardiovascular and renal diseases. Although the symptoms of hyperuricemia-induced renal injury have long been known, the pathophysiological molecular mechanisms are not completely understood. In this review, we focus on the research advances in the mechanisms of hyperuricemia-caused renal injury, primarily on oxidative stress, endothelial dysfunction, renal fibrosis, and inflammation. Furthermore, we discuss the progress in hyperuricemia management.
Collapse
|