1
|
Stipp MC, Corso CR, Acco A. Impacts of COVID-19 in Breast Cancer: From Molecular Mechanism to the Treatment Approach. Curr Pharm Biotechnol 2023; 24:238-252. [PMID: 35593354 DOI: 10.2174/1389201023666220421133311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/17/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 272 million people, resulting in 5.3 million deaths worldwide from COVID-19. Breast tumors are considered the world's most commonly diagnosed cancer. Both breast cancer and COVID-19 share common pathogenic features, represented by inflammatory mediators and the potential of SARS-CoV-2 replication in metastatic cancer cells. This may intensify viral load in patients, thereby triggering severe COVID-19 complications. Thus, cancer patients have a high risk of developing severe COVID-19 with SARS-CoV-2 infection and a higher rate of complications and death than non-cancer patients. The present review discusses common mechanisms between COVID-19 and breast cancer and the particular susceptibility to COVID-19 in breast cancer patients. We describe the effects of chemotherapeutic agents that are used against this cancer, which should be considered from the perspective of susceptibility to SARS-CoV-2 infection and risk of developing severe events. We also present potential drug interactions between chemotherapies that are used to treat breast cancer and drugs that are applied for COVID-19. The drugs that are identified as having the most interactions are doxorubicin and azithromycin. Both drugs can interact with each other and with other drugs, which likely requires additional drug monitoring and changes in drug dosage and timing of administration. Further clinical and observational studies involving breast cancer patients who acquire COVID-19 are needed to define the best therapeutic approach when considering the course of both diseases.
Collapse
Affiliation(s)
- Maria Carolina Stipp
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
2
|
Charitou T, Kontou PI, Tamposis IA, Pavlopoulos GA, Braliou GG, Bagos PG. Drug genetic associations with COVID-19 manifestations: a data mining and network biology approach. THE PHARMACOGENOMICS JOURNAL 2022; 22:294-302. [PMID: 36171417 PMCID: PMC9517961 DOI: 10.1038/s41397-022-00289-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/16/2022] [Accepted: 09/08/2022] [Indexed: 01/08/2023]
Abstract
Available drugs have been used as an urgent attempt through clinical trials to minimize severe cases of hospitalizations with Coronavirus disease (COVID-19), however, there are limited data on common pharmacogenomics affecting concomitant medications response in patients with comorbidities. To identify the genomic determinants that influence COVID-19 susceptibility, we use a computational, statistical, and network biology approach to analyze relationships of ineffective concomitant medication with an adverse effect on patients. We statistically construct a pharmacogenetic/biomarker network with significant drug-gene interactions originating from gene-disease associations. Investigation of the predicted pharmacogenes encompassing the gene-disease-gene pharmacogenomics (PGx) network suggests that these genes could play a significant role in COVID-19 clinical manifestation due to their association with autoimmune, metabolic, neurological, cardiovascular, and degenerative disorders, some of which have been reported to be crucial comorbidities in a COVID-19 patient.
Collapse
|
3
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
4
|
Baka T, Repova K, Luptak I, Simko F. Ivabradine in the management of COVID-19-related cardiovascular complications: A perspective. Curr Pharm Des 2022; 28:1581-1588. [DOI: 10.2174/1381612828666220328114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Besides acute respiratory distress syndrome, acute cardiac injury is a major complication in severe coronavirus disease 2019 (COVID-19) and associates with a poor clinical outcome. Acute cardiac injury with COVID-19 can be of various etiologies, including myocardial ischemia or infarction and myocarditis, and may compromise cardiac function, resulting in acute heart failure or cardiogenic shock. Systemic inflammatory response increases heart rate (HR), which disrupts the myocardial oxygen supply/demand balance and worsens cardiac energy efficiency, thus further deteriorating the cardiac performance of the injured myocardium. In fact, the combination of elevated resting HR and markers of inflammation synergistically predicts adverse cardiovascular prognosis. Thus, targeted HR reduction may potentially be of benefit in cardiovascular pathologies associated with COVID-19. Ivabradine is a drug that selectively reduces HR via If current inhibition in the sinoatrial node without a negative effect on inotropy. Besides selective HR reduction, ivabradine was found to exert various beneficial pleiotropic effects, either HR-dependent or HR-independent, including anti-inflammatory, anti-atherosclerotic, anti-oxidant and antiproliferative actions and the attenuation of endothelial dysfunction and neurohumoral activation. Cardioprotection by ivabradine has already been indicated in cardiovascular pathologies that are prevalent with COVID-19, including myocarditis, acute coronary syndrome, cardiogenic shock or cardiac dysautonomia. Here, we suggest that ivabradine may be beneficial in the management of COVID-19-related cardiovascular complications.
Collapse
Affiliation(s)
- Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ivan Luptak
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA, USA
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Cardiovascular Medicine Section, Boston University School of Medicine, Boston, MA, USA
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA
| |
Collapse
|
5
|
Salerno JA, Torquato T, Temerozo JR, Goto-Silva L, Karmirian K, Mendes MA, Sacramento CQ, Fintelman-Rodrigues N, Souza LRQ, Ornelas IM, Veríssimo CP, Aragão LGHS, Vitória G, Pedrosa CSG, da Silva Gomes Dias S, Cardoso Soares V, Puig-Pijuan T, Salazar V, Dariolli R, Biagi D, Furtado DR, Barreto Chiarini L, Borges HL, Bozza PT, Zaluar P. Guimarães M, Souza TM, Rehen SK. Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ 2021; 9:e12595. [PMID: 35036128 PMCID: PMC8697769 DOI: 10.7717/peerj.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.
Collapse
Affiliation(s)
- José Alexandre Salerno
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thayana Torquato
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Karina Karmirian
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Mayara A. Mendes
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Letícia R Q. Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Isis M. Ornelas
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carla P. Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Suelen da Silva Gomes Dias
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Teresa Puig-Pijuan
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vinícius Salazar
- Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- PluriCell Biotech, São Paulo, Brazil
| | | | - Daniel R. Furtado
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Luciana Barreto Chiarini
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena L. Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marilia Zaluar P. Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
da Silva da Costa FA, Soares MR, Malagutti-Ferreira MJ, da Silva GR, Lívero FADR, Ribeiro-Paes JT. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med 2021; 18:735-745. [PMID: 34080133 PMCID: PMC8172328 DOI: 10.1007/s13770-021-00348-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic respiratory diseases (CRD) are a major public health problem worldwide. In the current epidemiological context, CRD have received much interest when considering their correlation with greater susceptibility to SARS-Cov-2 and severe disease (COVID-19). Increasingly more studies have investigated pathophysiological interactions between CRD and COVID-19. AREA COVERED Animal experimentation has decisively contributed to advancing our knowledge of CRD. Considering the increase in ethical restrictions in animal experimentation, researchers must focus on new experimental alternatives. Two-dimensional (2D) cell cultures have complemented animal models and significantly contributed to advancing research in the life sciences. However, 2D cell cultures have several limitations in studies of cellular interactions. Three-dimensional (3D) cell cultures represent a new and robust platform for studying complex biological processes and are a promising alternative in regenerative and translational medicine. EXPERT OPINION Three-dimensional cell cultures are obtained by combining several types of cells in integrated and self-organized systems in a 3D structure. These 3D cell culture systems represent an efficient methodological approach in studies of pathophysiology and lung therapy. More recently, complex 3D culture systems, such as lung-on-a-chip, seek to mimic the physiology of a lung in vivo through a microsystem that simulates alveolar-capillary interactions and exposure to air. The present review introduces and discusses 3D lung cultures as robust platforms for studies of the pathophysiology of CRD and COVID-19 and the mechanisms that underlie interactions between CRD and COVID-19.
Collapse
Affiliation(s)
- Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Murilo Racy Soares
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Gustavo Ratti da Silva
- Laboratory of Preclinical Research of Natural Products, Paranaense University - UNIPAR, Umuarama, Parana, Brazil
| | | | | |
Collapse
|
7
|
A Rapid Antigen Detection Test to Diagnose SARS-CoV-2 Infection Using Exhaled Breath Condensate by A Modified Inflammacheck ® Device. SENSORS 2021; 21:s21175710. [PMID: 34502603 PMCID: PMC8434102 DOI: 10.3390/s21175710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Background: The standard test that identifies the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is based on reverse transcriptase-polymerase chain reaction (RT-PCR) from nasopharyngeal (NP) swab specimens. We compared the accuracy of a rapid antigen detection test using exhaled breath condensate by a modified Inflammacheck® device with the standard RT-PCR to diagnose SARS-CoV-2 infection. Methods: We performed a manufacturer-independent, cross-sectional, diagnostic accuracy study involving two Italian hospitals. Sensitivity, specificity, positive (PLR) and negative likelihood ratio (NLR), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy with 95% confidence intervals (95% CI) of Inflammacheck® were calculated using the RT-PCR results as the standard. Further RT-PCR tests were conducted on NP specimens from test positive subjects to obtain the Ct (cycle threshold) values as indicative evidence of the viral load. Results: A total of 105 individuals (41 females, 39.0%; 64 males, 61.0%; mean age: 58.4 years) were included in the final analysis, with the RT-PCR being positive in 13 (12.4%) and negative in 92 (87.6%). The agreement between the two methods was 98.1%, with a Cohen’s κ score of 0.91 (95% CI: 0.79–1.00). The overall sensitivity and specificity of the Inflammacheck® were 92.3% (95% CI: 64.0%–99.8%) and 98.9% (95% CI: 94.1%–100%), respectively, with a PLR of 84.9 (95% CI: 12.0–600.3) and a NLR of 0.08 (95% CI: 0.01–0.51). Considering a 12.4% disease prevalence in the study cohort, the PPV was 92.3% (95% CI: 62.9%–98.8%) and the NPV was 98.9% (95% CI: 93.3%–99.8%), with an overall accuracy of 98.1% (95% CI: 93.3%–99.8%). The Fagan’s nomogram substantially confirmed the clinical applicability of the test in a realistic scenario with a pre-test probability set at 4%. Ct values obtained for the positive test subjects by means of the RT-PCR were normally distributed between 26 and 38 cycles, corresponding to viral loads from light (38 cycles) to high (26 cycles). The single false negative record had a Ct value of 33, which was close to the mean of the cohort (32.5 cycles). Conclusions: The modified Inflammacheck® device may be a rapid, non-demanding and cost-effective method for SARS-CoV-2 detection. This device may be used for routine practice in different healthcare settings (community, hospital, rehabilitation).
Collapse
|
8
|
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, Cocciadiferro D, Agolini E, Colona VL, Rizzacasa B, Giannini R, Bigio B, Goletti D, Capobianchi MR, Grelli S, Mann J, McKee TD, Cheng K, Amanat F, Krammer F, Guarracino A, Pepe G, Tomino C, Tandjaoui-Lambiotte Y, Uzunhan Y, Tubiana S, Ghosn J, Notarangelo LD, Su HC, Abel L, Cobat A, Elhanan G, Grzymski JJ, Latini A, Sidhu SS, Jain S, Davey RA, Casanova JL, Wei W, Pandolfi PP. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis 2021; 12:310. [PMID: 33762578 PMCID: PMC7987752 DOI: 10.1038/s41419-021-03513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy.
- IRCCS Neuromed, Pozzilli, (IS), Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - J J Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Barbara Rizzacasa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Rosalinda Giannini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133, Rome, Italy
| | | | | | - Ke Cheng
- HistoWiz Inc, Brooklyn, NY, 11226, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gerardo Pepe
- Department of Biology, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Tomino
- San Raffaele University of Rome, 00166, Rome, Italy
| | - Yacine Tandjaoui-Lambiotte
- Intensive Care Unit, Avicenne Hospital, APHP, Bobigny, France
- INSERM U1272 Hypoxia & Lung, Bobigny, France
| | - Yurdagul Uzunhan
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Hôpital Avicenne, APHP, Bobigny; INSERM UMR1272, Université Paris 13, Bobigny, France
| | - Sarah Tubiana
- Hôpital Bichat Claude Bernard, APHP, Paris, France
- Centre d'investigation Clinique, Inserm CIC, 1425, Paris, France
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMRS1137, University of Paris, Paris, France
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Disease Department, Paris, France
| | | | - Helen C Su
- Laboratory of Clinical Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Gai Elhanan
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Andrea Latini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada, M5S 3E1 416-946-0863
| | | | - Robert A Davey
- Department of Microbiology Boston University, National Emerging Infectious Diseases Laboratories, Boston, MA, 02118, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pier Paolo Pandolfi
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA.
- MBC, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, TO, 10126, Italy.
| |
Collapse
|
9
|
Pharmacogenomics and COVID-19: clinical implications of human genome interactions with repurposed drugs. THE PHARMACOGENOMICS JOURNAL 2021; 21:275-284. [PMID: 33542445 PMCID: PMC7859465 DOI: 10.1038/s41397-021-00209-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) has evolved into an emergent global pandemic. Many drugs without established efficacy are being used to treat COVID-19 patients either as an offlabel/compassionate use or as a clinical trial. Although drug repurposing is an attractive approach with reduced time and cost, there is a need to make predictions on success before the start of therapy. For the optimum use of these repurposed drugs, many factors should be considered such as drug–gene or dug–drug interactions, drug toxicity, and patient co-morbidity. There is limited data on the pharmacogenomics of these agents and this may constitute an obstacle for successful COVID-19 therapy. This article reviewed the available human genome interactions with some promising repurposed drugs for COVID-19 management. These drugs include chloroquine (CQ), hydroxychloroquine (HCQ), azithromycin, lopinavir/ritonavir (LPV/r), atazanavir (ATV), favipiravir (FVP), nevirapine (NVP), efavirenz (EFV), oseltamivir, remdesivir, anakinra, tocilizumab (TCZ), eculizumab, heme oxygenase 1 (HO-1) regulators, renin–angiotensin–aldosterone system (RAAS) inhibitors, ivermectin, and nitazoxanide. Drug-gene variant pairs that may alter the therapeutic outcomes in COVID-19 patients are presented. The major drug variant pairs that associated with variations in clinical efficacy include CQ/HCQ (CYP2C8, CYP2D6, ACE2, and HO-1); azithromycin (ABCB1); LPV/r (SLCO1B1, ABCB1, ABCC2 and CYP3A); NVP (ABCC10); oseltamivir (CES1 and ABCB1); remdesivir (CYP2C8, CYP2D6, CYP3A4, and OATP1B1); anakinra (IL-1a); and TCZ (IL6R and FCGR3A). The major drug variant pairs that associated with variations in adverse effects include CQ/HCQ (G6PD; hemolysis and ABCA4; retinopathy), ATV (MDR1 and UGT1A1*28; hyperbilirubinemia; and APOA5; dyslipidemia), NVP (HLA-DRB1*01, HLA-B*3505 and CYP2B6; skin rash and MDR1; hepatotoxicity), and EFV (CYP2B6; depression and suicidal tendencies).
Collapse
|
10
|
Li Q, Kang C. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Microorganisms 2020; 8:E1250. [PMID: 32824639 PMCID: PMC7463875 DOI: 10.3390/microorganisms8081250] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral outbreak started in late 2019 and rapidly became a serious health threat to the global population. COVID-19 was declared a pandemic by the World Health Organization in March 2020. Several therapeutic options have been adopted to prevent the spread of the virus. Although vaccines have been developed, antivirals are still needed to combat the infection of this virus. SARS-CoV-2 is an enveloped virus, and its genome encodes polyproteins that can be processed into structural and nonstructural proteins. Maturation of viral proteins requires cleavages by proteases. Therefore, the main protease (3 chymotrypsin-like protease (3CLpro) or Mpro) encoded by the viral genome is an attractive drug target because it plays an important role in cleaving viral polyproteins into functional proteins. Inhibiting this enzyme is an efficient strategy to block viral replication. Structural studies provide valuable insight into the function of this protease and structural basis for rational inhibitor design. In this review, we describe structural studies on the main protease of SARS-CoV-2. The strategies applied in developing inhibitors of the main protease of SARS-CoV-2 and currently available protein inhibitors are summarized. Due to the availability of high-resolution structures, structure-guided drug design will play an important role in developing antivirals. The availability of high-resolution structures, potent peptidic inhibitors, and diverse compound scaffolds indicate the feasibility of developing potent protease inhibitors as antivirals for COVID-19.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
| |
Collapse
|