1
|
Jiang Z, Zhang G, Yang Y, Huang X, Yang Z, Li L, Li L, Zhong Y, Qi Y, Ruan D, Yang X, Yu J, Zhang M. A chiral porous organic cage-modified restricted-access material achieves online analysis of serum samples containing enantiomers and positional isomers. J Chromatogr A 2025; 1740:465561. [PMID: 39626335 DOI: 10.1016/j.chroma.2024.465561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025]
Abstract
Restricted-access materials (RAMs) allow biological samples to directly enter the chromatographic column for analysis owing to the steric exclusion function ability for biomolecules and extraction function for small-molecule analytes, which promoting the development of rapid, efficient, and automated in vivo drug analysis. Few reports on chiral RAMs that have been used to analyze enantiomers and positional isomers in serum by direct injection in currently. In this study, a chiral porous organic cage material RCC3 was innovatively introduced into the inner surface of silica gel and modified the outer surface with polyethylene glycol to prepare a novel type of chiral RAM-RCC3, and reported the use of chiral RAM-RCC3 as a stationary phase for the separation of chiral compounds and positional isomers in blank serum using high-performance liquid chromatography. The novel RAM-RCC3 column exhibited good performance in the online analysis of nine enantiomers and five positional isomers in serum samples. The effects of analyte mass, temperature, and composition of the mobile phase on the separation of o-, m-, and p-nitrophenol in serum samples using the RAM-RCC3 column were also investigated. Even after 300 injections, the RAM-RCC3 column exhibited good reproducibility and stability. These results indicate the potential of the chiral RAM-RCC3 column as a stationary phase for direct injection analysis of both chiral separation and positional isomers in biological samples, which also rendering it suitable to be further developed as a new type of RAM for online analysis of various small molecules in biological samples.
Collapse
Affiliation(s)
- Zhongmin Jiang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guoqiong Zhang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yu Yang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xinglin Huang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zerong Yang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Li Li
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Linzhe Li
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yuetong Zhong
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yan Qi
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Deqing Ruan
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
2
|
Zhu X, Li Y, Luo H, Zhang Y, Zhang Z, Li J. In vitro, in vivo, and in silico approaches for evaluating the preclinical DMPK profiles of ammoxetine, a novel chiral serotonin and norepinephrine reuptake inhibitor. Front Pharmacol 2024; 15:1486856. [PMID: 39575392 PMCID: PMC11579541 DOI: 10.3389/fphar.2024.1486856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Background and Aim Ammoxetine, a novel chiral serotonin and norepinephrine reuptake inhibitor, holds promise for major depressive disorder treatment. This study aimed to thoroughly investigate its preclinical drug metabolism and pharmacokinetics (DMPK) profiles. Methods The preclinical DMPK profiles of ammoxetine were examined through in vitro, in vivo, and in silico methods. Results Assessment of blood-brain barrier penetration via MDCK-MDR1 cells revealed strong brain permeation by ammoxetine, despite being a probable P-glycoprotein (P-gp) substrate. Molecular docking indicated a robust binding interaction between ammoxetine and P-gp. Ammoxetine was well absorbed orally, with Tmax ranging from 0.75 to 3.83 h in rats and 0.75-1.40 h in beagle dogs. At a 2 mg/kg dose in beagle dogs, ammoxetine exhibited an absolute bioavailability of approximately 42%. Plasma protein binding rates were around 50%-60% in beagle dogs, rats, and humans, suggesting moderate binding. Tissue distribution studies displayed rapid and extensive ammoxetine spread in major rat tissues post-gavage, with notable brain exposure and no tissue accumulation. Cumulative excretion rates in rats' urine, feces, and bile accounted for only 1.11% of the total administered drug, indicating extensive transformation into metabolites. Chiral inversion of ammoxetine was absent in vivo. Metabolic stability varied across species using liver microsomes, but beagle dogs showed clearance rates more akin to humans. Metabolic pathways unveiled two key metabolites, M1 and M2. M1, likely generated through methylenedioxyphenyl ring oxidation, involves CYP2C19 and CYP3A4, crucial human cytochrome P450 (CYP) enzymes for liver metabolism, while M2 is M1's glucuronide conjugate. Ammoxetine may exhibit saturation elimination trends with increasing doses in rats and beagle dogs. A high-throughput assay using the cocktail-substrate method indicated weak CYP inhibition by ammoxetine on CYP2D6 and CYP1A2, with minimal effects on other CYP enzymes, suggesting a low likelihood of CYP inhibition-related drug-drug interactions. Conclusion This study presents encouraging DMPK profiles of ammoxetine, backing its potential as a candidate compound for future clinical assessments.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yuexin Li
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Huan Luo
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Yunxia Zhang
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Zhenqing Zhang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinglai Li
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Zhang R, Su K, Yang L, Duan H, Tang L, Tang M, Zhao M, Ye N, Cai X, Jiang X, Li N, Peng J, Zhang X, Tang L, Qiu Q, Chen L, Wu W, Hu J, Ma L, Ye H. Discovery of a Potent, Orally Active, and Long-Lasting P2X7 Receptor Antagonist as a Preclinical Candidate for Delaying the Progression of Chronic Kidney Disease. J Med Chem 2024; 67:17472-17496. [PMID: 39311818 DOI: 10.1021/acs.jmedchem.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a condition characterized by functional deterioration with sustained inflammation and progressive fibrosis of the kidneys affecting over 800 million people worldwide. The P2X7 receptor (P2X7R) plays a key role in CKD progression. Our previous P2X7R antagonists demonstrated good efficacy for treating kidney injury but were limited by low oral exposure and short half-life, restricting their application. This study reports the optimization of P2X7R antagonists for better oral pharmacokinetics. The candidate compound 13a with the respective IC50 of 34.86 and 25.28 nM against human and murine P2X7R, administered orally at 10 mg/kg in mice, exhibits a remarkably long half-life of 161.64 h, with a high exposure of 1,163,980.55 μg·h/L. Oral administration of 13a (0.3 or 1.0 mg/kg, twice weekly) significantly reduced renal injury and fibrosis in unilateral ureteral obstruction and adenine diet-induced mice models, highlighting its potential for delaying the progression of CKD.
Collapse
Affiliation(s)
- Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Letian Yang
- Division of Nephrology, Institute of Kidney Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huaichuan Duan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Tang
- Division of Nephrology, Institute of Kidney Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- National Facility for Translational Medicine (Sichuan), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qiang Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Liang Ma
- Division of Nephrology, Institute of Kidney Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg Chem 2024; 147:107380. [PMID: 38636432 DOI: 10.1016/j.bioorg.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.
Collapse
Affiliation(s)
- Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Zhang T, Tao Y, Pu J, Zhu M, Wan L, Tang C. Safety, tolerability, and pharmacokinetics of oral (S)-oxiracetam in Chinese healthy volunteers: A randomized, double-blind, controlled phase I study. Eur J Pharm Sci 2024; 192:106621. [PMID: 37898393 DOI: 10.1016/j.ejps.2023.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND OBJECTIVE (S)-oxiracetam is the major active enantiomer of oxiracetam, which is being developed for dementia. This trial was designed to evaluate the safety, tolerability, and pharmacokinetics of oral (S)-oxiracetam in healthy Chinese volunteers. METHODS A randomized, controlled, double-blind and dose-escalation design was used in this Phase I trial, which consisted of a single-ascending-dose (SAD) study (400-2000 mg) and a multiple-ascending-dose (MAD) study (400-1600 mg). Blood, urine and feces samples were collected for pharmacokinetic analysis. Safety was evaluated by monitoring adverse events (AEs). RESULTS AEs in both studies were mild or moderate in severity and dose-independent. In the SAD study, no chiral transformation was observed. 55.03% and 36.16% of (S)-oxiracetam was excreted unchanged in urine and feces, respectively. Exposures exhibited dose-proportional increases over the range of 400 to 1600 mg but almost unchanged from 1600 to 2000 mg. (S)-oxiracetam was absorbed rapidly, reaching a peak at 0.75-1.00 h, and t1/2 was 6.12-6.60 h. Food had no effect on AUC, but prolonged Tmax to 3.00 h. In the MAD study, steady-state was observed on day 5. Mild accumulations were observed after 7 days of repeated dosing. CONCLUSION (S)-oxiracetam was safe and tolerated with favorable pharmacokinetic profiles at all study doses, providing dosing evidence for further efficacy evaluation.
Collapse
Affiliation(s)
- Ting Zhang
- Phase I Clinical Trial Center, Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, Chongqing, 402760, China
| | - Yi Tao
- Department of Phase I Clinical Trial Ward, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junliang Pu
- Phase I Clinical Trial Center, Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, Chongqing, 402760, China
| | - Mingxue Zhu
- Phase I Clinical Trial Center, Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, Chongqing, 402760, China
| | - Lei Wan
- Phase I Clinical Trial Center, Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, Chongqing, 402760, China
| | - Chengyong Tang
- Phase I Clinical Trial Center, Bishan Hospital of Chongqing, Bishan hospital of Chongqing medical university, Chongqing, 402760, China.
| |
Collapse
|
6
|
Bononi I, Tedeschi P, Mantovani V, Maietti A, Mazzoni E, Pancaldi C, Brandolini V, Tognon M. Antioxidant Activity of Resveratrol Diastereomeric Forms Assayed in Fluorescent-Engineered Human Keratinocytes. Antioxidants (Basel) 2022; 11:antiox11020196. [PMID: 35204079 PMCID: PMC8868414 DOI: 10.3390/antiox11020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Resveratrol is a powerful antioxidant molecule. In the human diet, its most important source is in Vitis vinifera grape peel and leaves. Resveratrol exists in two isoforms, cis- and trans. The diastereomeric forms of many drugs have been reported as affecting their activity. The aim of this study was to set up a cellular model to investigate how far resveratrol could counteract cytotoxicity in an oxidant agent. For this purpose, a keratinocyte cell line, which was genetically engineered with jelly fish green fluorescent protein, was treated with the free radical promoter Cumene hydroperoxide. The antioxidant activity of the trans-resveratrol and its diastereomeric mixture was evaluated indirectly in these treated fluorescent-engineered keratinocytes by analyzing the cell number and cell proliferation index. Our results demonstrate that cells, which were pre-incubated with resveratrol, reverted the oxidative damage progression induced by this free radical agent. In conclusion, fluorescent-engineered human keratinocytes represent a rapid and low-cost cellular model to determine cell numbers by studying emitted fluorescence. Comparative studies carried out with fluorescent keratinocytes indicate that trans-resveratrol is more efficient than diastereomeric mixtures in protecting cells from the oxidative stress.
Collapse
Affiliation(s)
- Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Vanessa Mantovani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Cecilia Pancaldi
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
| | - Vincenzo Brandolini
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
- Correspondence: ; Tel.: +39-0532-455538
| |
Collapse
|
7
|
Li D, Luo K, Zhang L, Gao J, Liang J, Li J, Pan H. Research and Application of Highly Selective Molecular Imprinting Technology in Chiral Separation Analysis. Crit Rev Anal Chem 2021; 53:1066-1079. [PMID: 34802340 DOI: 10.1080/10408347.2021.2002680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/21/2023]
Abstract
Since residual chiral pollutants in the environment and toxic or ineffective chiral components in drugs can threat human health, there is an urgent need for methods to separation and analyze chiral molecules. Molecular imprinting technology (MIT) is a biomimetic technique for specific recognition of analytes with high potential for application in the field of chiral separation and analysis. However, since MIT has some disadvantages when used for chiral recognition, such as poor rigidity of imprinted materials, a single type of recognition site, and poor stereoselectivity, reducing the interference of conformationally and structurally similar substances to increase the efficiency of chiral recognition is difficult. Therefore, improving the rigidity of imprinted materials, increasing the types of imprinted cavity recognition sites, and constructing an imprinted microenvironment for highly selective chiral recognition are necessary for the accurate identification of chiral substances. In this article, the principle of chiral imprinting recognition is introduced, and various strategies that improve the selectivity of chiral imprinting, using derivative functional monomers, supramolecular compounds, chiral assembly materials, and biomolecules, are reviewed in the past 10 years.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Kui Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Lianming Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jingxia Gao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jinlu Liang
- School of Petroleum and Chemical Engineering, BeiBu Gulf University, Qinzhou, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|