1
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies. Appl Microbiol Biotechnol 2024; 108:3. [PMID: 38159120 DOI: 10.1007/s00253-023-12975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Aslam M, Rahman J, Iqbal A, Mujtaba S, Ashok AK, Kaouche FC, Hayat MM, Nisa MU, Ashraf M. Antiurease Activity of Antibiotics: In Vitro, In Silico, Structure Activity Relationship, and MD Simulations of Cephalosporins and Fluoroquinolones. ACS OMEGA 2024; 9:14005-14016. [PMID: 38559955 PMCID: PMC10975586 DOI: 10.1021/acsomega.3c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Helicobacter pylori infection is widespread in 50% of the world's population and is associated with gastric ulcers and related disorders that ultimately culminate in gastric cancer. Levofloxacin-based, or clarithromycin-based, triple therapy is frequently used to inhibit the bacterial urease enzyme for the eradication of H. pylori. A comprehensive investigation based on the urease inhibitory profiles of antibiotics and their computational implications is lacking in the scientific literature. The present study was aimed specifically to determine the antiurease activities within the realms of cephalosporins and fluoroquinolones by in vitro methods supported with in silico investigations. The results demonstrate the jack bean urease inhibitory activity of cephalosporins, wherein cefadroxil, cefpodoxime, cefotaxime, and cefaclor displayed inhibitions (IC50 21.35 ± 0.64 to 62.86 ± 0.78 μM) compared with the standard thiourea (IC50 21.25 ± 0.15 μM). Among fluoroquinolones, levofloxacin, ofloxacin, and gemifloxacin (IC50 7.24 ± 0.29 to 16.53 ± 0.85 μM) unveiled remarkable inhibitory profiles. Levofloxacin and ofloxacin exhibited competitive inhibition against the said enzyme. Ciprofloxacin and moxifloxacin displayed weak urease inhibitions. During molecular docking studies, Asp362, Gly279, Arg338, Asn168, Asp223, Gln364, and Met366 were involved in hydrogen bonding in fluoroquinolones, and hydrogen bonding was established with Arg338, His248, Asn168 residues, and metal Ni601 and Ni602 of the enzyme. MD simulations and MMPBSA results demonstrated the existence of significant protein-ligand binding. Overall, these results warrant further investigations into the significance of these active molecules in relation to their inhibitory potential against the targeted urease enzyme.
Collapse
Affiliation(s)
- Misbah Aslam
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Jameel Rahman
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Ambar Iqbal
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
- Department
of Biochemistry and Molecular Biology, Institute of Biochemistry,
Biotechnology, Bioinformatics (IBBB), B.J. Campus, The Islamia University of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Sara Mujtaba
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| | - Avinash Karkada Ashok
- Department
of Biotechnology, Siddaganga Institute of
Technology, Tumakuru 572103, Karnataka, India
| | - Farah Chafika Kaouche
- Department
of Chemistry, Faculty of Sciences of Mater, Ibn Khaldoun University, BP 78 zaaoura, 14000 Tiaret, Algeria
| | - Muhammad Munawar Hayat
- P
& SH Department, Punjab Drug Testing
Laboratory, 1-Bird Wood
Road, Lahore 631000, Pakistan
| | - Mouqadus-Un Nisa
- Multan Drug
Testing Laboratory, near Multan Institute
of Kidney Disease, Muzaffargarh
Road, Multan 261000, Pakistan
| | - Muhammad Ashraf
- Institute
of Chemistry, B.J. Campus, The Islamia University
of Bahawalpur, Bahawalpur 36000, Pakistan
| |
Collapse
|
3
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Choroszy-Król I, Futoma-Kołoch B, Kuźnik K, Wojnicz D, Tichaczek-Goska D, Frej-Mądrzak M, Jama-Kmiecik A, Sarowska J. Exposing Salmonella Senftenberg and Escherichia coli Strains Isolated from Poultry Farms to Formaldehyde and Lingonberry Extract at Low Concentrations. Int J Mol Sci 2023; 24:14579. [PMID: 37834022 PMCID: PMC10572950 DOI: 10.3390/ijms241914579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
European Union (EU) countries strive to improve the quality and safety of food of animal origin. Food production depends on a good microbiological quality of fodder. However, feed can be a reservoir or vector of pathogenic microorganisms, including Salmonella or Escherichia coli bacteria. Salmonella spp. and E. coli are the two most important food-borne pathogens of public health concern. Contamination with these pathogens, mainly in the poultry sector, can lead to serious food-borne diseases. Both microorganisms can form biofilms on abiotic and biotic surfaces. The cells that form biofilms are less sensitive to disinfectants, which in turn makes it difficult to eliminate them from various surfaces. Because the usage of formaldehyde in animal feed is prohibited in European countries, the replacement of this antibacterial with natural plant products seems very promising. This study aimed to assess the inhibitory effectiveness of Vaccinium vitis-idaea extract against biofilm produced by model Salmonella enterica and E. coli strains. We found that formaldehyde could effectively kill both species of bacterial cells in biofilm, while the lingonberry extract showed some antibiofilm effect on S. enterica serovar Senftenberg. In conclusion, finding natural plant products that are effective against biofilms formed by Gram-negative bacteria is still challenging.
Collapse
Affiliation(s)
- Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Klaudia Kuźnik
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63–77, 51-148 Wroclaw, Poland;
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland; (D.W.); (D.T.-G.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| | - Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wrocław Medical University, Chałubińskiego 4, 50-368 Wroclaw, Poland; (I.C.-K.); (M.F.-M.); (A.J.-K.); (J.S.)
| |
Collapse
|
5
|
Luo Y, Wen Z, Xiong Y, Chen X, Shen Z, Li P, Peng Y, Deng Q, Yu Z, Zheng J, Han S. The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00618-x. [PMID: 37185582 DOI: 10.1038/s41429-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.
Collapse
Affiliation(s)
- Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zonglin Shen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Dan B, Dai H, Zhou D, Tong H, Zhu M. Relationship Between Drug Resistance Characteristics and Biofilm Formation in Klebsiella Pneumoniae Strains. Infect Drug Resist 2023; 16:985-998. [PMID: 36824066 PMCID: PMC9942501 DOI: 10.2147/idr.s396609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Objective To conduct epidemiological analysis of Klebsiella pneumoniae (K. pneumoniae) with hypervirulence, and to investigate its drug resistance phenotype, Extended-spectrum β-lactamase (ESBLs) gene, virulence factor, capsular serotype and biofilm formation, so as to provide theoretical basis for further understanding of the drug resistance mechanism of K. pneumoniae with hypervirulence. Methods K. Pneumoniae were isolated from clinical samples collected from inpatients. All strains were identified by VITEK2 Compact using fully automatic microbial analyzer, the minimal inhibitory concentration (MIC) of antibiotics was determined by microbroth dilution test. The double disk diffusion method was used to detect the production of ESBLs, modified carbapenem inactivation method (mCIM) was used to detect the production of carbapenemase, and hypermucoviscosity phenotype was detected by wire drawing test. PCR was used to detect ESBLs gene, virulence factor and capsular serotype. Crystal violet staining was used to detect the ability of biofilm formation. Results The ESBLs genes detected in this study included strains blaTEM 35 (36.5%), blaSHV 51 (53.1%), and blaCTX-M 49 (51.0%). Most strains carried multiple ESBLs genes, but not all of them produce ESBLs. K1 and K2 accounted for 14.6% and 11.5% respectively. Most (91.7%) strains carried the fimH gene, and the other virulence genes were ybtS (53.1%), entB (46.9%), rmpA (41.7%), aerobactin (32.3%), allS (15.6%), kfu (15.6%). Of all the Klebsiella pneumoniae strains, 33 (34.4%) exhibited ESBLs phenotype, 16 (16.7%) were carbapenemase-producing, and 20 (20.8%) with ESBLs phenotype tested were resistant to all four drugs. The correlation between ESBLs-producing strains and biofilm formation was significantly increased compared to strains without ESBLs phenotype (P=0.035). Conclusion Compared to hypervirulent Klebsiella pneumoniae (hvKP), classical Klebsiella pneumoniae (cKP) has a tendency to acquire antibiotic resistance. Our study showed that genes encoding rmpA, K1 or K2, and kfu were highly associated with hvKP.
Collapse
Affiliation(s)
- Binzhi Dan
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Heping Dai
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Dangui Zhou
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Hongfang Tong
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China
| | - Mei Zhu
- Department of Clinical Laboratory, the Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, People’s Republic of China,Correspondence: Mei Zhu, Tel +86 551 8232 4254, Email
| |
Collapse
|
7
|
Xuecheng C, Liang H, Yanpeng X, Yurong Z, Yue L, Yalan P, Zhong C, Jie Z, Zhijian Y, Shiqing H. Development of 2‐Alkyl‐5‐((phenylsulfonyl)oxy)‐1
H
‐indole‐3‐carboxylate Derivatives as Potential Anti‐Biofilm Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chen Xuecheng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Hu Liang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Xiong Yanpeng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Yurong
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Luo Yue
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Peng Yalan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Chen Zhong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Jie
- School of Animal Pharmaceutical Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 People's Republic of China
| | - Yu Zhijian
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Han Shiqing
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
8
|
Moris V, Lam M, Amoureux L, Magallon A, Guilloteau A, Maldiney T, Zwetyenga N, Falentin-Daudre C, Neuwirth C. What is the best technic to dislodge Staphylococcus epidermidis biofilm on medical implants? BMC Microbiol 2022; 22:192. [PMID: 35933363 PMCID: PMC9356421 DOI: 10.1186/s12866-022-02606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bacterial biofilm can occur on all medical implanted devices and lead to infection and/or dysfunction of the device. In this study, artificial biofilm was formed on four different medical implants (silicone, piccline, peripheral venous catheter and endotracheal tube) of interest for our daily clinical and/or research practice. We investigated the best conventional technic to dislodge the biofilm on the implants and quantified the number of bacteria. Staphylococcus epidermidis previously isolated from a breast implant capsular contracture on a patient in the university hospital of Dijon was selected for its ability to produce biofilm on the implants. Different technics (sonication, Digest-EUR®, mechanized bead mill, combination of sonication plus Digest-EUR®) were tested and compared to detach the biofilm before quantifying viable bacteria by colony counting. Results For all treatments, the optical and scanning electron microscope images showed substantial less biofilm biomass remaining on the silicone implant compared to non-treated implant. This study demonstrated that the US procedure was statistically superior to the other physical treatment: beads, Digest-EUR® alone and Digest-EUR® + US (p < 0.001) for the flexible materials (picc-line, PIV, and silicone). The number of bacteria released by the US is significantly higher with a difference of 1 log on each material. The result for a rigid endotracheal tube were different with superiority for the chemical treatment dithiothreitol: Digest-EUR®. Surprisingly the combination of the US plus Digest-EUR® treatment was consistently inferior for the four materials. Conclusions Depending on the materials used, the biofilm dislodging technique must be adapted. The US procedure was the best technic to dislodge S. epidermidis biofilm on silicone, piccline, peripheral venous catheter but not endotracheal tube. This suggested that scientists should compare themselves different methods before designing a protocol of biofilm study on a given material. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02606-x.
Collapse
Affiliation(s)
- Vivien Moris
- Department of Maxillo-Facial Surgery, Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000, Dijon, France. .,Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France.
| | - Mylan Lam
- LBPS/CSPBAT, UMR CNRS 7244, Galilee Institute, Paris 13 University Sorbonne Paris Cité, 99 avenue JB, 93430, Clément, Villetaneuse, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| | - Arnaud Magallon
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| | - Adrien Guilloteau
- Hospital Epidemiology and Hygiene Department, University of Franche-Comté, 11 Rue Claude Goudimel, Besançon, 25000, France
| | - Thomas Maldiney
- Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France.,Department of Intensive Care Medicine, William Morey General Hospital, Chalon-sur-Saône, France
| | - Narcisse Zwetyenga
- Department of Maxillo-Facial Surgery, Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Dijon, boulevard de Maréchal-de-Lattre-de-Tassigny, 21000, Dijon, France.,Lipids Nutrition Cancer Team NuTox, UMR866, Université de Bourgogne Franche-Comté, 17 rue Paul Gaffarel, Dijon, 21000, France
| | - Céline Falentin-Daudre
- LBPS/CSPBAT, UMR CNRS 7244, Galilee Institute, Paris 13 University Sorbonne Paris Cité, 99 avenue JB, 93430, Clément, Villetaneuse, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, Dijon Cedex, France.,UMR/CNRS 6249 Chrono-Environnement, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
9
|
Synergistic Effect of Lithocholic Acid with Gentamicin against Gram-Positive Bacteria but Not against Gram-Negative Bacteria. Molecules 2022; 27:molecules27072318. [PMID: 35408717 PMCID: PMC9000364 DOI: 10.3390/molecules27072318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is an important Gram-positive food-borne pathogen that severely threatens public health. A checkerboard microdilution method was performed to evaluate the synergistic effect of lithocholic acid (LCA) with Gentamicin (Genta) against L. monocytogenes. BacLight LIVE/DEAD staining, scanning electron microscopy and biofilm inhibition assays were further used to explore the bactericidal effect and antibiofilm effect of this combination on L. monocytogenes. Additionally, the synergistic effects of LCA derivatives with Genta were also evaluated against L. monocytogenes, S.aureus and S. suis. The results indicated that a synergistic bactericidal effect was observed for the combined therapy of LCA at the concentration without affecting bacteria viability, with Genta. Additionally, LCA in combination with Genta had a synergistic effect against Gram-positive bacteria (L. monocytogenes, S. aureus and S. suis) but not against Gram-negative bacteria (E. coli, A. baumannii and Salmonella). BacLight LIVE/DEAD staining and scanning electron microscopy analysis revealed that the combination of LCA with Genta caused L. monocytogenes membrane injury, leading to bacteria death. We found that 8 μg/mL LCA treatment effectively improved the ability of Genta to eradicate L. monocytogenes biofilms. In addition, we found that chenodeoxycholic acid, as a cholic acid derivative, also improved the bactericidal effect of Genta against Gram-positive bacteria. Our results indicate that LCA represents a broad-spectrum adjuvant with Genta for infection caused by L. monocytogenes and other Gram-positive pathogens.
Collapse
|
10
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
11
|
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022; 14:pharmaceutics14020427. [PMID: 35214158 PMCID: PMC8875263 DOI: 10.3390/pharmaceutics14020427] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial biofilms formed by pathogens are known to be hundreds of times more resistant to antimicrobial agents than planktonic cells, making it extremely difficult to cure biofilm-based infections despite the use of antibiotics, which poses a serious threat to human health. Therefore, there is an urgent need to develop promising alternative antimicrobial therapies to reduce the burden of drug-resistant bacterial infections caused by biofilms. As natural enemies of bacteria, bacteriophages (phages) have the advantages of high specificity, safety and non-toxicity, and possess great potential in the defense and removal of pathogenic bacterial biofilms, which are considered to be alternatives to treat bacterial diseases. This work mainly reviews the composition, structure and formation process of bacterial biofilms, briefly discusses the interaction between phages and biofilms, and summarizes several strategies based on phages and their derivatives against biofilms and drug-resistant bacterial infections caused by biofilms, serving the purpose of developing novel, safe and effective treatment methods against biofilm-based infections and promoting the application of phages in maintaining human health.
Collapse
Affiliation(s)
| | | | | | - Ying Shi
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| | - Qihe Chen
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| |
Collapse
|
12
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
13
|
Wang J, Zhu J, Meng J, Qiu T, Wang W, Wang R, Liu J. Baicalin inhibits biofilm formation by influencing primary adhesion and aggregation phases in Staphylococcus saprophyticus. Vet Microbiol 2021; 262:109242. [PMID: 34562786 DOI: 10.1016/j.vetmic.2021.109242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
The ability to form biofilms on surfaces makes Staphylococcus saprophyticus (S. saprophyticus) becomes the main pathogenic factor in nosocomial infections. Previously, we demonstrated that baicalin (Bac) inhibited azithromycin-resistant S. saprophyticus (ARSS) biofilm formation. This investigation aims to explore the influence of baicalin on primary adhesion and aggregation phases of biofilm formation, and the treatment effect of baicalin and azithromycin on ARSS biofilm-associated infection. Crystal violet (CV) staining and scanning electron microscope (SEM) observations clearly showed that sub-inhibitory concentration baicalin inhibited ARSS biofilm formation when baicalin was added before the adhesion and aggregation phases. Baicalin significantly increased the relative adhesion inhibition rate and decreased the rate of bacteria aggregation in a dose-dependent manner. Moreover, CLSM and cell lysis assays revealed that baicalin inhibited the production of surface proteins and cell autolysis in bacteria adhesion and aggregation phases of biofilm formation. Meanwhile, the relative expressions of adhesion-related and autolysis-related genes were down-regulated by baicalin. In vivo, the combination of baicalin and azithromycin succeeded in eradicating ARSS from the mouse cutaneous infection model and decreasing the pathological injuries, the expressions of cytokines in infected tissue, and the number of inflammatory cells in the blood. Simultaneously, baicalin decreased the bacterial burdens in tubes, the level of TNF-α, and the number of monocytes and neutrophils compared with that of the SS and azithromycin groups. Based on these results, baicalin inhibited the adhesion and aggregation phases of biofilm formation by influenced the production of surface proteins and cell autolysis. Baicalin and azithromycin synergetically treated ARSS biofilm-associated infection.
Collapse
Affiliation(s)
- Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rui Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Planktonic and Biofilm-Associated Pseudomonas aeruginosa and Staphylococcus epidermidis Elicit Differential Human Peripheral Blood Cell Responses. Microorganisms 2021; 9:microorganisms9091846. [PMID: 34576742 PMCID: PMC8470397 DOI: 10.3390/microorganisms9091846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Despite the considerable progress made in recent years, our understanding of the human immune response to microbial biofilms is still poor. The aim of the present study was to compare the in vitro response of human peripheral blood mononuclear cells (PBMC) to biofilms and planktonic cells of Pseudomonas aeruginosa and Staphylococcus epidermidis, two bacterial species particularly relevant in patients with cystic fibrosis or undergoing endovascular catheterization, respectively. PBMC isolated from healthy donors were co-cultured with 24 h-old biofilms or with exponentially growing cells of both species. Following 24 h of co-culture, the expression of early activation markers and the levels of cytokines in the culture supernatants were assessed by flow cytometry, while biofilm biomass and architecture were evaluated by crystal violet staining, CFU count, and confocal microscopy. Around 20% of PBMC was activated in response to both biofilms and planktonic cells of P. aeruginosa. In contrast, planktonic cells of S. epidermidis induced a statistically higher degree of activation than their biofilm counterpart (25% versus 15%; p < 0.01). P. aeruginosa biofilms stimulated pro-inflammatory (TNF-α, IL-1β, IFN-γ, and IL-6) and anti-inflammatory (IL-10) cytokine production at statistically significant levels higher than its planktonic counterpart, while an opposite trend was observed with S. epidermidis. Differences in the architecture of the biofilms and in the number of PBMC infiltrating the biofilms between the two bacterial species may at least partially explain these findings. Collectively, the results obtained highlighted marked differences in the host–cell response depending on the species and the mode of growth (biofilms versus planktonic cultures), allowing speculations on the different strategies adopted by P. aeruginosa and S. epidermidis to persist in the host during the course of chronic infections.
Collapse
|
15
|
Díaz-Nuñez JL, García-Contreras R, Castillo-Juárez I. The New Antibacterial Properties of the Plants: Quo vadis Studies of Anti-virulence Phytochemicals? Front Microbiol 2021; 12:667126. [PMID: 34025622 PMCID: PMC8137972 DOI: 10.3389/fmicb.2021.667126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The recent increase in bacterial resistance to antibiotics has motivated the resurgence of the study of natural antimicrobial products. For centuries, plants have been recognized for their bactericidal properties. However, in the last two decades, it has been reported that several plant derived metabolites at growth subinhibitory concentrations also tend to have anti-virulence properties, since they reduce the expression of factors that cause damage and the establishment of pathogenic bacteria. In this area of study, plants have been positioned as one of the main natural sources of anti-virulence molecules, but only a small portion of the plant species that exist have been investigated. Also, anti-virulence studies have been primarily focused on analyzing the ability of extracts and compounds to inhibit quorum sensing and biofilms formation in vitro. This mini-review discusses the current panorama, the trends in the study of anti-virulence phytochemicals, as well as their potential for the development of antibacterial therapies.
Collapse
Affiliation(s)
- José Luis Díaz-Nuñez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
16
|
Khan F, Yu H, Kim YM. Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Mar Drugs 2020; 18:E270. [PMID: 32443816 PMCID: PMC7281555 DOI: 10.3390/md18050270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to prepare usnic acid (UA)-loaded chitosan (CS) nanoparticles (UA-CS NPs) and evaluate its antibacterial activity against biofilm-forming pathogenic bacteria. UA-CS NPs were prepared through simple ionic gelification of UA with CS, and further characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and field-emission transmission electron microscopy. The UA-CS NPs presented a loading capacity (LC) of 5.2%, encapsulation efficiency (EE) of 24%, and a spherical shape and rough surface. The maximum release of UA was higher in pH 1.2 buffer solution as compared to that in pH 6.8 and 7.4 buffer solution. The average size and zeta potential of the UA-CS NPs was 311.5 ± 49.9 nm in diameter and +27.3 ± 0.8 mV, respectively. The newly prepared UA-CS NPs exhibited antibacterial activity against persister cells obtained from the stationary phase in batch culture, mature biofilms, and antibiotic-induced gram-positive and gram-negative pathogenic bacteria. Exposure of sub-inhibitory concentrations of UA-CS NPs to the bacterial cells resulted in a change in morphology. The present study suggests an alternative method for the application of UA into nanoparticles. Furthermore, the anti-persister activity of UA-CS NPs may be another possible strategy for the treatment of infections caused by biofilm-forming pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
| | - Hongsik Yu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
17
|
Sadykova VS, Gavryushina IA, Kuvarina AE, Markelova NN, Sedykh NG, Georgieva ML, Barashkova AC, Rogozhin EA. Antimicrobic Activity of the Lipopeptide Emericellipsin A Isolated from Emericellopsis alkalina against Biofilm-Forming Bacteria. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Khan F, Lee JW, Javaid A, Park SK, Kim YM. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb Pathog 2020; 146:104249. [PMID: 32418905 DOI: 10.1016/j.micpath.2020.104249] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Aminoglycosides are a commonly used class of antibiotics; however, their application has been discontinued due to the emergence of multi-drug resistance bacterial strains. In the present study, the subinhibitory concentrations (sub-MIC) of several aminoglycosides were determined and tested as an antibiofilm and for their anti-virulence properties against Pseudomonas aeruginosa PAO1, which is an opportunistic foodborne pathogen. P. aeruginosa PAO1 exhibits multiple mechanisms of resistance, including the formation of biofilm and production of several virulence factors, against aminoglycoside antibiotics. The sub-MIC of these antibiotics exhibited biofilm inhibition of P. aeruginosa in alkaline TSB (pH 7.9). Moreover, various concentrations of these aminoglycosides also eradicate the mature biofilm of P. aeruginosa. In the presence of sub-MIC of aminoglycosides, the morphological changes of P. aeruginosa were found to change from rod-shaped to the filamentous, elongated, and streptococcal forms. Similar growth conditions and sub-MIC of aminoglycosides were also found to attenuate several virulence properties of P. aeruginosa PAO1. Molecular docking studies demonstrate that these aminoglycosides possess strong binding properties with the LasR protein, which is a well-characterized quorum-sensing receptor of P. aeruginosa. The present study suggests a new approach to revitalize aminoglycosides as antibiofilm and antivirulence drugs to treat infections caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea
| | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Aqib Javaid
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, UP, India
| | - Seul-Ki Park
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|