1
|
Zhao P, Ning J, Huang J, Huang X. Mechanism of Resveratrol on LPS/ATP-induced pyroptosis and inflammatory response in HT29 cells. Autoimmunity 2024; 57:2427094. [PMID: 39534992 DOI: 10.1080/08916934.2024.2427094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Pyroptosis plays an important role in maintenance of intestinal homeostasis, the abnormal activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome can promote the event and development of ulcerative colitis (UC). Its protective effects such as inhibiting pyroptosis in various inflammation-related diseases have been demonstrated, but whether resveratrol (RES) can also alleviate the progression of the disease by inhibiting pyroptosis in UC and the mechanism have rarely been studied. In this study, lipopolysaccharide (LPS) combined with adenosine triphosphate (ATP) was used to induce HT29 human colon cancer cells to construct an intestinal epithelial cell pyroptosis and inflammation model in vitro to investigate the anti-inflammatory effect of RES, reveal the regulatory mechanism of RES on pyroptosis, and provide a new theoretical basis for the treatment of UC. In vitro experiences, HT29 cells were dividing into control group, LPS/ATP group, RES low-dose group, RES high-dose group, NF-κB inhibitor pyrrolidine dithiocarbamate group (PDTC group), and LPS/ATP+PDTC group. The mRNA expressions of pyroptosis-related indicators such as NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), Caspase-1(CASP1), IL-18, IL-1β, and inflammatory factors such as TNF-α and IL-6 were detected by qRT-PCR. The protein expressions of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β, NF-κB-p65 in the nucleus, and IκBα and p-IκBα in the cytoplasm were detected by Western blot. Immunofluorescence saw the distribution and expression of NLRP3, ASC and NF-κB-p65 protein in each group. The morphology and degree of pyroptosis in each group were observed by transmission electron microscope. The results showed that compared with the control group, the pyroptosis-related proteins including NLRP3, ASC, CASP1, IL-18, IL-1β, and inflammatory factors including TNF-α and IL-6 in the LPS/ATP group were increased, and LPS/ATP activated the activity of NF-κB signaling pathway. Compared with the LPS/ATP group, RES downregulated the expression of pyroptosis-related proteins and inflammatory factors in HT29 cells, and inhibited the activation of the NF-κB signaling pathway in HT29 cells pyroptosis. RES down-regulates the pyroptosis of HT29 cells induced by LPS/ATP and the expression of pyroptosis-related indicators NLRP3, ASC, CASP1, IL-18, IL-1β and inflammatory factors TNF-α and IL-6 in the inflammatory response and inhibits the occurrence of pyroptosis. The mechanism is related to the inhibition of NF-κB pathway activity.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04245-x. [PMID: 38829477 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
3
|
Inoue H, Shimizu Y, Yoshikawa H, Arakawa K, Tanaka M, Morimoto H, Sato A, Takino Y, Ishigami A, Takahashi N, Uehara M. Resveratrol Upregulates Senescence Marker Protein 30 by Activating AMPK/Sirt1-Foxo1 Signals and Attenuating H 2O 2-Induced Damage in FAO Rat Liver Cells. J Nutr Sci Vitaminol (Tokyo) 2023; 69:388-393. [PMID: 37940580 DOI: 10.3177/jnsv.69.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Resveratrol (RSV) is a polyphenol with numerous biological functions, including anti-inflammatory, antioxidant, and anti-aging activities. The novel senescence marker protein-30 (SMP30) indicates aging, and it suppresses hepatic oxidative stress. However, the effects of RSV on SMP30 expression regulation remain unclear. We observed that RSV positively regulates SMP30 expression in rat hepatoma-derived FAO cells. However, this was abolished by Compound C and EX-527 that specifically inhibit AMP-activated protein kinase (AMPK) and Silent Information Regulator T1 (Sirt1), respectively. We predicted binding sites for AMPK, forkhead box protein O1 (Foxo1), and Sirt1 downstream molecules as possible SMP30 promoters using the JASPAR and UniProtKB databases. We identified a Foxo1 binding site in the promoter region of SMP30. Inhibiting Foxo1 with AS1842527 also decreased the RSV-induced upregulation of SMP30 expression. Moreover, RSV suppressed the substantial downregulation of SMP30 expression caused by oxidative stress and hydrogen peroxide (H2O2) and released accumulated lactate dehydrogenase. These results demonstrate that, as a novel food factor, RSV-induced upregulation of SMP30 by activating AMPK/Sirt1-Foxo1 signaling and may attenuates H2O2-induced oxidative damage. The findings of this study offer new perspectives of the anti-ageing properties of RSV.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yusaku Shimizu
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hiroto Yoshikawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Kohta Arakawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
4
|
Zhang N, Ji C, Peng X, Tang M, Bao X, Yuan C. Bioinformatics analysis identified immune infiltration, risk and drug prediction models of copper-induced death genes involved in salivary glands damage of primary Sjögren's syndrome. Medicine (Baltimore) 2022; 101:e31050. [PMID: 36254059 PMCID: PMC9575826 DOI: 10.1097/md.0000000000031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study aimed to identify copper-induced death genes in primary Sjögren's syndrome (pSS) and explore immune infiltration, risk and drug prediction models for salivary glands (SGs) damage. The 3 datasets, including GSE40611, GSE23117, and GSE7451 from the Gene Expression Omnibus database were downloaded. The datasets were processed using the affy in R (version 4.0.3). In immune cells, copper-induced death genes were strongly expressed in "activated" dendritic cells (aDCs), macrophages and regulatory T cells (Treg). In immune functions, copper-induced death genes were strongly expressed in major histocompatibility complex (MHC) class I, human leukocyte antigen (HLA) and type I interferon (IFN) response. Correlation analysis showed that 5 genes including SLC31A1, PDHA1, DLD, ATP7B, and ATP7A were significantly correlated with immune infiltration. The nomogram suggested that the low expression of PDHA1 was significant for predicting the risk of pSS and the area under curve was 0.678. Drug model suggested that "Bathocuproine disulfonate CTD 00001350," "Vitinoin CTD 00007069," and "Resveratrol CTD 00002483" were the drugs most strongly associated with copper-induced death genes. In summary, copper-induced death genes are associated with SGs injury in pSS, which is worthy of clinicians' attention.
Collapse
Affiliation(s)
- Naidan Zhang
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Chaixia Ji
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
| | - Xinyin Peng
- Chengdu University of Chinese Medicine, Chengdu, China
| | - Maoju Tang
- North Sichuan Medical College, Nanchong, China
| | - Xiao Bao
- Department of Rheumatology, Peoples Hospital of Deyang City, Deyang, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang, China
- *Correspondence: Chengliang Yuan, Department of Clinical Laboratory, Peoples Hospital of Deyang City, North Taishan Road No. 173, Deyang, Sichuan 618000, China (e-mail: )
| |
Collapse
|
5
|
Zhao L, Xu J, Li S, Li B, Jia M, Pang B, Cui H. Resveratrol alleviates salivary gland dysfunction induced by ovariectomy in rats. Biochem Biophys Res Commun 2022; 630:112-117. [PMID: 36155056 DOI: 10.1016/j.bbrc.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Resveratrol (Res), found abundant in many medicinal plants, exerts multiple biological functions in the body, including anti-inflammatory, antioxidant, and anti-aging properties. Xerostomia is a major symptom of salivary gland dysfunction in menopausal women, which significantly compromises the quality of life. Here, we investigated the effect of Res on estrogen deficiency-induced salivary gland dysfunction in rats. We found that Res administration could reduce body weight and water consumption, and increase salivary fluid secretion and blood flow of the submandibular gland. Furthermore, Res therapy alleviated histological lesions, increased AQP5 expression, and inhibited cell apoptosis in submandibular gland tissue. Meanwhile, the action of antioxidants was restored and the levels of inflammatory cytokines were attenuated by Res supplementation. Collectively, Res effectively improved estrogen deficiency-induced hyposalivation, which may provide a novel, safe, and practical approach to protect the salivary glands of estrogen-deficient females against xerostomia.
Collapse
Affiliation(s)
- Lixian Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Juan Xu
- Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Song Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Boyue Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Muyun Jia
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Baoxing Pang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Hao Cui
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China.
| |
Collapse
|
6
|
Razi S, Molavi Z, Mirmotalebisohi SA, Niknam Z, Sameni M, Niazi V, Adibi A, Yazdani M, Ranjbar MM, Zali H. Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Adv Pharm Bull 2022; 12:206-216. [PMID: 35620342 PMCID: PMC9106958 DOI: 10.34172/apb.2022.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.
Collapse
Affiliation(s)
- Sara Razi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirjafar Adibi
- Departments of Orthopedics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang Y, Gao C, Zhou K, Liu W, Zhang Y, Zhao Y. MicroRNA-532-5p-programmed cell death protein 4 (PDCD4) axis regulates angiotensin II-induced human umbilical vein endothelial cell apoptosis and proliferation. Microvasc Res 2021; 138:104195. [PMID: 34116070 DOI: 10.1016/j.mvr.2021.104195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study was carried out to investigate the effect of microRNA miR-532-5p on the proliferation of hypertension endothelial cells. METHODS Angiotensin II (Ang II)-treated human umbilical vein endothelial cells (HUVECs) and primary human aortic endothelial cells (HAECs) were used as cell models to imitate the pathological changes in endothelial cells under hypertensive conditions. The expression levels of miR-532-5p and programmed cell death protein 4 (PDCD4) were detected by Quantitative Real-time PCR (qRT-PCR). The effects of miR-532-5p and PDCD4 on the proliferation of HUVECs and HAECs treated with Ang II were detected by Methyl Thiazolyl Tetrazolium (MTT) assay. The effects of miR-532-5p and PDCD4 on the apoptosis and cell cycle of HUVECs and HAECs treated with Ang II were detected by flow cytometry. Western blot was used to detect the expression levels of PDCD4, apoptosis-related proteins and cycle-related proteins in HUVECs and HAECs treated with Ang II. Bioinformatics analysis and Luciferase gene reporter assay were used to assess the relationship between miR-532-5p and PDCD4. RESULTS The expression levels of miR-532-5p were reduced, while the expression levels of PDCD4 were raised in Ang II-treated HUVECs and HAECs. MiR-532-5p mimic and si-PDCD4 restrained the apoptosis, promoted the proliferation of Ang II-treated HUVECs and HAECs and caused S-phase arrest of cells. PDCD4 was identified as a potential target for miR-532-5p. Knockdown of PDCD4 significantly affected apoptosis and proliferation of Ang II-treated HUVECs. MiR-532-5p regulates apoptosis and proliferation of Ang II-induced HUVECs and HAECs. In addition, overexpression of PDCD4 attenuated the effect of miR-532-5p on the proliferation of Ang II-treated HUVECs and HAECs. CONCLUSION MiR-532-5p inhibited the expression of PDCD4, thereby inhibiting apoptosis and promoting proliferation of Ang II-treated HUVECs and HAECs.
Collapse
Affiliation(s)
- Yu Wang
- School of Physical Education, Henan University, Kaifeng City, Henan Province 475004, PR China; Bioinformatics Center, Henan University, Kaifeng City, Henan Province 475001, PR China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Province 475052, PR China; Heart Center, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450018, PR China; Henan Key Laboratory of Coronary Heart Disease Control, Central China Fuwai Hospital, Zhengzhou City, Henan Province 4750052, PR China.
| | - Ke Zhou
- School of Physical Education, Henan University, Kaifeng City, Henan Province 475004, PR China; Bioinformatics Center, Henan University, Kaifeng City, Henan Province 475001, PR China.
| | - Weili Liu
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou City, Henan Province 451464, PR China; Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450003, PR China
| | - Yulin Zhang
- Institute of Health Education, Henan Provincial Center for Disease Prevention and Control, Zhengzhou City, Henan Province 450016, PR China
| | - Yi Zhao
- Department of Neonatology, Kaifeng Maternity and Children Health Hospital, Kaifeng City, Henan Province 475002, PR China
| |
Collapse
|
8
|
Monib KMED, El-Fallah AA, Salem RM. Inflammatory markers in acne vulgaris: Saliva as a novel diagnostic fluid. J Cosmet Dermatol 2021; 21:1280-1285. [PMID: 34008303 DOI: 10.1111/jocd.14236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite the wide use of saliva-based measurements in inflammatory, autoimmune and neoplastic conditions, its use in dermatology is still limited. AIMS The aims of this study were to assess the serum and salivary levels of interleukin-1 beta (IL-1β) and C-reactive protein (CRP) in patients with acne vulgaris. PATIENTS/METHODS The study included 84 moderate-to-severe acne vulgaris patients, in addition to 105 healthy control subjects. Serum and salivary levels of CRP and IL-1β were estimated using enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Using T-test, the serum and salivary levels of both CRP and IL-1β in the patients were significantly higher than the measured levels in the control subjects (p < 0.001). Using Pearson correlation coefficient, serum and salivary CRP and serum IL-1β levels showed significantly positive correlation with GAGS scores (p < 0.001). The levels of IL-1β in saliva did not show significant correlation with GAGS scores or with serum and salivary CRP. CONCLUSIONS The current study supports the emerging role of saliva as a valid noninvasive tool for monitoring inflammation and as a reliable and stress-free tool to evaluate cytokines and other inflammatory marker levels in acne vulgaris.
Collapse
Affiliation(s)
| | - Asmaa Adel El-Fallah
- Clinical and Chemical Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Mohammed Salem
- Dermatology and Andrology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
9
|
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, Ćirković Veličković T. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102834. [PMID: 34064568 PMCID: PMC8151233 DOI: 10.3390/molecules26102834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Marija Stojadinović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-333-6608
| |
Collapse
|
10
|
Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021; 26:molecules26051343. [PMID: 33802331 PMCID: PMC7959117 DOI: 10.3390/molecules26051343] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.
Collapse
|
11
|
Benedetti F, Sorrenti V, Buriani A, Fortinguerra S, Scapagnini G, Zella D. Resveratrol, Rapamycin and Metformin as Modulators of Antiviral Pathways. Viruses 2020; 12:v12121458. [PMID: 33348714 PMCID: PMC7766714 DOI: 10.3390/v12121458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Balanced nutrition and appropriate dietary interventions are fundamental in the prevention and management of viral infections. Additionally, accurate modulation of the inflammatory response is necessary to achieve an adequate antiviral immune response. Many studies, both in vitro with mammalian cells and in vivo with small animal models, have highlighted the antiviral properties of resveratrol, rapamycin and metformin. The current review outlines the mechanisms of action of these three important compounds on the cellular pathways involved with viral replication and the mechanisms of virus-related diseases, as well as the current status of their clinical use.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
- Bendessere™ Study Center, Via Prima Strada 23/3, 35129 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: (G.S.); (D.Z.)
| | - Davide Zella
- Institute of Human Virology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: (G.S.); (D.Z.)
| |
Collapse
|
12
|
Ray M, Sarkar S, Rath SN. Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2. Genomics Inform 2020; 18:e43. [PMID: 33412759 PMCID: PMC7808868 DOI: 10.5808/gi.2020.18.4.e43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-Cov-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Manisha Ray
- All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Saurav Sarkar
- All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
13
|
Banks WA. A Spectrum of Topics for 2019: Advances in Neuroinflammation, Oxidative Stress, Obesity, Diabetes Mellitus, Cardiovascular Disease, Autism, Exosomes, and Central Nervous System Diseases. Curr Pharm Des 2020; 26:1-5. [PMID: 32122292 DOI: 10.2174/138161282601200225102049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in various fields were discussed in the reviews and original research articles published in 2019 in Current Pharmaceutical Design. Here, I review some of the major highlights for selected areas. A better understanding of disease mechanisms was a prominent recurrent theme and new therapeutic targets based on those mechanisms are highlighted here. Inflammation and oxidative stress are major features of many diseases, therefore, interventions to address these processes are reviewed. Although repurposing of old drugs occurred in several fields, drug targeting and drug delivery, especially of nanoparticles, also continues to be a major area of interest.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, 1660 S. Columbian Way, Seattle, WA 98108 Seattle, WA, United States
| |
Collapse
|
14
|
Ferreira FR, de Moura NSB, Hassib L, Pombo TR. Resveratrol ameliorates the effect of maternal immune activation associated with schizophrenia in adulthood offspring. Neurosci Lett 2020; 734:135100. [PMID: 32473196 DOI: 10.1016/j.neulet.2020.135100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Maternal exposure to infectious agents such as arboviruses, bacteria, or other protozoans has been associated with an elevated risk of schizophrenia (SZ). Evidence suggests that immunological processes occurring during infection may disturb the neural progenitor, impacting the central nervous system (CNS) functions. Moreover, growing evidence suggests that resveratrol (RSV) has neuroprotective activity through anti-oxidant and anti-inflammatory mechanisms. Therefore, we investigated if the treatment with RSV during pregnancy would prevent the abnormalities associated with a SZ-like phenotype induced by maternal immune activation (MIA). Pregnant dams stimulated with a subcutaneous (s.c.) injection of polyriboinosinic-polyribocytidylic acid (poly I:C; 50 mg/kg), a viral nucleic acid mimetic or vehicle, on gestational day (GD) 12.5, were treated with RSV (40 mg/kg, s.c.) or saline, from GD 9.5 to GD 14.5. On day 45 after birth, the offspring was evaluated using a three-compartment social interaction test, elevated plus maze, and hyperlocomotion test induced by amphetamine. After the behavioral tests, the relative expression of mRNA to synapsin 1 (Syn1), oligodendrocyte transcription factor 1 (Olig1), and SRY (sex-determining region Y)-box 2 (Sox2) was determined in the hippocampus and cortex. Treatment with RSV restored the social behavior and attenuated the hyperlocomotion of the offspring bred by dams submitted to MIA. RSV prevented the effects of MIA on Syn1 and Olig1 expression in the hippocampus and Syn1 in the cortex. The present study showed that maternal treatment with RSV attenuates some of the negative behavioral impacts caused by MIA, with modulation of synaptic and oligodendrogenesis processes.
Collapse
Affiliation(s)
| | - Nathalia Souza Barros de Moura
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Hassib
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiane Rebelo Pombo
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Khalmuratova R, Lee M, Park JW, Shin HW. Evaluation of Neo-Osteogenesis in Eosinophilic Chronic Rhinosinusitis Using a Nasal Polyp Murine Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:306-321. [PMID: 32009324 PMCID: PMC6997277 DOI: 10.4168/aair.2020.12.2.306] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
Abstract
Purpose Osteitis refers to the development of new bone formation and remodeling of bone in chronic rhinosinusitis (CRS) patients; it is typically associated with eosinophilia, nasal polyps (NPs), and recalcitrant CRS. However, the roles of ossification in CRS with or without NPs remain unclear due to the lack of appropriate animal models. Thus, it is necessary to have a suitable animal model for greater advances in the understanding of CRS pathogenesis. Methods BALB/c mice were administered ovalbumin (OVA) and staphylococcal enterotoxin B (SEB). The numbers of osteoclasts and osteoblasts and bony changes were assessed. Micro computed tomography (micro-CT) scans were conducted to measure bone thickness. Immunofluorescence, immunohistochemistry, and quantitative polymerase chain reaction were performed to evaluate runt-related transcription factor 2 (RUNX2), osteonectin, interleukin (IL)-13, and RUNX2 downstream gene expression. Gene set enrichment analysis was performed in mucosal tissues from control and CRS patients. The effect of resveratrol was evaluated in terms of osteogenesis in a murine eosinophilic CRS NP model. Results The histopathologic changes showed markedly thickened bones with significant increase in osteoblast numbers in OVA/SEB-treated mice compared to the phosphate-buffered saline-treated mice. The structural changes in bone on micro-CT were consistent with the histopathological features. The expression of RUNX2 and IL-13 was increased by the administration of OVA/SEB and showed a positive correlation. RUNX2 expression mainly co-localized with osteoblasts. Bioinformatic analysis using human CRS transcriptome revealed that IL-13-induced bony changes via RUNX2. Treatment with resveratrol, a candidate drug against osteitis, diminished the expression of IL-13 and RUNX2, and the number of osteoblasts in OVA/SEB-treated mice. Conclusions In the present study, we found the histopathological and radiographic evidence of osteogenesis using a previously established murine eosinophilic CRS NP model. This animal model could provide new insights into the pathophysiology of neo-osteogenesis and provide a basis for developing new therapeutics.
Collapse
Affiliation(s)
- Roza Khalmuratova
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Mingyu Lee
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Wan Park
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
16
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C, Isidoro C. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal 2019; 17:98. [PMID: 31426798 PMCID: PMC6701103 DOI: 10.1186/s12964-019-0414-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIM Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. RESULTS We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, β-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 μM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. CONCLUSIONS Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy.,Medical Sciences Department, University of Ferrara, Via Fossato di Mortara, 70, Ferrara, Italy
| | - Carmen Mortellaro
- Oral Surgery Unit, Department of Medical Science, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|