1
|
Noronha LA, Ferrario MN, Koehnlein EA. Dietary Total Antioxidant Capacity of Brazilian Adults and the Elderly: An Analysis Based on the Degree of Food Processing (NOVA Classification). JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-12. [PMID: 40334096 DOI: 10.1080/27697061.2025.2496489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE This study aimed to estimate the dietary total antioxidant capacity (DTAC) of Brazilian adults and elderly and to identify the foods that contributed the most to antioxidant intake and their degree of processing. METHODS Data were collected from the National Dietary Survey of the 2017-2018 Household Budget Survey. DTAC was estimated using a database based on the Ferric-Reducing Ability Power (FRAP) assay, evaluating 1,335 food items consumed by Brazilians, and the degree of processing was identified according to the NOVA Classification. RESULTS The estimated average DTAC/1000Kcal was 4.27 mmol, and women (4.36mmol), elderly individuals (4.65mmol), black, mixed-race, and indigenous individuals (4.15mmol), residents in rural areas (4.61mmol), and those living in the South region (4.98mmol) had significantly higher DTAC when compared to other groups. DTAC decreased with the increase in income and education levels. Non-alcoholic beverages accounted for 58.84% of DTAC, followed by legumes (16.38%) and fruits (8.17%). Regarding the degree of processing, in natura and minimally processed foods contributed 92% of DTAC (3.93mmol), while ultra-processed foods accounted for 5.5% (0.235mmol). CONCLUSIONS The findings of this study reinforce the importance of consuming in natura and minimally processed foods, in the line with the Dietary Guidelines for the Brazilian Population, particularly with respect to antioxidant intake.
Collapse
Affiliation(s)
- Luana Alberti Noronha
- Post Graduate Program in Food Science and Technology, Federal University of Fronteira Sul, Laranjeiras do Sul, Parana, Brazil
| | - Marcela Nogueira Ferrario
- Department of Economics, Federal University of Latin American Integration, Foz do Iguaçu, Parana, Brazil
| | - Eloá Angélica Koehnlein
- Post Graduate Program in Food Science and Technology, Federal University of Fronteira Sul, Laranjeiras do Sul, Parana, Brazil
- Department of Nutrition, Federal University of Fronteira Sul, Realeza, Parana, Brazil
| |
Collapse
|
2
|
Stencel D, Kowalska J, Rzepka Z, Banach K, Karkoszka-Stanowska M, Wrześniok D. The Assessment of the Effect of Autophagy Inhibitors-Chloroquine and 3-Methyladenine on the Antitumor Activity of Trametinib Against Amelanotic Melanoma Cells. Cells 2025; 14:557. [PMID: 40214510 PMCID: PMC11988765 DOI: 10.3390/cells14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025] Open
Abstract
Malignant melanoma, particularly amelanotic melanoma, contributes to a very serious problem in public health. One way to find new therapies is to learn about and understand the molecular pathways that regulate cancer growth and development. In the case of a tumor, the autophagy process can lead to the development or inhibition of cancer. This study aimed to assess the cytotoxicity of connection trametinib (MEK1 and MEK2 kinase inhibitor) with autophagy inhibitors-chloroquine (lysosomal clearance of autophagosomes inhibitor) and 3-methyladenine (phosphatidylinositol 3-kinases inhibitor), on two amelanotic melanoma cell lines (C32 and A-375). The results showed that combination therapy had better anti-proliferative effects than alone therapy in both cell lines. The C32 cell line was more sensitive to 3-methyladenine treatment (alone and in combinations), and the A375 line showed sensitivity to chloroquine and 3-methyladenine (alone and in combinations). The anti-proliferative effect was accompanied by dysregulation of the cell cycle, a decrease in the reduced thiols, the depolarization of the mitochondrial membrane and the level of p44/p42 MAPK. Both inhibitors have the ability to induce apoptosis. Differences in the level of LC3A/B and LC3B proteins between the chloroquine and the 3-methyladenine samples indicate that these drugs inhibit autophagy at different stages. The enhancement of the effect of trametinib by autophagy inhibitors suggests the possibility of combining drugs with anti-cancer potential with modulators of the autophagy process.
Collapse
Affiliation(s)
- Dominika Stencel
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (J.K.); (Z.R.); (K.B.); (M.K.-S.)
| | | | | | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (J.K.); (Z.R.); (K.B.); (M.K.-S.)
| |
Collapse
|
3
|
Ahmadirad H, Omrani M, Azmi N, Saeidian AH, Jahromi MK, Mirtavoos-Mahyari H, Akbarzadeh M, Teymoori F, Farhadnejad H, Mirmiran P. Dietary phytochemical index and the risk of cancer: A systematic review and meta-analysis. PLoS One 2025; 20:e0319591. [PMID: 40173150 PMCID: PMC11964270 DOI: 10.1371/journal.pone.0319591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Recently, the association between dietary phytochemical index (DPI) and the risk of cancer has been the focus of researchers, however, this possible association has not been fully understood. The current meta-analysis aimed to assess the relationship between DPI and the risk of cancers. METHODS A literature search by the main keywords such as "dietary phytochemical index", "DPI", and "cancer" was completed using Scopus, PubMed, and Web of Science up to December 2024 and references of retrieved relevant articles. Observational studies examining the association between the DPI and the risk of cancers were included. The reported odds ratio (OR) with a 95% confidence interval (CI) for each study was converted into log OR, and their standard deviation was calculated. Then to compute the pooled OR, the random-effects model with inverse variance weighting method was performed. RESULTS Nine case-control studies were included in the present meta-analysis. The sample size ranged from 120 to 851 with an age range from 18 to 75 years. The pooled results indicate an inverse association between DPI and the risk of all cancers (OR: 0.40; 95% CI: 0.29-0.54, I2 = 0.00%; P-value < 0.001). Also, subgroup analysis indicated that higher a DPI score is related to the decreased risk of breast cancer (OR: 0.38; 95% CI: 0.26-0.55, I2 = 0.00%; P-value < 0.001) and pooled non-breast cancer including glioma, prostate, and colorectal cancers (OR: 0.43; 95% CI: 0.27-0.71, I2 = 0.00%; P-value = 0.001). CONCLUSIONS The results of the current meta-analysis revealed that the higher DPI score is associated with a decreased odds of cancers. Large-scale cohort studies are recommended to validate the findings presented in the current study.
Collapse
Affiliation(s)
- Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Omrani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Azmi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hesam Saeidian
- Department of Surgery, Rasool-E Akram Hospital School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ruzzolini J, Anceschi C, Albino M, Balica E, Muzzi B, Sangregorio C, Frediani E, Formica N, Margheri F, Chillà A, Fibbi G, Laurenzana A. Targeted Cancer Therapy with Gold-Iron Oxide Nanourchins: Inducing Oxidative Stress, Paraptosis, and Sensitizing Tumor Cells to Cisplatin. Antioxidants (Basel) 2025; 14:422. [PMID: 40298738 PMCID: PMC12024049 DOI: 10.3390/antiox14040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold-iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface features, and plasmonic properties. We tested NUs on several cancer cell lines, including A375 (melanoma), MCF7 (breast), A549 (lung), and MIA PaCa-2 (pancreatic), and observed significant dose-dependent cytotoxicity, with A549 cells exhibiting the highest resistance. Our findings also demonstrate that NUs induce oxidative stress, disrupt mitochondrial function, and activate autophagic and paraptotic cell death pathways in A549 lung cancer cells. Additionally, we explored the potential of NUs to enhance the efficacy of platinum-based chemotherapy, specifically cisplatin, in A549. The results provide valuable insights into the therapeutic potential of NUs in the context of cancer treatment, particularly for overcoming drug resistance and enhancing the effectiveness of conventional chemotherapy.
Collapse
Affiliation(s)
- Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Martin Albino
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Elena Balica
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Beatrice Muzzi
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
| | - Claudio Sangregorio
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Noemi Formica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| |
Collapse
|
5
|
Xing C, Sui B, He L, Yang J, Yang Z, Jiang M, An W. Association Between Red Cell Index and Depressive Symptoms in NHANES (2005-2018): A Cross-sectional Study. Cancer Nurs 2025:00002820-990000000-00378. [PMID: 40179150 DOI: 10.1097/ncc.0000000000001501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BACKGROUND Physical symptoms and emotional distress, such as melancholy, are common among cancer survivors. Misinterpreting these as normal reactions delays depression diagnosis and worsens prognosis. Patients may hide depressive symptoms during treatment, whereas clinicians and families often dismiss them as expected disease adaptation. Emerging evidence links depression to inflammatory responses and symptoms such as fatigue/cognitive decline to hypoxia, suggesting relevance of the Red Cell Index (RCI). OBJECTIVE To identify depression risk factors in cancer survivors and evaluate RCI as a potential biomarker. METHODS We included and analyzed 2890 patients from the National Health and Nutrition Examination Survey database in this study. The 9-item Patient Health Questionnaire was used to evaluate the depressive symptoms. We employed multivariable logistic regression and stratified analyses to evaluate the association between RCI and depressive symptoms. RESULTS Higher RCI inversely correlated with depression risk in unadjusted analysis, persisting after full adjustment. Subgroup findings were consistent. A significant nonlinear RCI-depression connection was found by dose-response analysis. CONCLUSIONS As the RCI increased, the likelihood of depression in patients diagnosed with cancer decreased. Nevertheless, cross-sectional studies can merely establish the link, necessitating further research to validate causality and assess the practicality of clinical use. IMPLICATIONS FOR PRACTICE Possible connections between hematological markers and depression symptoms are revealed by this investigation. The RCI-depression correlation offers new perspectives for nursing practice. For cancer survivor care, integrating validated hematological indicators into assessments alongside monitoring physical/psychological symptoms is recommended. Future research should prioritize RCI-depression risk assessment and early interventions in oncology patients.
Collapse
Affiliation(s)
- Cheng Xing
- Author Affiliations: Combined TCM and Western Medicine Clinics, Heilongjiang University of Chinese Medicine (Messrs Xing, He, Z. Yang, An, and Jiang and Ms J. Yang); and Department of Oncology, First Affiliated Hospital Heilongjiang University of Chinese Medicine (Dr Sui), Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Selvaraj NR, Nandan D, Nair BG, Nair VA, Venugopal P, Aradhya R. Oxidative Stress and Redox Imbalance: Common Mechanisms in Cancer Stem Cells and Neurodegenerative Diseases. Cells 2025; 14:511. [PMID: 40214466 PMCID: PMC11988017 DOI: 10.3390/cells14070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025] Open
Abstract
Oxidative stress (OS) is an established hallmark of cancer and neurodegenerative disorders (NDDs), which contributes to genomic instability and neuronal loss. This review explores the contrasting role of OS in cancer stem cells (CSCs) and NDDs. Elevated levels of reactive oxygen species (ROS) contribute to genomic instability and promote tumor initiation and progression in CSCs, while in NDDs such as Alzheimer's and Parkinson's disease, OS accelerates neuronal death and impairs cellular repair mechanisms. Both scenarios involve disruption of the delicate balance between pro-oxidant and antioxidant systems, which leads to chronic oxidative stress. Notably, CSCs and neurons display alterations in redox-sensitive signaling pathways, including Nrf2 and NF-κB, which influence cell survival, proliferation, and differentiation. Mitochondrial dynamics further illustrate these differences: enhanced function in CSCs supports adaptability and survival, whereas impairments in neurons heighten vulnerability. Understanding these common mechanisms of OS-induced redox imbalance may provide insights for developing interventions, addressing aging hallmarks, and potentially mitigating or preventing both cancer and NDDs.
Collapse
Affiliation(s)
| | | | | | | | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (N.R.S.); (D.N.); (B.G.N.); (V.A.N.)
| |
Collapse
|
7
|
Zeppilli D, Pedergnana V, Filippi M, Orian L. The Role of Chalcogen in the ROS Scavenging Mechanism of Model Phenyl Compounds. Molecules 2025; 30:1408. [PMID: 40286063 PMCID: PMC11990681 DOI: 10.3390/molecules30071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic compounds are important antioxidants with great ROS scavenging potential and the presence of the hydroxyl groups is fundamental for this chemical activity. Therefore, changing the chalcogen atom (oxygen) with any of its siblings of group 16 (sulfur, selenium and tellurium) may affect the reactivity of these compounds. In this work, the ROS scavenging activity and mechanism of phenyl chalcogenols was evaluated in silico, unravelling better performance with heavier chalcogens, both thermodynamically and kinetically. Furthermore, a scavenging mechanism switch is reported, moving from Concerted Proton Electron Transfer (CPET) in phenols to Hydrogen Atom Transfer (HAT) in the other phenyl chalcogenols. Both kinetic trends and mechanistic features are rationalized in the framework of Activation Strain Analysis (ASA). Lastly, the role of aromaticity is evidenced by analyzing the differences between the phenol/phenoxyl and methanol/methoxyl self-exchange reactions, as well as between the corresponding processes with the other chalcogens.
Collapse
Affiliation(s)
| | | | | | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy; (D.Z.); (V.P.); (M.F.)
| |
Collapse
|
8
|
Li S, Dong P, Wu X, Kang Z, Yan G. Global trends in tumor-associated neutrophil research: a bibliometric and visual analysis. Front Immunol 2025; 16:1478092. [PMID: 40160822 PMCID: PMC11949894 DOI: 10.3389/fimmu.2025.1478092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Tumor-associated neutrophils (TANs) play crucial roles in tumor progression, immune response modulation, and the therapeutic outcomes. Despite significant advancements in TAN research, a comprehensive bibliometric analysis that objectively presents the current status and trends in this field is lacking. This study aims to fill this gap by visually analyzing global trends in TANs research using bibliometric and knowledge mapping techniques. Methods We retrieved articles and reviews related to TANs from the Web of Science core collection database, spanning the period from 2012 to2024. The data was analyzed using bibliometric tools such as Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio) to identify key trends, influential countries and institutions, collaborative networks. and citation patterns. Results A total of 6l5 publications were included in the bibliometric analysis, showing a significant upward trend in TANs research over the last two decades. The United States and China emerged as the leading contributors with the highest number of publications and citations. The journal with the most publications in this field is Frontiers in Immunology, Prominent authors such as Fridlender ZG was identified as the key contributor, with his works frequently cited. The analysis highlighted major research themes. including the role of TANs in tumor microenvironment modulation, their dual functions in tumor promotion and suppression, and the exploration of TANs-targeted therapies, Emerging research hotspots include studies on TANs plasticity and their interactions with other immune cells. Conclusion This study is the first to employ bibliometric methods to visualize trends and frontiers in TANs research. The findings provide valuable insights into the evolution of the field, highlighting critical areas for future investigation and potential collaborative opportunities. This comprehensive analysis serves as a crucial resource for researchers and practitioners aiming to advance TAN research and its application in cancer therapy.
Collapse
Affiliation(s)
- Shaodong Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Guoqiang Yan
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Wang C, Liu X, Zhao Y, Liao S, Zhang J, Huang Y, Shi Y, Li L, Pan Q, Wu J, Wang Y. AMPK activation by hepatitis E virus infection inhibits viral replication through attenuation of autophagosomes and promotion of innate immunity. Cell Mol Life Sci 2025; 82:111. [PMID: 40074929 PMCID: PMC11904043 DOI: 10.1007/s00018-025-05634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/26/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Hepatitis E virus (HEV) infection is generally asymptomatic or leads to acute and self-limiting hepatitis. The mechanisms orchestrating such an infection course remain to be elucidated. AMP-activated protein kinase (AMPK) is a pivotal cellular sensor for maintaining metabolic homeostasis. Here, we show that AMPK is activated in response to HEV infection and is associated with mitochondrial damage and ATP deficiency. AMPK activation, in turn, inhibits HEV replication. Mechanistic studies reveal that AMPK activation triggers the expression of interferon (IFN)-stimulated genes that possess antiviral properties. In parallel, AMPK inhibits autophagosome accumulation to exert antiviral effects. Interestingly, AMPK activation also suppresses the inflammatory response triggered by HEV infection. Consistently, AMPK activation simultaneously exerts anti-inflammatory and antiviral effects in a coculture system of HEV-infected liver cells with macrophages. These findings pave the way for the development of AMPK-targeted therapeutics to treat hepatitis E.
Collapse
Affiliation(s)
- Chunling Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Reproductive Health/NHC Key Laboratory of Birth Defects Prevention, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaoman Liu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yao Zhao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiayue Zhang
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yue Shi
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, 3015CE, The Netherlands.
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nnjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, Jiangsu, 215008, China.
| | - Yijin Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Wang H. Medical Benefits and Polymer Applications of Grapes. Polymers (Basel) 2025; 17:750. [PMID: 40292569 PMCID: PMC11945784 DOI: 10.3390/polym17060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Grapes are a fruit with origins dating back to ancient times. Their first recorded use, as mentioned in the Bible, was in winemaking. The abundance of bioactive compounds in grapes makes them highly valuable. So far, many varieties of cultivated grapes have been developed for table grapes, wine grapes, and raisin production. In addition to these uses, since grapes contain a variety of nutrients, including resveratrol, flavonoids (such as flavonols, anthocyanins, and catechins), melatonin, vitamins, acids, tannins, and other antioxidants, grape extracts have been widely studied for medical applications. This paper reviews the medical effects of these compounds on cancer, cardiovascular disease, brain and neurological disorders, eye diseases, skin disorders, kidney health, diabetes, and gastric diseases, along with the medical applications of grapes in drug delivery, wound dressing, and tissue engineering. In addition, the limitations of the grapes-derived polymers and future research perspectives are discussed. These benefits highlight that the value of grapes extends far beyond their traditional use in wine and raisin production.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
11
|
Nunes KC, Lazarin-Bidoia D, Ueda-Nakamura T, de Oliveira Silva Lautenschlager S, Michel R, Auzély-Velty R, Nakamura CV. Syringic acid protective role: Combatting oxidative stress induced by UVB radiation in L-929 fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113104. [PMID: 39884103 DOI: 10.1016/j.jphotobiol.2025.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Neglecting proper skin care and repeated exposure to ultraviolet (UV) radiation can have serious consequences, including skin burns, photoaging and even the development of skin cancer. UV radiation-induced damage is mediated by highly unstable and reactive molecules, named reactive oxygen species (ROS). To counteract ROS, the skin has an endogenous antioxidant system. Considering that, many sunscreens incorporate antioxidant substances to ensure additional photochemioprotective action in the formulation. Syringic acid (SA) is classified as a phenolic acid derived from hydroxybenzoic acid. It has antioxidant properties, which can reduce oxidative stress, and has shown potential to prevent skin cancer. The aim of this study was to assess the ability of SA to protect L-929 fibroblasts from UVB radiation by evaluating oxidative stress biomarkers. As a result, we demonstrated the antioxidant activity of SA through four methodologies, and confirmed the photochemioprotective activity of SA by attenuating the cytotoxicity of UVB radiation in L-929 fibroblasts. The mechanisms involved in the photoprotection of SA include a significant reduction in total ROS, maintenance of mitochondrial membrane potential, decrease in lipid peroxidation, preservation of endogenous antioxidant system enzymes and reduced glutathione (GSH) levels, thereby mitigating the ultrastructural damage caused by UVB. Additionally, SA showed promising results in wound healing. Considering such properties, SA emerges as a strong candidate for incorporation into photoprotective and multifunctional formulations.
Collapse
Affiliation(s)
- Karine Campos Nunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Raphaël Michel
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
12
|
Zare S, Zahraei Z, Khodadadi M, Zarean M, Salehi A. Dispersive liquid-liquid microextraction for the determination of urinary 8-hydroxy 2'-deoxyguanosine in COVID-19 patients by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1915-1922. [PMID: 39927406 DOI: 10.1039/d4ay01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
COVID-19 disease has led to many deaths worldwide and early detection of people at a high risk of severe forms of this disease would greatly help physicians. The presence of oxidative stress biomarkers may help identify high-risk individuals early in the course of the disease. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is a widely used biomarker for assessing endogenous oxidative DNA damage. In this study, the urinary 8-OHdG levels were determined in COVID-19 patients and COVID-19 patients with cancer by a dispersive liquid-liquid microextraction (DLLME) method using gas chromatography-mass spectrometry (GC-MS). The effects of essential parameters on the extraction method were investigated. The LOD and LOQ are equal to 1.7 nM and 5.1 nM, respectively. At varied concentrations of 8-OHdG (300, 400, and 600 nM), the relative standard deviation (RSD) ranged from 18.35% to 22.36%. The mean urinary 8-OHdG levels of cancer and COVID-19 patients were 13.20 ± 6.20 nmol mmol-1, while the mean levels in COVID-19 patients and healthy volunteers were 6.67 ± 5.80 nmol mmol-1 and 1.61 ± 1.72 nmol mmol-1, respectively. The results of this study showed that the level of 8-OHdG urine biomarkers in people with COVID-19 is significantly higher than in healthy people. In this study, the DLLME approach was used for the first time to determine the value of 8-OHdG using GC-MS. According to the results of this research, the DLLME method was successfully used as a biomarker of DNA oxidative stress for extracting 8-OHdG urine. Compared to other methods, this technique has advantages such as shorter extraction time and low cost.
Collapse
Affiliation(s)
- Sanaz Zare
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731751167, Iran.
| | - Zohreh Zahraei
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, 8731751167, Iran.
| | - Mohammad Khodadadi
- Department of Phytochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Zarean
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Salehi
- School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Lin F, Zhou R, Ou Q, Tu K, Fang Y, Zhang C. Oxidative Balance Score Calculated Using Different Methods and Its Associations with Colorectal Cancer Risk. Nutrients 2025; 17:679. [PMID: 40005007 PMCID: PMC11858281 DOI: 10.3390/nu17040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The oxidative balance score (OBS) measures oxidative stress from diet and lifestyle, but research linking it to colorectal cancer (CRC) risk is scarce and varies in calculation methods. METHODS We conducted a case-control study in Guangzhou, China, involving 2799 CRC cases and an equal number of sex- and age-matched controls. We adopted and compared four different methods for calculating the OBSs. The odds ratio (OR) and 95% confidence interval (95%CI) for the relationship between OBS and CRC risk were determined using an unconditional logistic regression model. Restricted cubic splines were used to explore potential non-linear relationships. Additionally, stratified analyses were performed by sex, and subgroup analyses were performed based on the tumor site. RESULTS Among the four OBSs assessed, OBS-1 demonstrated superior performance. Higher adherence to four OBSs was associated with a lower risk of CRC. The adjusted ORs (95%CIs) for the highest quartile compared to the lowest quartile were as follows: 0.42 (0.35, 0.50) for OBS-1, 0.43 (0.36, 0.51) for OBS-2, 0.50 (0.42, 0.59) for OBS-3, and 0.43 (0.36, 0.51) for OBS-4. Linear relationships were observed between four OBSs and CRC risk (all p-Nonlinear > 0.05). Stratified analysis by sex revealed that all four OBSs were negatively associated with CRC risk in both male and female patients. Subgroup analysis by cancer site indicated that four OBSs were negatively associated with the risk of both colon and rectal cancer. CONCLUSIONS All four OBSs were negatively associated with CRC risk, with OBS-1 showing the strongest association in our analysis.
Collapse
Affiliation(s)
- Fangting Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (F.L.); (R.Z.); (K.T.)
| | - Ruolin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (F.L.); (R.Z.); (K.T.)
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Kexin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (F.L.); (R.Z.); (K.T.)
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (F.L.); (R.Z.); (K.T.)
| |
Collapse
|
14
|
Abusara OH, Hammad AM, Debas R, Al-Shalabi E, Waleed M, Scott Hall F. The inflammation and oxidative status of rat lung tissue following smoke/vapor exposure via E-cigarette, cigarette, and waterpipe. Gene 2025; 935:149066. [PMID: 39491601 DOI: 10.1016/j.gene.2024.149066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Tobacco smoking is a major worldwide health issue that contributes to millions of deaths annually. Electronic cigarettes (E-cigarettes) are also harmful. Smoke/vapor from E-cigarettes and tobacco products consists of free radicals and other toxic substances. Tissue damage in smokers, such as lungs, is highly observed and is linked to oxidative damage and inflammation. METHODS The inflammation and oxidative status of rat lung tissues was examined following whole-body smoke/vapor exposure via E-cigarette, cigarette, and waterpipe for 2 h daily, 5 days per week for 8 weeks. RESULTS Lung tissue damage was higher in cigarettes and waterpipe groups compared to the E-cigarette group. Collectively, there was a significant increase (p < 0.05) in the mRNA expression of pro-inflammatory mediators (TNF-α, NF-κB, IL-1β) with the exception of IL-1β in the E-cigarettes group. As for the anti-inflammatory mediators (Nrf2 and IL-10), a significant reduction (p < 0.05) of mRNA expression was observed with the exception of Nrf2 in the E-cigarette group. As for IL-6, there was a significant increase in its mRNA expression (p < 0.05) in the cigarette and waterpipe groups. There was also a significant decrease (p < 0.05) in the antioxidant activity of all antioxidants tested (GPx, SOD, and CAT) in all groups with the exception of SOD in the cigarette group. CONCLUSION Smoke/vapor administered via E-cigarette, cigarette, and waterpipe elicits inflammation and oxidative stress in rat lungs that is accompanied by histopathological changes.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eveen Al-Shalabi
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammed Waleed
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
15
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
16
|
Bu H, Lv M, Wang L, Jiang D, Ding Y, Wang Z, Hu Y, Zhuang Q, Tian Z. Inverse association of oxidative balance score with depression and specific depressive symptoms among cancer population: Insights from the NHANES (2005-2020). PLoS One 2025; 20:e0316819. [PMID: 39823490 PMCID: PMC11741613 DOI: 10.1371/journal.pone.0316819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The rising prevalence of depression among cancer patients is alarming. This study examines the relationship between the Oxidative Balance Score (OBS)-a composite measure of dietary and lifestyle factors-and depression, including specific depressive symptoms in this population. METHODS Data were analyzed from 3,280 adult cancer patients collected in NHANES from 2005-2020. Depression was assessed using the Patient Health Questionnaire-9 (PHQ-9), where a score of 10 or above indicated depression. Symptoms experienced frequently were classified as specific depressive symptoms. Weighted logistic regression models were utilized to explore the correlation between OBS and depression, along with distinctive depressive symptoms. RESULTS There was a negative correlation between OBS and depression. The highest quartile of OBS (OR 0.313, 95% CI: 0.161-0.609), along with dietary OBS (OR 0.429, 95% CI: 0.234-0.786) and the third quartile of lifestyle OBS (OR 0.404, 95% CI: 0.226-0.722), was associated with reduced depression risk. OBS was correlated with lower risks of all four somatic depressive symptoms and one cognitive symptom. Dietary OBS was associated with fewer risks of three somatic symptoms and one cognitive symptom. Lifestyle OBS showed a negative correlation with two somatic symptoms. Stratified analyses indicated that the inverse relationship between OBS and depression risk was consistent across subgroups, including females and individuals under 65. a nonlinear association was observed between OBS (p = 0.024), dietary OBS (p<0.001), lifestyle OBS (p = 0.021), and depression. CONCLUSIONS OBS is inversely related to depression and specific depressive symptoms in cancer patients. Encouraging a diet and lifestyle rich in antioxidants may help reduce the risk of depression in this group.
Collapse
Affiliation(s)
- Hanli Bu
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingzhen Lv
- Department of Gastrointestinal Surgery, Guilin Medical University Affiliated Hospital, Guilin, China
| | - Linxian Wang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan Jiang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Ding
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheya Wang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yaoyao Hu
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Zhuang
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhenzhen Tian
- Department of General Practice, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Guedes LJL, Tavares VB, Carneiro SR, Neves LMT. The effect of physical activity on markers of oxidative and antioxidant stress in cancer patients: a systematic review and meta-analysis. BMC Cancer 2025; 25:74. [PMID: 39806299 PMCID: PMC11726932 DOI: 10.1186/s12885-024-13099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Prescribing physical exercise as part of the clinical treatment of cancer patients has become an important strategy in the therapeutic arsenal available in the main health centers specialized in neoplastic diseases, but there is still uncertainty regarding the role of regular physical activity in modifying oxidative stress markers and antioxidants, as high levels of oxidative stress can lead to the development of carcinogens. Therefore, we assessed the effect of physical activity versus absence of physical activity on markers of oxidative stress and antioxidants in cancer patients. METHODS We looked for randomized controlled trials that included adult with any type of cancer performing some physical activity and compared them to a control group of cancer patients with no physical activity. The outcomes of interest collected were markers of oxidative stress and antioxidants. Six databases were used for the search (EMBASE, The Cochrane Library (CENTRAL), US National Library of Medicine (PubMed), Physiotherapy Evidence Database (PEDro), Cumulative Index of Nursing and Allied Health (CINAHL) and SPORTDiscus via EBSCO) until January 31st, 2024. RESULTS In the end, 7 randomized controlled clinical trials were included, totaling 573 participants. It was possible to conduct a meta-analysis with demonstrated that physical activity potentially increases the antioxidant marker Trolox, Taoc, Gpx, (SMD = 1.23, CI: 0.13 to 2.34). However, these findings were classified as having very low to moderate GRADE evidence. CONCLUSION Cancer patients who participated in physical activity programs may have exhibited an increased concentration of antioxidants. Although the overall quality of the evidence in the studies was very low, these findings represent an important field of research that should be guided by studies with more participants and homogeneous methods of analysis of oxidant stress and antioxidant markers. TRIAL REGISTRATION PROSPERO CRD42021257815.
Collapse
Affiliation(s)
| | - Victória Brioso Tavares
- Federal University of Pará (UFPA), R. Augusto Corrêa, 01 - Guamá, Belém, Pará, 66075-110, Brazil
| | - Saul Rassy Carneiro
- Federal University of Pará (UFPA), R. Augusto Corrêa, 01 - Guamá, Belém, Pará, 66075-110, Brazil
| | - Laura Maria Tomazi Neves
- Federal University of Pará (UFPA), R. Augusto Corrêa, 01 - Guamá, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
18
|
Huang S, Zhang W, Ba M, Xuan S, Huang D, Qi D, Pei X, Lu D, Li Z. Chronic Jet Lag Disrupts Circadian Rhythms and Induces Hyperproliferation in Murine Lacrimal Glands via ROS Accumulation. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 39775698 PMCID: PMC11717126 DOI: 10.1167/iovs.66.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood. Methods A CJL model was established using C57BL/6J mice. Extraorbital lacrimal glands (ELGs) were collected at 3-hour intervals for RNA extraction and high-throughput RNA sequencing. Circadian transcriptomic profiles were analyzed, and functional annotations were performed. Hydrogen peroxide levels and total antioxidant capacity in tear fluid were measured using chemometric assays. Immunofluorescence was used to assess cell proliferation, apoptosis, immune cell infiltration in ELGs, and reactive oxygen species (ROS) accumulation. The potential therapeutic effects of alpha-lipoic acid (ALA) on CJL-induced oxidative stress and pathological changes in ELGs were also investigated. Results CJL significantly disrupted locomotor activity, altered body temperature rhythms, and modified diurnal oscillations in ELGs. Transcriptomic analysis revealed extensive changes in rhythmic gene expression, phase shifts, and pathway clustering in response to CJL. The disruption of the core circadian clock transcription was associated with ELG hyperproliferation and increased ROS accumulation. tert-Butyl hydroperoxide promoted ELG cell proliferation, and ALA effectively reduced ROS levels and mitigated CJL-induced hyperproliferation. Conclusions These findings uncover novel molecular pathways affected by CJL and highlight the potential of antioxidant therapies, such as ALA, in preserving ocular surface health under conditions of circadian rhythm disruption.
Collapse
Affiliation(s)
- Shenzhen Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhijie Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Ophthalmology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Alejandro V, Hernández A, Pérez-Rodríguez L, Montoya B. Oxidative Challenges Do Not Impact Pheomelanin-Dependent Coloration in Male Japanese Quails. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:59-69. [PMID: 39291628 DOI: 10.1002/jez.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Colorful traits play an important role in animal communication. Melanin-based colorations are the most extended color traits in animals and are produced by two types of endogenous melanic pigments: eumelanins and pheomelanins, the last ones being the least studied in the context of communication. The production of pheomelanin requires a semi-essential amino acid, cysteine, which is also used for the synthesis of an important endogenous antioxidant, glutathione. Hence, it has been proposed that the synthesis of pheomelanin and glutathione may compete for the cysteine available in the organism. In that case, pheomelanic colorations are predicted to be less intense when the individual is facing an oxidative challenge, and therefore, they would provide information on the oxidative status of the bearer. Here, we experimentally evaluated this hypothesis using male Japanese quails (Coturnix japonica) as a model of study, a species with pheomelanin-based plumage in the breast and cheeks. During feather growth, individuals were exposed to one of three possible conditions: Control (saline), an endogenous oxidative challenge (Escherichia coli lipopolysaccharide injections), or an exogenous oxidative challenge (paraquat injections). Contrary to predictions, we found that: (1) Birds from the three groups exhibited less intense pheomelanic colorations in feathers after the experimental manipulation, and the magnitude of this change did not differ among groups. (2) There was no effect of the experimental treatments on the proportion reduced/oxidized glutathione, an index of oxidative status. (3) Lipid peroxidation was lower after the experimental manipulation, with birds exposed to the paraquat challenge experiencing a stronger decline than other groups. (4) Cysteine and total glutathione levels decreased after the experimental manipulation, with no differences per group in the magnitude of the decline. Taken together the results do not support the hypothesis that oxidative status plays a key role at determining the variation in the intensity of pheomelanic colorations.
Collapse
Affiliation(s)
- Vianey Alejandro
- Maestría en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - América Hernández
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Bibiana Montoya
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
20
|
Rossner P, Libalova H, Cervena T, Sima M, Simova Z, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Vimrova A, Dittrich L, Vojtisek M, Pechout M, Vojtisek-Lom M. Real-world outdoor air exposure effects in a model of the human airway epithelium - A comparison of healthy and asthmatic individuals using a mobile laboratory setting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117495. [PMID: 39647370 DOI: 10.1016/j.ecoenv.2024.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
We developed a mobile laboratory allowing field exposure of lung tissue models to ambient air at localities with various pollution sources (Background, Industrial, Traffic, Urban) in different seasons (summer/fall/winter). In samples originating from healthy and asthmatic individuals, we assessed the parameters of toxicity, lipid peroxidation and immune response; we further performed comprehensive monitoring of air pollutants at sampling sites. We measured lactate dehydrogenase (LDH) and adenylate kinase (AK) production and transepithelial electrical resistance (TEER), analyzed 15-F2t-isopostane (IsoP) and a panel of 20 cytokines/chemokines/growth factors. In the ambient air, we detected particulate matter (PM), and other relevant chemicals (benzene, benzo[a]pyrene (BaP), NOx). In the Traffic locality, we found very high concentrations of ultrafine particles and NOx and observed low TEER values in the exposed samples, indicating significant traffic-related toxicity of the ambient air. In the Urban locality, sampled in winter, we observed high PM and BaP levels. We found lower AK levels in samples from healthy individuals exposed in this locality than in the asthmatic samples. In the samples from the Industrial locality, sampled in summer, we detected higher concentrations of TNFα, MIP-1α, Eotaxin, GROα, GM-CSF, IL-6 and IL-7 than in the Urban locality samples. We hypothesize that pollen or other plant-related components of the ambient air were responsible for this response. In conclusion, our data proved the feasibility of our mobile laboratory for field measurements of the biological response of lung tissue models exposed to ambient air, reflecting not only the levels of toxic compounds, but also season-specific parameters.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic.
| | - Helena Libalova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Tereza Cervena
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Michal Sima
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Antonin Ambroz
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Zuzana Novakova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Anezka Vimrova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Lubos Dittrich
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Michal Vojtisek
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Martin Pechout
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Michal Vojtisek-Lom
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
21
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
22
|
Riti SJ, Shompa SA, Hasnat H, Islam MM, Alam S, Ghosh S, Saha T, Zeng C, Shao C, Wang S, Geng P, Mamun AA. The Miraculous Asian Fruit Baccaurea motleyana Müll. Arg. (Rambai): Exploring the Phyto-Pharmacological Potentials of Fruit Peel Through GC-MS/MS, In Vitro, In Vivo, and In Silico Approaches. Chem Biodivers 2024:e202402444. [PMID: 39663189 DOI: 10.1002/cbdv.202402444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Baccaurea motleyana Müll. Arg. (Rambai), an Asian fruit belonging to the Phyllanthaceae family, is cultivated throughout Southeast Asia and has been traditionally utilized in folk medicine to address eye discomfort, digestive issues, insomnia, and fevers. This study of the peel employed four Kupchan fractions (PSF, DSF, ESF, and ASF) obtained from the methanol extract of the peel of B. motleyana for in vitro assessments, including antioxidant cytotoxicity and antimicrobial activities. The crude methanol extract was also used for in vivo evaluations, focusing on antidiarrheal and antidepressant effects, complemented by phytochemical screening and analysis using GC-MS/MS. The investigation of B. motleyana methanol peel extract identified 20 phytochemicals, with primary constituents, including phenol, 3,5-bis(1,1-dimethylethyl) (26.14%) and 1-heptadec-1-ynyl-cyclohexanol (23.12%). The extract exhibited potent antioxidant activity (IC50: 9.43 µg/mL) and cytotoxicity (LC50: 6.01 µg/mL). The most significant antidiarrheal effect was observed at a dosage of 400 mg/kg. Molecular docking studies revealed that compounds, such as C9, C2, and C19, displayed noteworthy binding affinities against glutathione reductase (-6.3 kcal/mol), urease oxidase (-6 kcal/mol), and monoamine oxidase A (-6.5 kcal/mol) receptors. In summary, our study demonstrates that fruits, like Rambai, could serve as a promising source for therapeutics and drug development in Asian countries.
Collapse
Affiliation(s)
- Saima Jahan Riti
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Suriya Akter Shompa
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Hasin Hasnat
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Md Mirazul Islam
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Safaet Alam
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Sagar Ghosh
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Tanoy Saha
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Chunlai Zeng
- Department of Cardiology, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| |
Collapse
|
23
|
Sakano M, Tomita Y, Kanazawa T, Ishibashi S, Ikeda M, Oshita H, Hananoi Y, Kato Y, Yamamoto K, Furukawa A, Kinoshita M, Haruki S, Tokunaga M, Kinugasa Y, Kurata M, Kitagawa M, Ohashi K, Yamamoto K. Prognostic significance and therapeutic potential of guanosine triphosphate cyclohydrolase 1 in esophageal squamous cell carcinoma: clinical implications of ferroptosis and lipid peroxidation regulation. Front Oncol 2024; 14:1459940. [PMID: 39723384 PMCID: PMC11668648 DOI: 10.3389/fonc.2024.1459940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024] Open
Abstract
Background Esophageal cancer, particularly esophageal squamous cell carcinoma (ESCC), is a leading cause of cancer-related death and has a poor prognosis. Despite the advancements in multidisciplinary therapies, resistance to conventional treatments warrants the development of novel therapeutic strategies. Ferroptosis, a form of cell death dependent on intracellular iron, has emerged as a potential mechanism for targeting cancer cells resistant to apoptosis. Guanosine triphosphate cyclohydrolase 1 (GCH1) has been identified as a novel antagonist of ferroptosis; however, its role in ESCC remains unclear. This study aimed to investigate the correlation between the expression and accumulation of the lipid peroxidation markers and regulators, including GCH1, in patients with ESCC and examined their prognostic significance. Furthermore, we investigated the relationship between lipid peroxidation regulators and cell death using an in vitro system to establish the basis for new therapeutic strategies. Methods We retrospectively analyzed 312 patients with ESCC who underwent radical esophagectomy at the Tokyo Medical and Dental University. Immunohistochemistry was performed to evaluate the expression of lipid peroxidation markers (4-hydroxy-2-nonenal) and regulators (glutathione peroxidase 4 [GPX4], ferroptosis suppressor protein 1 [FSP1], and GCH1). The correlation between these markers, clinicopathological features, and overall survival was assessed. In vitro experiments were performed using KYSE-150 cells to investigate the effects of GCH1 knockdown and overexpression on cell proliferation, cisplatin-induced cell death, and ferroptosis. Results Low GCH1 expression was significantly associated with a poor prognosis in patients with ESCC. GCH1 expression correlated with lymph node metastases, vessel invasion, and the pathological tumor stage. In vitro, GCH1-knockdown cells exhibited increased proliferation and resistance to cisplatin-induced cell death, whereas GCH1 overexpression reduced cell proliferation. Simultaneous inhibition of GPX4 and FSP1 induced mild cell death; however, GCH1 knockdown dramatically enhanced ferroptosis, suggesting a synergistic effect. Conclusion GCH1 is a critical prognostic factor for ESCC and plays a significant role in the regulation of cell proliferation and ferroptosis. Targeting GCH1 in combination with GPX4 and FSP1 inhibitors may offer a novel therapeutic strategy for overcoming resistance in ESCC. Further studies are warranted to elucidate the involved molecular mechanisms and validate these findings in vivo.
Collapse
Affiliation(s)
- Masayoshi Sakano
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinobu Tomita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Kanazawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruna Oshita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuri Hananoi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Kato
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kurara Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mayumi Kinoshita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Shigeo Haruki
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
25
|
Mo HY, Wang RB, Ma MY, Zhang Y, Li XY, Wen WR, Han Y, Tian T. MTHFD2-mediated redox homeostasis promotes gastric cancer progression under hypoxic conditions. Redox Rep 2024; 29:2345455. [PMID: 38723197 PMCID: PMC11086033 DOI: 10.1080/13510002.2024.2345455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.
Collapse
Affiliation(s)
- Hai-Yu Mo
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Ruo-Bing Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Yi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xin-Yu Li
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Wang-Rong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
26
|
Zamyatina EA, Goryacheva OA, Popov AL, Popova NR. Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants (Basel) 2024; 13:1445. [PMID: 39765774 PMCID: PMC11672564 DOI: 10.3390/antiox13121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged. In this regard, the development of new selective antioxidants is relevant. In this study, we first investigated the redox activity of cerium oxide-pyrroloquinoline quinone nanoparticles (CeO2@PQQ NPs) and their cytotoxic effects on normal (mouse fibroblasts, L929) and cancer (mouse adenocarcinoma, EMT6/P) cell cultures. Furthermore, the biological activity of CeO2@PQQ NPs was evaluated in comparison with that of CeO2 NPs and PQQ. The nanoparticles demonstrated pH-dependent reductions in the content of hydrogen peroxide after X-ray exposure. Our findings indicate that viability of EMT6/P cells was more adversely affected by CeO2@PQQ NPs at lower concentrations (0.1 μM) compared to L929. Following X-ray irradiation at a dose of 5 Gy, significant changes in mitochondrial potential (by 29%) and decreased glutathione levels (by 32%) were also observed in EMT6/P culture following irradiation and incubation with CeO2@PQQ NPs. Furthermore, EMT6/P exhibited a 2.5-fold increase in micronuclei and a 2-fold reduction in survival fraction compared to L929. It is hypothesized that CeO2@PQQ NPs may exhibit selective cytotoxicity and radiosensitizing properties against EMT6/P cancer cells. The findings suggest that CeO2@PQQ NPs may have potential as a selective redox-active antioxidant/pro-oxidant in response to X-ray radiation.
Collapse
Affiliation(s)
- Elizaveta A. Zamyatina
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Olga A. Goryacheva
- Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Saratov 410012, Russia;
| | - Anton L. Popov
- Theranostics and Nuclear Medicine Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Nelli R. Popova
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| |
Collapse
|
27
|
Takahara H, Kanazawa T, Oshita H, Tomita Y, Hananoi Y, Ishibashi S, Ikeda M, Furukawa A, Kinoshita M, Yamamoto K, Kato Y, Ishibashi H, Okubo K, Kurata M, Kitagawa M, Ohashi K, Yamamoto K. GPX4 and FSP1 Expression in Lung Adenocarcinoma: Prognostic Implications and Ferroptosis-Based Therapeutic Strategies. Cancers (Basel) 2024; 16:3888. [PMID: 39594843 PMCID: PMC11592420 DOI: 10.3390/cancers16223888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Primary lung cancer is among the cancers with the poorest prognosis, having the highest mortality rate among men and the second highest among women in Japan. While surgery is the primary treatment, advanced stages often require pharmacotherapy. Recently, ferroptosis, an iron-dependent form of cell death caused by lipid peroxidation, has gained attention as a potential therapeutic strategy. This study investigated the prognostic impact of lipid peroxidation marker and regulators involved in ferroptosis in lung adenocarcinoma. Methods: We analyzed 207 patients who underwent resection surgery for lung adenocarcinoma at Tokyo Medical and Dental University Hospital. Immunohistochemistry was used to evaluate the expression levels of glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and 4-hydroxy-2-nonenal (4-HNE). The association between these markers and clinicopathological factors was assessed, and in vitro experiments were conducted to examine the effects of these markers on cell death. Results: Low cytoplasmic accumulation of 4-HNE and low expression of GPX4 were associated with a worse prognosis, and low FSP1 expression was associated with unfavorable relapse-free survival. In vitro experiments demonstrated that 4-HNE inhibited cell proliferation, and combined inhibition of GPX4 and FSP1 induced ferroptosis. Conclusions: These findings suggest that lipid peroxidation markers and regulators can serve as prognostic biomarkers and therapeutic targets in lung adenocarcinoma.
Collapse
Affiliation(s)
- Hirotomo Takahara
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.T.); (H.I.); (K.O.)
| | - Takumi Kanazawa
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo 113-8668, Japan; (T.K.); (M.K.)
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Haruna Oshita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Yoshinobu Tomita
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Yuri Hananoi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (S.I.); (M.I.); (M.K.); (M.K.)
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (S.I.); (M.I.); (M.K.); (M.K.)
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Mayumi Kinoshita
- Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo 113-8668, Japan; (T.K.); (M.K.)
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Kurara Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Yuki Kato
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.T.); (H.I.); (K.O.)
| | - Kenichi Okubo
- Department of Thoracic Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.T.); (H.I.); (K.O.)
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (S.I.); (M.I.); (M.K.); (M.K.)
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (S.I.); (M.I.); (M.K.); (M.K.)
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
| | - Kouhei Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (H.O.); (Y.T.); (Y.H.); (A.F.); (K.Y.); (Y.K.); (K.O.)
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (S.I.); (M.I.); (M.K.); (M.K.)
| |
Collapse
|
28
|
Gao H, Chen Z, Yao Y, He Y, Hu X. Common biological processes and mutual crosstalk mechanisms between cardiovascular disease and cancer. Front Oncol 2024; 14:1453090. [PMID: 39634266 PMCID: PMC11614734 DOI: 10.3389/fonc.2024.1453090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Cancer and cardiovascular disease (CVD) are leading causes of mortality and thus represent major health challenges worldwide. Clinical data suggest that cancer patients have an increased likelihood of developing cardiovascular disease, while epidemiologic studies have shown that patients with cardiovascular disease are also more likely to develop cancer. These observations underscore the increasing importance of studies exploring the mechanisms underlying the interaction between the two diseases. We review their common physiological processes and potential pathophysiological links. We explore the effects of chronic inflammation, oxidative stress, and disorders of fatty acid metabolism in CVD and cancer, and also provide insights into how cancer and its treatments affect heart health, as well as present recent advances in reverse cardio-oncology using a new classification approach.
Collapse
Affiliation(s)
- Hanwei Gao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Zhongyu Chen
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yutong Yao
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China–Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
- CJUH-JLU-China iGEM Team, Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Shahhiran MAA, Abdul Kadir MF, Nor Rashid N, Abdul-Rahman PS, Othman S. Mechanisms of S-phase arrest and mitochondrial dysfunction in complex III by DHODH inhibitors in tumorigenic TNBC cells. Histochem Cell Biol 2024; 163:3. [PMID: 39557682 DOI: 10.1007/s00418-024-02339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status. Analysis of respiratory complexes, cell cycle, reactive oxygen species (ROS), and cell differentiation were performed. Four cell lines with different receptor status were included, namely MCF-7, MDAMB-231, SKBR-3, and MCF-10A. We showed that MCF-7 and MDAMB-231 cells of the subtypes (ER+/PR+/HER2-) and (ER-/PR-/HER2-), respectively, were responsive to brequinar. Brequinar (BQR) caused cell cycle arrest in the S-phase in sensitive subtypes of breast cells but induced cell differentiation only in poorly differentiated breast cells. All cell subtypes showed increased generation of ROS, both intracellular and mitochondrial ROS with a greater increase seen in mitochondrial ROS in response to DHODH inhibitor, subsequently contributing to mitochondrial dysfunction. BQR also disrupts the function of complex III in ER+/PR+ and triple negative breast cancer (TNBC) subtypes. Collectively, we have found that MDAMB-231 TNBC cell was the most affected by DHODH inhibition in terms of sensitivity, cell cycle arrest, induction of cell differentiation, production of ROS, and mitochondrial complexes disruption. In conclusion, these findings suggest that DHODH inhibitors can potentially become a valuable targeted therapy for TNBC subtype and further consolidates its therapeutic potential as part of the combinatorial therapy against this resilient breast cancer subtype.
Collapse
Affiliation(s)
- Muhammad Aiman Akmal Shahhiran
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohamad Fairus Abdul Kadir
- Aurigene Discovery Technology (M) Sdn Bhd, Level 2 Research Management and Innovation Complex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Shen Q, Liu Y, Li J, Zhou D. Nano-Selenium Modulates NF-κB/NLRP3 Pathway and Mitochondrial Dynamics to Attenuate Microplastic-Induced Liver Injury. Nutrients 2024; 16:3878. [PMID: 39599664 PMCID: PMC11597756 DOI: 10.3390/nu16223878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Microplastics (PS-MPs) are a new type of pollutant with definite hepatotoxicity. Selenium, on the other hand, has natural, protective effects on the liver. OBJECTIVES/METHODS The purpose of this experiment is to find out whether nano-selenium (SeNP) can alleviate liver damage caused by microplastics. Initially, we established through in vitro experiments that SeNP has the ability to enhance the growth of healthy mouse liver cells, while microplastics exhibit a harmful impact on normal mouse hepatocyte cell suspensions, leading to a decrease in cell count. Subsequently, through in vivo experiments on male ICR mice, we ascertained that SeNPs alleviated the detrimental impacts of PS-MPs on mouse liver. RESULTS SeNPs hinder the signaling pathway of NF-κB/NLRP3 inflammatory vesicles, which is crucial for reducing inflammation induced by PS-MPs. In terms of their mechanism, SeNPs hinder the abnormalities in mitochondrial fission, biogenesis, and fusion caused by PS-MPs and additionally enhance mitochondrial respiration. This enhancement is crucial in averting disorders in energy metabolism and inflammation. CONCLUSIONS To summarize, the use of SeNPs hindered inflammation by regulating mitochondrial dynamics, thus relieving liver damage caused by PS-MPs in mice. The anticipated outcomes offer new research directions that can be referenced in terms of inflammatory injuries caused by PS-MPs.
Collapse
Affiliation(s)
| | | | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.)
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.)
| |
Collapse
|
31
|
Khan S, Ali A, Warsi MS, Waris S, Raza A, Ali SA, Mustafa M, Moinuddin, Siddiqui SA, Mahmood R, Habib S. Hepatocellular carcinoma antibodies preferably identify nitro-oxidative-DNA lesions induced by 4-Chloro-orthophenylenediamine and DEANO. Sci Rep 2024; 14:27620. [PMID: 39528573 PMCID: PMC11554667 DOI: 10.1038/s41598-024-75649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The widespread use of oxidative hair colouring cosmetics threatens public health. Phenylenediamine derivatives serve as the main pigment in permanent hair colours. They interact with biological macromolecules, altering their functional and structural physiology. The study aimed to investigate the effect of a typical synthetic hair dye pigment, 4-Chloro-orthophenylenediamine (4-Cl-OPD), under a nitrating environment of DEANO on the calf thymus DNA molecule. The results showed single-stranded regions, base/sugar-phosphate backbone alterations, molecular changes, and nitro-oxidative lesions. These modifications are referred to as neo-epitopes on the DNA molecule. IgGs from cancer patients with a history of permanent hair dye use were screened for the recognition of neo-epitopes on DNA molecules. Hepatocellular carcinoma IgG showed the highest binding with 56% inhibition in the competition ELISA. The immune complex formation was observed through electrophoretic mobility shift assay. In conclusion, synthetic hair dye users are likely to present with heightened immunological triggers under elevated nitric oxide levels. The study reports chronic hair dye exposure as one of the factors responsible for altering the intricacies of the DNA's microarchitectural structure and inducing neo-epitopes on the molecule. The physiological status of NO may define the susceptibility towards 4-Cl-OPD and humoral response in hair dye users. Persistent nitro-oxidative stress due to 4-Cl-OPD and NO may induce a heightened immune response against neoepitopes in the nitro-oxidatively modified DNA. Therefore, chronic hair dye exposure may be identified as a risk to human health. These findings may contribute to a better understanding and reinforcement of hair dye as one of the modifiable risk factors responsible for the pro-inflammatory carcinogenic environment.
Collapse
Affiliation(s)
- Shifa Khan
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Sana Waris
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ali Raza
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Syed Amaan Ali
- Department of Periodontics and Community Dentistry, ZA Dental College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shahid Ali Siddiqui
- Department of Radiation, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
32
|
Cunningham SA, Sugihara M, Jones-Antwi RE. Experiences of victimization before resettlement and chronic disease among foreign-born people in the United States. POPULATION STUDIES 2024; 78:447-466. [PMID: 39163527 PMCID: PMC11479837 DOI: 10.1080/00324728.2024.2371286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/16/2024] [Indexed: 08/22/2024]
Abstract
Stressful experiences are common among migrants and may have health implications. With the only US nationally representative data set on migration, the New Immigrant Survey, we used survey-adjusted descriptive and multivariate regression methods to examine whether victimization prior to resettlement was associated with obesity, cardiovascular disease, diabetes, arthritis, cancer, and chronic lung disease. Among foreign-born people who obtained lawful permanent residence in the US in 2003-04, 6.7 per cent reported victimization before arriving in the US. Those who had experienced victimization more often suffered from chronic conditions than people without such experiences: they were 32 per cent more likely to suffer from at least one chronic condition (p < 0.05), especially cancer (4.36, p < 0.05), arthritis (1.77, p < 0.01), and cardiovascular disease (odds ratio 1.32, p < 0.05). These relationships were in part mediated by differences in healthcare access after arriving in the US between those who had experienced victimization and those who had not. Victimization may have consequences for integration and later-life chronic disease.
Collapse
|
33
|
Tabatabaei K, Moazzezi S, Emamgholizadeh M, Vaez H, Baradaran B, Shokouhi B. Improved Therapeutic Efficacy of Doxorubicin Chemotherapy With Cannabidiol in 4T1 Mice Breast Cancer Model. Cancer Med 2024; 13:e70395. [PMID: 39503169 PMCID: PMC11538943 DOI: 10.1002/cam4.70395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND High dose chemotherapy is one of the therapeutic strategies for breast cancer and doxorubicin (DOX) as a chemotherapy agent is widely used. DOX indication is limited due to its dose-depended cardiotoxicity. Recently, cannabidiol (CBD) shows antitumoral and cardioprotective effects, so we hypothesized that CBD administration with high-dose DOX chemotherapy can improve anticancer activity and reduce cardiotoxic side effects. METHOD Mice breast cancer model established by injecting 4T1 cell lines. One group was not injected by 4T1 cells as a not cancerous group and received normal saline (NS, 0.1 mL). In cancerous groups, first group was considered as cancerous control and received NS (0.1 mL); the second group received CBD (5 mg/kg, IP) on Days 1,7, and 14; in the third group DOX (5 mg/kg, IV) as CBD schedule was administrated; the fourth group treated with CBD 1 day before DOX injection as pretreatment, and the last group was treated with CBD and DOX at same time with previous doses and schedules. On Day 21, all mice were sacrificed, heart and lungs tissues were obtained and histological sections were isolated. SOD2, iNOS, MMP2, MMP9 were evaluated through western blot and TUNEL test preformed for breast tumor. RESULTS Tumor size and weight significantly decreased in DOX, pretreatment CBD + DOX and CBD + DOX groups. Administration of CBD with DOX could not prevent weight loss. TUNEL test demonstrated the highest tumor cell apoptosis in pretreatment CBD + DOX and CBD + DOX. In lungs belonged to CBD + DOX, there was not any sign of metastasis. Cardiac histopathological examination of pretreatment CBD + DOX and CBD + DOX did not show any sign of congestion or inflammation. In CBD + DOX SOD2 increased, also iNOS, MMP2, and MMP9 decreased compared to DOX. CONCLUSIONS This study demonstrated that simultaneous administration of CBD and DOX can increase antitumoral effect and reduce DOX cardiotoxicity. Nevertheless, CBD can induce cardiotoxicity as administrated alone.
Collapse
Affiliation(s)
- Koorosh Tabatabaei
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of Veterinary MedicineTabriz Islamic Azad UniversityTabrizIran
| | - Sara Moazzezi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of Veterinary MedicineTabriz Islamic Azad UniversityTabrizIran
| | | | - Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behrooz Shokouhi
- Department of PathologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
34
|
Yu L, Wei W, Lv J, Lu Y, Wang Z, Cai C. FABP4-mediated lipid metabolism promotes TNBC progression and breast cancer stem cell activity. Cancer Lett 2024; 604:217271. [PMID: 39306229 DOI: 10.1016/j.canlet.2024.217271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Metabolic remodeling is a pivotal feature of cancer, with cancer stem cells frequently showcasing distinctive metabolic behaviors. Nonetheless, understanding the metabolic intricacies of triple-negative breast cancer (TNBC) and breast cancer stem cells (BCSCs) has remained elusive. In this study, we meticulously characterized the metabolic profiles of TNBC and BCSCs and delved into their potential implications for TNBC treatment. Our findings illuminated the robust lipid metabolism activity within TNBC tumors, especially in BCSCs. Furthermore, we discovered that Fabp4, through its mediation of fatty acid uptake, plays a crucial role in regulating TNBC lipid metabolism. Knocking down Fabp4 or inhibiting its activity significantly suppressed TNBC tumor progression in both the MMTV-Wnt1 spontaneous TNBC model and the TNBC patient-derived xenograft model. Mechanistically, Fabp4's influence on TNBC tumor progression was linked to its regulation of mitochondrial stability, the CPT1-mediated fatty acid oxidation process, and ROS production. Notably, in a high-fat diet model, Fabp4 deficiency proved to be a substantial inhibitor of obesity-accelerated TNBC progression. Collectively, these findings shed light on the unique metabolic patterns of TNBC and BCSCs, underscore the biological significance of Fabp4-mediated fatty acid metabolism in governing TNBC progression, and offer a solid theoretical foundation for considering metabolic interventions in breast cancer treatment. SIGNIFICANCE: Triple-negative breast cancer progression and breast cancer stem cell activity can be restricted by targeting a critical regulator of lipid responses, FABP4.
Collapse
Affiliation(s)
- Liya Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yu Lu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
35
|
Kaba M, Kılıç S, Demir H. Evaluation of antioxidant enzyme levels, oxidative stress markers and serum prolidase activity in testicular cancer. Urologia 2024; 91:807-812. [PMID: 38741570 DOI: 10.1177/03915603241249232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Testicular cancer is a significant malignancy affecting males, and understanding the underlying biochemical changes associated with the disease is essential for improved management and treatment strategies. Prolidase enzyme, has been implicated in various disease processes. The assessment of serum prolidase activity and its relationship with testicular cancer can provide valuable insights into the pathophysiology of the disease. The objective of this study was to investigate serum prolidase activity, oxidative stress markers, and antioxidant enzyme levels in patients with testicular cancer and evaluate their potential associations, aiming to enhance our understanding of the biochemical alterations and potential implications for testicular cancer management. METHODS A total of 33 male patients diagnosed with testicular cancer were included, along with 35 age-matched male volunteers as the control group. Serum samples were collected and stored at -20°C until analysis. The measurement of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione-S-transferase (GST), malondialdehyde (MDA), glutathione (GSH), and prolidase levels was performed. RESULTS The findings demonstrated significantly elevated serum prolidase activity and malondialdehyde (MDA) levels in testicular cancer patients compared to the control group (all, p < 0.05). Conversely, superoxide dismutase (SOD), glutathione peroxidase (GSHPx), and glutathione-S-transferase (GST) levels were significantly lower in testicular cancer patients (p < 0.05). CONCLUSION In this study, serum prolidase activity and biochemical markers associated with oxidative stress were investigated in testicular cancer patients. Oxidative stress markers and serum prolidase activity were found to be elevated in testicular cancer. Long-term prospective studies are needed to determine the effectiveness of antioxidant use in cancer treatment.
Collapse
Affiliation(s)
- Mehmet Kaba
- Department of Urology, Private Gebze Yuzyil Hospital, Gebze, Kocaeli, Turkey
| | - Sinan Kılıç
- Department of Pediatric Surgery, Private Gebze Yuzyil Hospital, Gebze, Kocaeli, Turkey
| | - Halit Demir
- Department of Chemistry, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
36
|
Gonçalves B, Aires A, Oliveira I, Baltazar M, Cosme F, Afonso S, Pinto T, Anjos MR, Inês A, Morais MC, Vilela A, Silva AP. From Orchard to Wellness: Unveiling the Health Effects of Sweet Cherry Nutrients. Nutrients 2024; 16:3660. [PMID: 39519493 PMCID: PMC11547742 DOI: 10.3390/nu16213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper explores the multifaceted relationship between sweet cherry nutrients and human health, aiming to uncover the comprehensive impact of these bioactive compounds from orchard to wellness. Furthermore, it highlights how advanced crop techniques can be pivotal in optimizing these beneficial compounds. Synthesizing existing literature, the paper examines the diverse bioactive nutrients in sweet cherries, including antioxidants, polyphenols, vitamins, and minerals, and elucidating their mechanisms of action and potential health benefits. From antioxidant properties to anti-inflammatory effects, the paper elucidates how these nutrients may mitigate chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions. Additionally, it explores their role in promoting gastrointestinal health, enhancing exercise recovery, and modulating sleep patterns. The review discusses emerging research on the potential anti-cancer properties of sweet cherry compounds, highlighting their promising role in cancer prevention and treatment. Furthermore, it delves into the impact of sweet cherry consumption on metabolic health, weight management, and skin health. By providing a comprehensive overview of the current understanding of sweet cherry nutrients and their health effects, this paper offers valuable insights for researchers, healthcare professionals, and consumers interested in utilizing nature's bounty for holistic wellness.
Collapse
Affiliation(s)
- Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Maria Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| |
Collapse
|
37
|
Caporossi D, Lancha AH, Coletti D. Inflammation: The Beauty or the Beast? Vitamins, Nutritional Supplements, Antioxidant Therapy, and Modulators of Inflammation as Therapeutic Interventions. Nutrients 2024; 16:3630. [PMID: 39519463 PMCID: PMC11547834 DOI: 10.3390/nu16213630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of inflammation in disease development is now well known not only for acute states but also for chronic pathologies [...].
Collapse
Affiliation(s)
- Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis 15, 00135 Rome, Italy;
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Roma, Italy
- Biological Adaptation and Ageing (B2A), Institut de Biologie Paris-Seine, Sorbonne Université, CNRS UMR 8256, Inserm U1164, 75005 Paris, France
| |
Collapse
|
38
|
Zhang L, Zhu W. Screening Antioxidant Components in Yiwei Decoction Using Spectrum-Effect Relationship and Network Pharmacology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:5514265. [PMID: 39445127 PMCID: PMC11498994 DOI: 10.1155/2024/5514265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Yiwei decoction (YWD) is a classic prescription with the function of nourishing stomach yin. In this study, the effective components of antioxidant activity of YWD and its possible mechanism were discussed from the point of view of spectral effect relationship and network pharmacology. Firstly, the fingerprints of 10 batches of YWD were established by UPLC-PDA technique, and the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging rate and total antioxidant capacity (T-AOC) were used as the indicators for antioxidant activity in vitro. Then, the spectral effect relationship between the fingerprint profiles and antioxidant capacity was analyzed through grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS). In addition, network pharmacology was employed to predict the potential mechanisms of YWD in the treatment of antioxidant-related diseases. The spectrum-effect relationship indicated that three common peaks were likely to be the most decisive active components, identified as verbascoside, psoralen, and vitexin, respectively. Based on network pharmacology analysis, a total of 83 target genes shared by the active components and antioxidant-related diseases were collected. AKT1, HSP90AA1, SRC, CASP3, and MTOR were closely related to antioxidant therapy and considered as core therapeutic targets. The potential mechanisms of YWD were obtained through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, molecular docking simulations were conducted to evaluate the binding activities between the core therapeutic targets and corresponding compounds. The excellent core protein-compound complexes obtained by molecular docking were simulated by molecular dynamics simulation. The results showed that the active compounds had good binding ability with the selected targets. This study successfully identified the effective components of YWD and predicted the potential targets and pathways, which provided a new idea for the application of YWD in the treatment of antioxidant stress in the future. In addition, the potential active components provide valuable implications for drug screening of related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
39
|
Seo CS, Kim NS, Song KH. The HPLC-PDA Method for Simultaneous Determination of Regalosides from Bulbs of Lilium lancifolium Thunb. and Their Antioxidant Effects. PLANTS (BASEL, SWITZERLAND) 2024; 13:2793. [PMID: 39409663 PMCID: PMC11478609 DOI: 10.3390/plants13192793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Lilium lancifolium Thunb. is a herbal medicine that is widely used to treat inflammation and lung diseases. In this study, a simultaneous quantitative method was developed for the quality control of BLL using high-performance liquid chromatography coupled with a photodiode array detector (HPLC-PDA), and their antioxidant effects were evaluated. Eight regalosides (i.e., regaloside A, B, C, E, F, H, I, and K) were selected as marker substances and separated on a Gemini C18 reversed-phase analytical column by gradient elution with distilled water-acetonitrile mobile phase containing 0.1% (v/v) formic acid. The method was validated with respect to linearity, sensitivities (limit of detection (LOD) and limit of quantitation (LOQ)), accuracy, and precision. The antioxidant effects of the extract and each component were evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. The coefficients of determination values used as indicators of linearity for all components were ≥0.9999. LOD and LOQ concentrations were 0.10-0.66 μg/mL and 0.29-2.01 μg/mL, respectively. The recovery was 95.39-103.925% (relative standard deviation; RSD ≤ 2.55%), and precision RSD was <2.78%. The HPLC-PDA method was applied to real samples, and all components were detected at 1.12-29.76 mg/freeze-dried g. The evaluation of antioxidant effects showed that regalosides C, E, and K exhibited significant antioxidant effects. Our knowledge will be appropriately utilized in raw material management and conducting clinical and non-clinical studies on L. lancifolium or herbal medicine prescriptions containing L. lancifolium.
Collapse
Affiliation(s)
- Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Kwang-Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea;
| |
Collapse
|
40
|
Irshad N, Naeem H, Shahbaz M, Imran M, Mujtaba A, Hussain M, Al Abdulmonem W, Alsagaby SA, Yehuala TF, Abdelgawad MA, Ghoneim MM, Mostafa EM, Selim S, Al Jaouni SK. Mangiferin: An effective agent against human malignancies. Food Sci Nutr 2024; 12:7137-7157. [PMID: 39479608 PMCID: PMC11521646 DOI: 10.1002/fsn3.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Mangiferin is a bioactive substance present in high concentration in mangoes and also in some other fruits. Owing to its potential as a chemopreventive and chemotherapeutic agent against several types of cancer, this unique, significant, and well-researched polyphenol has received a lot of attention recently. It possesses the ability to treat cancers, including rectal cancer, prostate cancer, ovarian cancer, leukemia, gastric cancer, liver cancer, chronic pancreatitis, and lung cancer. It can control/regulate multiple key signaling pathways, such as signal transducer and activator of transcription 3 (STAT3), second mitochondria-derived activator of caspases/direct inhibitor of apoptosis (IAP)-binding protein with low propidium iodide (pl) (Smac/DIABLO) nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase/protein 3 kinase (PI3K/Akt), transforming growth factor beta/suppressor of mothers against decapentaplegic (TGF-β/SMAD), c-jun N-terminal kinase/p38 mitogen-activated protein kinase (JNK/p38-MAPK), and phosphor-I kappa B kinase (p-IκB), which are crucial to the development of cancers. By triggering apoptotic signals and halting the advancement of the cell cycle, it can also prevent some cancer cell types from proliferating and developing. It has been revealed that mangiferin targets a variety of adhesion molecules, cytokines, pro-inflammatory transcription factors, kinases, chemokines, growth factors, and cell-cycle proteins. By means of preventing the onset, advancement, and metastasis of cancer, these targets may mediate the chemopreventive and therapeutic effects of mangiferin. Mangiferin has confirmed potential benefits in lung, cervical, breast, brain, and prostate cancers as well as leukemia whether administered alone or in combination with recognized anticancer compounds. More clinical trials and research investigations are required to completely unleash the potential of mangiferin, which may lower the risk of cancer onset and act as a preventive and therapeutic alternative for a number of cancers.
Collapse
Affiliation(s)
- Nimra Irshad
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
- Post‐Harvest Research CentreAyub Agricultural Research Institute, FaisalabadFaisalabadPakistan
| | - Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture, MultanMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir darEthiopia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityAd DiriyahRiyadhSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
41
|
Klaunig JE, Cohen SM. Mode of action of dieldrin-induced liver tumors: application to human risk assessment. Crit Rev Toxicol 2024; 54:634-658. [PMID: 39077834 DOI: 10.1080/10408444.2024.2377208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
Dieldrin is an organochlorine insecticide that was widely used until 1970 when its use was banned because of its liver carcinogenicity in mice. Several long-term rodent bioassays have reported dieldrin to induce liver tumors in in several strains of mice, but not in rats. This article reviews the available information on dieldrin liver effects and performs an analysis of mode of action (MOA) and human relevance of these liver findings. Scientific evidence strongly supports a MOA based on CAR activation, leading to alterations in gene expression, which result in increased hepatocellular proliferation, clonal expansion leading to altered hepatic foci, and ultimately the formation of hepatocellular adenomas and carcinomas. Associative events include increased liver weight, centrilobular hypertrophy, increased expression of Cyp2b10 and its resulting increased enzymatic activity. Other associative events include alterations of intercellular gap junction communication and oxidative stress. Alternative MOAs are evaluated and shown not to be related to dieldrin administration. Weight of evidence shows that dieldrin is not DNA reactive, it is not mutagenic, and it is not genotoxic in general. Furthermore, activation of other pertinent nuclear receptors, including PXR, PPARα, AhR, and estrogen are not related to dieldrin-induced liver tumors nor is there liver cytotoxicity. In previous studies, rats, dogs, and non-human primates did not show increased cell proliferation or production of pre-neoplastic or neoplastic lesions following dieldrin treatment. Thus, the evidence strongly indicates that dieldrin-induced mouse liver tumors are due to CAR activation and are specific to the mouse, which are qualitatively not relevant to human hepatocarcinogenesis. Thus, there is no carcinogenic risk to humans. This conclusion is also supported by a lack of positive epidemiologic findings for evidence of liver carcinogenicity. Based on current understanding of the mode of action of dieldrin-induced liver tumors in mice, the appropriate conclusion is that dieldrin is a mouse specific liver carcinogen and it does not pose a cancer risk to humans.
Collapse
Affiliation(s)
- James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, USA
| | - Samuel M Cohen
- Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
42
|
Roheel A, Khan A, Anwar F, Ullah H, Rehman AU, Ullah N, Akhtar MF, Khan MI, Yaseen N. Evaluation of anti-tumor activity of molybdenum disulfide nanoflowers per se and in combination with berberine against mammary gland cancer in rats. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:240. [DOI: 10.1007/s11051-024-06153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 01/28/2025]
|
43
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
44
|
Huang J, Zhou D, Luo W, Liu Y, Zheng H, Wang Y. Integrating oxidative-stress biomarkers into a precision oncology risk-stratification model for bladder cancer prognosis and therapy. Front Cell Dev Biol 2024; 12:1453448. [PMID: 39351147 PMCID: PMC11439827 DOI: 10.3389/fcell.2024.1453448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Bladder cancer is a common malignant tumor with significant heterogeneity, making personalized risk stratification crucial for optimizing treatment and prognosis. This study aimed to develop a prognostic model based on oxidative stress-related genes to guide risk assessment in bladder cancer. Methods Differentially expressed oxidative stress-related genes were identified using the GEO database. Functional enrichment and survival analyses were performed on these genes. A risk-scoring model was built and tested for prognostic value and therapeutic response prediction. Expression of key genes was validated by qRT-PCR in samples from two muscle-invasive and two non-muscle-invasive bladder cancer patients. Results Several oxidative stress-related genes were identified as significantly associated with survival. The risk-scoring model stratified patients into high- and low-risk groups, accurately predicting prognosis and therapeutic responses. qRT-PCR confirmed the differential expression of key genes in patient samples. Discussion The study provides a concise risk stratification model based on oxidative stress-related genes, offering a practical tool for improving personalized treatment in bladder cancer. Further validation is required for broader clinical application.
Collapse
Affiliation(s)
- Jianxu Huang
- Shantou University Medical College, Shantou University, Shantou, China
- Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Dewang Zhou
- Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Weihan Luo
- Shantou University Medical College, Shantou University, Shantou, China
| | - Yujun Liu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Haoxiang Zheng
- Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yongqiang Wang
- Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
Wu Z. Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma. Mol Genet Genomics 2024; 299:86. [PMID: 39240371 DOI: 10.1007/s00438-024-02170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous and aggressive malignancy with limited therapeutic options and poor prognosis. The identification of reliable prognostic biomarkers and a deeper understanding of the molecular subtypes are critical for the development of targeted therapies and improvement of patient outcomes. This study aims to uncover oxidative stress-related genes (ORGs) in CCA and develop a prognostic risk model using comprehensive transcriptomic analysis from The Cancer Genome Atlas (TCGA). Through LASSO regression analysis, we identified prognosis-related ORGs and constructed a prognostic signature consisting of six ORGs. This signature demonstrated strong predictive performance in survival analysis and ROC curve assessment. Functional enrichment and GSEA analyses revealed significant enrichment of immune-related pathways among different risk groups. GSVA analysis indicated reduced activity in inflammation and oxidative stress pathways in the high-risk subgroup, and xCell results showed lower immune cell infiltration levels in this group. Additionally, immune checkpoint genes and immune-related pathways were downregulated in the high-risk subgroup. Our research has developed a unique prognostic model focusing on oxidative stress, enabling accurate forecasting of patient outcomes and providing crucial insights and recommendations for the prognosis of individuals with CCA. Future studies should aim to validate these findings in clinical settings and further explore therapeutic targets within oxidative stress pathways.
Collapse
Affiliation(s)
- Zichao Wu
- The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
46
|
Jordan Chou P, Mary Peter R, Shannar A, Pan Y, Dushyant Dave P, Xu J, Shahid Sarwar M, Kong AN. Epigenetics of Dietary Phytochemicals in Cancer Prevention: Fact or Fiction. Cancer J 2024; 30:320-328. [PMID: 39312452 PMCID: PMC11573353 DOI: 10.1097/ppo.0000000000000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT Cancer development takes 10 to 50 years, and epigenetics plays an important role. Recent evidence suggests that ~80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiation/chemotherapeutic drugs, cancer prevention by relatively nontoxic "epigenetic modifiers" will be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory responses via hypermethylation of inflammation-relevant genes to block gene expression. Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects in reversing procarcinogenic events.
Collapse
Affiliation(s)
- PoChung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
48
|
Amakran A, Hamoudane M, Pagniez F, Lamarti A, Picot C, Figueredo G, Nhiri M, Le Pape P. Chemical Composition, Antifungal, Antioxidant, and Hemolytic Activities of Moroccan Thymus capitatus Essential Oil. Chem Biodivers 2024; 21:e202300563. [PMID: 38880770 DOI: 10.1002/cbdv.202300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to define the chemical composition of Moroccan Thymus capitatus essential oil, and to investigate its in vitro antioxidant and antifungal activities against human pathogenic fungi. Chemical analysis using GC-FID and GC-MS system revealed 28 constituents, representing 99 % of total compounds. Oxygenated monoterpenes represented the highest proportion (79.79 %), among which carvacrol (75.73 %) was the predominant compound, followed by linalol (2.26 %). Monoterpene hydrocarbons represented the second major fraction (16.29 %): within them, the predominant constituents were γ-terpinene (5,55 %), ρ-cymene (5,50 %), and β-caryophyllene (2.73 %). Antioxidant activity was performed by DPPH scavenging, β-carotene bleaching inhibition, and ferric reducing power. T. capitatus revealed pronounced DPPH radical scavenging activity (IC50=110.53 μg mL-1), strong ferric reducing ability (EC50=644.4 μg mL-1), and a remarkable degree of protection against lipid peroxidation during β-carotene bleaching inhibition (IC50=251.76 μg mL-1). Antifungal activity was carried out against Candida, Aspergillus, and Rhizopus species by microdilution method. T. capitatus exhibited potent anticandidal activity (MIC=125-500 μg mL-1) and strong inhibition against filamentous fungi (MIC=250-500 μg mL-1). Its hemolytic activity against human erythrocytes had a low toxic effect at concentrations lower than 1250 μg mL-1. The useful antioxidant properties and broad antifungal effect of T. capitatus EO confirm its considerable potential for the food industry and for phytopharmaceutical production.
Collapse
Affiliation(s)
- Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Meriem Hamoudane
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Fabrice Pagniez
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Ahmed Lamarti
- Laboratoire de Biotechnologie et d'Amélioration des Plantes, Département de Biologie, Faculté des Sciences, Université Abdelmalek Essaadi, Tétouan, Maroc
| | - Carine Picot
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Gilles Figueredo
- Laboratoire d'Analyse des Extraits Végétaux et des Aromes (LEXVA-Analytique), Biopôle Clermont-Limagne, Rue Henri Mondor, 63360, Sain-Beauzire, France
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| |
Collapse
|
49
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
50
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|