1
|
Zhang X, Luo Z, Marand AP, Yan H, Jang H, Bang S, Mendieta JP, Minow MA, Schmitz RJ. A spatially resolved multiomic single-cell atlas of soybean development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601616. [PMID: 39005400 PMCID: PMC11244997 DOI: 10.1101/2024.07.03.601616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities. We identified de novo enriched TF motifs and explored conservation of gene regulatory networks underpinning legume symbiotic nitrogen fixation. With comprehensive developmental trajectories for endosperm and embryo, we uncovered the functional transition of the three sub-cell types of endosperm, identified 13 sucrose transporters sharing the DOF11 motif that were co-up-regulated in late peripheral endosperm and identified key embryo cell-type specification regulators during embryogenesis, including a homeobox TF that promotes cotyledon parenchyma identity. This resource provides a valuable foundation for analyzing gene regulatory programs in soybean cell types across tissues and life stages.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, GA, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Alexandre P. Marand
- Department of Molecular, Cellular, and Development Biology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally: Xuan Zhang, Ziliang Luo, Alexandre P. Marand
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA, USA
- Current address: College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Mark A.A. Minow
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
2
|
Li Y, Zhao W, Tang J, Yue X, Gu J, Zhao B, Li C, Chen Y, Yuan J, Lin Y, Li Y, Kong F, He J, Wang D, Zhao TJ, Wang ZY. Identification of the domestication gene GmCYP82C4 underlying the major quantitative trait locus for the seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:62. [PMID: 38418640 DOI: 10.1007/s00122-024-04571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
KEY MESSAGE A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.
Collapse
Affiliation(s)
- Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wenqian Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Biyao Zhao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Jianbo Yuan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin He
- College of Agriculture, Guizhou University, Guiyang, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - Tuan-Jie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China.
| |
Collapse
|
3
|
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, Zhang JS. Regulation of seed traits in soybean. ABIOTECH 2023; 4:372-385. [PMID: 38106437 PMCID: PMC10721594 DOI: 10.1007/s42994-023-00122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max) is an essential economic crop that provides vegetative oil and protein for humans, worldwide. Increasing soybean yield as well as improving seed quality is of great importance. Seed weight/size, oil and protein content are the three major traits determining seed quality, and seed weight also influences soybean yield. In recent years, the availability of soybean omics data and the development of related techniques have paved the way for better research on soybean functional genomics, providing a comprehensive understanding of gene functions. This review summarizes the regulatory genes that influence seed size/weight, oil content and protein content in soybean. We also provided a general overview of the pleiotropic effect for the genes in controlling seed traits and environmental stresses. Ultimately, it is expected that this review will be beneficial in breeding improved traits in soybean.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Jameson PE. Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites 2023; 13:1076. [PMID: 37887400 PMCID: PMC10609209 DOI: 10.3390/metabo13101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Early in the history of cytokinins, it was clear that Zea mays seeds contained not just trans-zeatin, but its nucleosides and nucleotides. Subsequently, both pods and seeds of legumes and cereal grains have been shown to contain a complex of cytokinin forms. Relative to the very high quantities of cytokinin detected in developing seeds, only a limited amount appears to have been translocated from the parent plant. Translocation experiments, and the detection of high levels of endogenous cytokinin in the maternal seed coat tissues of legumes, indicates that cytokinin does not readily cross the maternal/filial boundary, indicating that the filial tissues are autonomous for cytokinin biosynthesis. Within the seed, trans-zeatin plays a key role in sink establishment and it may also contribute to sink strength. The roles, if any, of the other biologically active forms of cytokinin (cis-zeatin, dihydrozeatin and isopentenyladenine) remain to be elucidated. The recent identification of genes coding for the enzyme that leads to the biosynthesis of trans-zeatin in rice (OsCYP735A3 and 4), and the identification of a gene coding for an enzyme (CPN1) that converts trans-zeatin riboside to trans-zeatin in the apoplast, further cements the key role played by trans-zeatin in plants.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
5
|
Pavlovic T, Margarit E, Müller GL, Saenz E, Ruzzo AI, Drincovich MF, Borrás L, Saigo M, Wheeler MCG. Differential metabolic reprogramming in developing soybean embryos in response to nutritional conditions and abscisic acid. PLANT MOLECULAR BIOLOGY 2023; 113:89-103. [PMID: 37702897 DOI: 10.1007/s11103-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Seed storage compound deposition is influenced by both maternal and filial tissues. Within this framework, we analyzed strategies that operate during the development and filling of soybean embryos, using in vitro culture systems combined with metabolomics and proteomics approaches. The carbon:nitrogen ratio (C:N) of the maternal supply and the hormone abscisic acid (ABA) are specific and interacting signals inducing differential metabolic reprogrammings linked to changes in the accumulation of storage macromolecules like proteins or oils. Differences in the abundance of sugars, amino acids, enzymes, transporters, transcription factors, and proteins involved in signaling were detected. Embryos adapted to the nutritional status by enhancing the metabolism of both carbon and nitrogen under lower C:N ratio condition or only carbon under higher C:N ratio condition. ABA turned off multiple pathways especially in high availability of amino acids, prioritizing the storage compounds biosynthesis. Common responses induced by ABA involved increased sucrose uptake (to increase the sink force) and oleosin (oil body structural component) accumulation. In turn, ABA differentially promoted protein degradation under lower nitrogen supply in order to sustain the metabolic demands. Further, the operation of a citrate shuttle was suggested by transcript quantification and enzymatic activity measurements. The results obtained are useful to help define biotechnological tools and technological approaches to improve oil and protein yields, with direct impact on human and animal nutrition as well as in green chemistry.
Collapse
Affiliation(s)
- Tatiana Pavlovic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Ezequiel Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Ezequiel Saenz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Andrés Iván Ruzzo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina
| | - Lucas Borrás
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino CC14, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina.
| | - Mariel Claudia Gerrard Wheeler
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, S2000LRJ, Rosario, Santa Fe, Argentina.
| |
Collapse
|
6
|
Wang N, Tao B, Mai J, Guo Y, Li R, Chen R, Zhao L, Wen J, Yi B, Tu J, Fu T, Zou J, Shen J. Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed. PLANT PHYSIOLOGY 2023; 191:1836-1856. [PMID: 36494098 PMCID: PMC10022627 DOI: 10.1093/plphys/kiac569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Rapeseed (Brassica napus), an important oil crop worldwide, provides large amounts of lipids for human requirements. Calcineurin B-like (CBL)-interacting protein kinase 9 (CIPK9) was reported to regulate seed oil content in the plant. Here, we generated gene-silenced lines through RNA interference biotechnology and loss-of-function mutant bnacipk9 using CRISPR/Cas9 to further study BnaCIPK9 functions in the seed oil metabolism of rapeseeds. We discovered that compared with wild-type (WT) lines, gene-silenced and bnacipk9 lines had substantially different oil contents and fatty acid compositions: seed oil content was improved by 3%-5% and 1%-6% in bnacipk9 lines and gene-silenced lines, respectively; both lines were with increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids. Additionally, hormone and glucose content analyses revealed that compared with WT lines the bnacipk9 lines showed significant differences: in bnacipk9 seeds, indoleacetic acid and abscisic acid (ABA) levels were higher; glucose and sucrose contents were higher with a higher hexose-to-sucrose ratio in bnacipk9 mid-to-late maturation development seeds. Furthermore, the bnacipk9 was less sensitive to glucose and ABA than the WT according to stomatal aperture regulation assays and the expression levels of genes involved in glucose and ABA regulating pathways in rapeseeds. Notably, in Arabidopsis (Arabidopsis thaliana), exogenous ABA and glucose imposed on developing seeds revealed the effects of ABA and glucose signaling on seed oil accumulation. Altogether, our results strongly suggest a role of CIPK9 in mediating the interaction between glucose flux and ABA hormone signaling to regulate seed oil metabolism in rapeseed.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaming Mai
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Guo
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Rihui Li
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Rundong Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | |
Collapse
|
7
|
Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int J Mol Sci 2023; 24:ijms24032256. [PMID: 36768578 PMCID: PMC9916542 DOI: 10.3390/ijms24032256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Soybean is a major oil crop and is also a dominant source of nutritional protein. The 20% seed oil content (SOC) of soybean is much lower than that in most oil crops and the fatty acid composition of its native oil cannot meet the specifications for some applications in the food and industrial sectors. Considerable effort has been expended on soybean bioengineering to tailor fatty acid profiles and improve SOC. Although significant advancements have been made, such as the creation of high-oleic acid soybean oil and high-SOC soybean, those genetic modifications have some negative impacts on soybean production, for instance, impaired germination or low protein content. In this review, we focus on recent advances in the bioengineering of soybean oil and its effects on agronomic traits.
Collapse
|
8
|
Du Y, Zhang Z, Gu Y, Li W, Wang W, Yuan X, Zhang Y, Yuan M, Du J, Zhao Q. Genome-wide identification of the soybean cytokinin oxidase/dehydrogenase gene family and its diverse roles in response to multiple abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1163219. [PMID: 37139113 PMCID: PMC10149856 DOI: 10.3389/fpls.2023.1163219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) irreversibly degrades cytokinin, regulates growth and development, and helps plants to respond to environmental stress. Although the CKX gene has been well characterized in various plants, its role in soybean remains elusive. Therefore, in this study, the evolutionary relationship, chromosomal location, gene structure, motifs, cis-regulatory elements, collinearity, and gene expression patterns of GmCKXs were analyzed using RNA-seq, quantitative real-time PCR (qRT-PCR), and bioinformatics. We identified 18 GmCKX genes from the soybean genome and grouped them into five clades, each comprising members with similar gene structures and motifs. Cis-acting elements involved in hormones, resistance, and physiological metabolism were detected in the promoter regions of GmCKXs. Synteny analysis indicated that segmental duplication events contributed to the expansion of the soybean CKX family. The expression profiling of the GmCKXs genes using qRT-PCR showed tissue-specific expression patterns. The RNA-seq analysis also indicated that GmCKXs play an important role in response to salt and drought stresses at the seedling stage. The responses of the genes to salt, drought, synthetic cytokinin 6-benzyl aminopurine (6-BA), and the auxin indole-3-acetic acid (IAA) at the germination stage were further evaluated by qRT-PCR. Specifically, the GmCKX14 gene was downregulated in the roots and the radicles at the germination stage. The hormones 6-BA and IAA repressed the expression levels of GmCKX1, GmCKX6, and GmCKX9 genes but upregulated the expression levels of GmCKX10 and GmCKX18 genes. The three abiotic stresses also decreased the zeatin content in soybean radicle but enhanced the activity of the CKX enzymes. Conversely, the 6-BA and IAA treatments enhanced the CKX enzymes' activity but reduced the zeatin content in the radicles. This study, therefore, provides a reference for the functional analysis of GmCKXs in soybean in response to abiotic stresses.
Collapse
Affiliation(s)
- Yanli Du
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
| | - Zhaoning Zhang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yanhua Gu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Weijia Li
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Weiyu Wang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xiankai Yuan
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuxian Zhang
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, Heilongjiang, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Jidao Du
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, Heilongjiang, China
- *Correspondence: Jidao Du, ; Qiang Zhao,
| | - Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, Heilongjiang, China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, Heilongjiang, China
- *Correspondence: Jidao Du, ; Qiang Zhao,
| |
Collapse
|
9
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
10
|
Li Y, Wang X, Zhang X, Liu Z, Peng L, Hao Q, Liu Z, Men S, Tong N, Shu Q. ABSCISIC ACID-INSENSITIVE 5-ω3 FATTY ACID DESATURASE3 module regulates unsaturated fatty acids biosynthesis in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111189. [PMID: 35193738 DOI: 10.1016/j.plantsci.2022.111189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Paeonia ostii is an authorized novel vegetable oil crop due to its seeds rich in unsaturated fatty acids (UFAs) especially α-linolenic acid (ALA), which overweight the current available edible oil. However, little is known on the regulation mechanism of UFAs biosynthesis during its seed development. Here, we used transcriptome and proteome data combining phytochemistry means to uncover the relationship between abscisic acid (ABA) signaling and UFAs biosynthesis during P. ostii seed development. Based on transcriptome and proteome analysis, two desaturases of omega-6 and omega-3 fatty acid, named as PoFAD2 and PoFAD3 responsible for ALA biosynthesis were identified. Then, an ABSCISIC ACID-INSENSITIVE 5 (ABI5) proteins was identified as an upstream transcriptional factor, which activated the expression of PoFAD3 instead of PoFAD2. Moreover, silencing of PoABI5 repressed the response of PoFAD3 to ABA. This study provides the first view on the connection between the function of ABA signaling factors and ALA biosynthesis in the P. ostii seed, which lays the foundation for studies on the regulatory mechanism of ABA signaling involved in the UFAs synthesis during seeds development, meanwhile, it will shed light on manipulation of ALA content for satisfying human demands on high quality of edible oil or healthy supplement.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Xiruo Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zheng'an Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Liping Peng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qing Hao
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zenggen Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008, China.
| | - Siqi Men
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ningning Tong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
11
|
Enomoto H. Distribution analysis of jasmonic acid-related compounds in developing Glycine max L. (soybean) seeds using mass spectrometry imaging and liquid chromatography-mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:194-203. [PMID: 34312911 DOI: 10.1002/pca.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA) and hexadecatrienoic acid, and regulate seed development. However, their spatial distribution in the developing Glycine max L. (soybean) seeds has not been elucidated. OBJECTIVE To investigate the distribution of JA-related compounds in the developing soybean seeds using desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) analyses. METHODS Cryosections of developing seeds were prepared using adhesive films, and subjected to DESI-MSI analysis. Verification of the DESI-MSI ion images were performed using DESI-tandem MSI (MS/MSI), LC-ESI-MS and tandem MS (MS/MS). RESULTS In the DESI-MSI mass spectrum, peaks matching the chemical formulae of αLA, 12-oxo-phytodienoic acid (OPDA), and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were detected. These compounds were mainly distributed in the seed coat, especially near the hilum. This was consistent with the quantitative results obtained by LC-ESI-MS. While, DESI-MS/MSI and LC-ESI-MS/MS suggested the presence of isomers for OPDA and OPC-8:0. The effect of isomers on the DESI-MSI ion images was small for OPDA, and considerable for OPC-8:0. CONCLUSION These results demonstrated that free αLA, OPDA, and OPC-8:0 were the abundant JA-related compounds mainly distributed in the seed coat of the developing soybeans. OPDA and OPC-8:0 might exert a biological role in the seed coat. To the best of my knowledge, this is the first report on the accumulation of OPDA and OPC-8:0 in the seed coat. The combination of DESI-MSI and LC-ESI-MS is a useful tool for distribution analysis of JA-related compounds in the developing seeds.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
12
|
Wu Z, Liu H, Zhan W, Yu Z, Qin E, Liu S, Yang T, Xiang N, Kudrna D, Chen Y, Lee S, Li G, Wing RA, Liu J, Xiong H, Xia C, Xing Y, Zhang J, Qin R. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1725-1742. [PMID: 33768699 PMCID: PMC8428823 DOI: 10.1111/pbi.13586] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 05/04/2023]
Abstract
Safflower (Carthamus tinctorius L.), a member of the Asteraceae, is a popular crop due to its high linoleic acid (LA) and flavonoid (such as hydroxysafflor yellow A) contents. Here, we report the first high-quality genome assembly (contig N50 of 21.23 Mb) for the 12 pseudochromosomes of safflower using single-molecule real-time sequencing, Hi-C mapping technologies and a genetic linkage map. Phyloge nomic analysis showed that safflower diverged from artichoke (Cynara cardunculus) and sunflower (Helianthus annuus) approximately 30.7 and 60.5 million years ago, respectively. Comparative genomic analyses revealed that uniquely expanded gene families in safflower were enriched for those predicted to be involved in lipid metabolism and transport and abscisic acid signalling. Notably, the fatty acid desaturase 2 (FAD2) and chalcone synthase (CHS) families, which function in the LA and flavonoid biosynthesis pathways, respectively, were expanded via tandem duplications in safflower. CarFAD2-12 was specifically expressed in seeds and was vital for high-LA content in seeds, while tandemly duplicated CarFAD2 genes were up-regulated in ovaries compared to CarFAD2-12, which indicates regulatory divergence of FAD2 in seeds and ovaries. CarCHS1, CarCHS4 and tandem-duplicated CarCHS5˜CarCHS6, which were up-regulated compared to other CarCHS members at early stages, contribute to the accumulation of major flavonoids in flowers. In addition, our data reveal multiple alternative splicing events in gene families related to fatty acid and flavonoid biosynthesis. Together, these results provide a high-quality reference genome and evolutionary insights into the molecular basis of fatty acid and flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wei Zhan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Zhichao Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Niyan Xiang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Dave Kudrna
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Yan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Seunghee Lee
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
| | - Gang Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Rod A. Wing
- Arizona Genomics InstituteSchool of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Hairong Xiong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaKey Laboratory of State Ethnic Affairs Commission for Biological TechnologyCollege of Life SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
13
|
Sheteiwy MS, Abd Elgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, Shaghaleh H, Alhaj Hamoud Y, El-Sawah AM. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. PHYSIOLOGIA PLANTARUM 2021; 172:2153-2169. [PMID: 33964177 DOI: 10.1111/ppl.13454] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and β-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation.
Collapse
Affiliation(s)
- Mohamed S Sheteiwy
- Salt-Soil Agricultural Center, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Hamada Abd Elgawad
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Anca Macovei
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Hiba Shaghaleh
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Ahmed M El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Kambhampati S, Aznar-Moreno JA, Bailey SR, Arp JJ, Chu KL, Bilyeu KD, Durrett TP, Allen DK. Temporal changes in metabolism late in seed development affect biomass composition. PLANT PHYSIOLOGY 2021; 186:874-890. [PMID: 33693938 PMCID: PMC8195533 DOI: 10.1093/plphys/kiab116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/23/2023]
Abstract
The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.
Collapse
Affiliation(s)
| | - Jose A Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sally R Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kristin D Bilyeu
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- United States Department of Agriculture, Agricultural Research Service, St. Louis, Missouri 63132, USA
| |
Collapse
|
15
|
Nguyen HN, Kambhampati S, Kisiala A, Seegobin M, Emery RJN. The soybean ( Glycine max L.) cytokinin oxidase/dehydrogenase multigene family; Identification of natural variations for altered cytokinin content and seed yield. PLANT DIRECT 2021; 5:e00308. [PMID: 33644633 PMCID: PMC7887454 DOI: 10.1002/pld3.308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
Cytokinins (CKs) play a fundamental role in regulating dynamics of organ source/sink relationships during plant development, including flowering and seed formation stages. As a result, CKs are key drivers of seed yield. The cytokinin oxidase/dehydrogenase (CKX) is one of the critical enzymes responsible for regulating plant CK levels by causing their irreversible degradation. Variation of CKX activity is significantly correlated with seed yield in many crop species while in soybean (Glycine max L.), the possible associations between CKX gene family members (GFMs) and yield parameters have not yet been assessed. In this study, 17 GmCKX GFMs were identified, and natural variations among GmCKX genes were probed among soybean cultivars with varying yield characteristics. The key CKX genes responsible for regulating CK content during seed filling stages of reproductive development were highlighted using comparative phylogenetics, gene expression analysis and CK metabolite profiling. Five of the seventeen identified GmCKX GFMs, showed natural variations in the form of single nucleotide polymorphisms (SNPs). The gene GmCKX7-1, with high expression during critical seed filling stages, was found to have a non-synonymous mutation (H105Q), on one of the active site residues, Histidine 105, previously reported to be essential for co-factor binding to maintain structural integrity of the enzyme. Soybean lines with this mutation had higher CK content and desired yield characteristics. The potential for marker-assisted selection based on the identified natural variation within GmCKX7-1, is discussed in the context of hormonal control that can result in higher soybean yield.
Collapse
Affiliation(s)
| | - Shrikaar Kambhampati
- Department of BiologyTrent UniversityPeterboroughONCanada
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Anna Kisiala
- Department of BiologyTrent UniversityPeterboroughONCanada
| | - Mark Seegobin
- Department of BiologyTrent UniversityPeterboroughONCanada
| | | |
Collapse
|
16
|
Nguyen HN, Perry L, Kisiala A, Olechowski H, Emery RJN. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.). PLANTA 2020; 252:76. [PMID: 33030628 DOI: 10.1007/s00425-020-03483-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 05/08/2023]
Abstract
Early cytokinin activity and late abscisic acid dynamics during wheat kernel development correspond to cultivars with higher yield potential. Cytokinins represent prime targets for marker development for wheat breeding programs. Two major phytohormone groups, abscisic acid (ABA) and cytokinins (CKs), are of crucial importance for seed development. Wheat (Triticum aestivum L.) yield is, to a high degree, determined during the milk and dough stages of kernel development. Therefore, understanding the hormonal regulation of these early growth stages is fundamental for crop-improvement programs of this important cereal. Here, we profiled ABA and 25 CK metabolites (including active forms, precursors and inactive conjugates) during kernel development in five field-grown wheat cultivars. The levels of ABA and profiles of CK forms varied greatly among the tested cultivars and kernel stages suggesting that several types of CK metabolites are involved in spatiotemporal regulation of kernel development. The seed yield potential was associated with the elevated levels of active CK levels (tZ, cZ). Interestingly, the increased kernel cZ levels were followed by higher ABA production, suggesting there is an interaction between these two phytohormones. Furthermore, we analyzed the expression patterns of representatives of the four main CK metabolic gene families. The unique transcriptional patterns of the IPT (biosynthesis) and ZOG (reversible inactivation) gene family members (GFMs) in the high and low yield cultivars additionally indicate that there is a significant association between CK metabolism and yield potential in wheat. Based on these results, we suggest that both CK metabolites and their associated genes, can serve as important, early markers of yield performance in modern wheat breeding programs.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| | - Laura Perry
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Anna Kisiala
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Henry Olechowski
- Dow Chemical Canada ULC, Suite 2400-215 2nd Street S.W., Calgary, AB, T2P 1M4, Canada
| | - R J Neil Emery
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
17
|
Yuan J, Sun N, Du H, Yin S, Kang H, Umair M, Liu C. Roles of metabolic regulation in developing Quercus variabilis acorns at contrasting geologically-derived phosphorus sites in subtropical China. BMC PLANT BIOLOGY 2020; 20:389. [PMID: 32842952 PMCID: PMC7449008 DOI: 10.1186/s12870-020-02605-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/16/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments. RESULTS Here we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites. CONCLUSIONS Oak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.
Collapse
Affiliation(s)
- Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Hongzhang Kang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China.
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China.
| |
Collapse
|
18
|
Hyeon H, Xu JL, Kim JK, Choi Y. Comparative metabolic profiling of cultivated and wild black soybeans reveals distinct metabolic alterations associated with their domestication. Food Res Int 2020; 134:109290. [PMID: 32517920 DOI: 10.1016/j.foodres.2020.109290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
Generally, cultivated black soybean (CBS) has been used as a major source of various nutrients for humans and animals. To assess the metabolic alterations induced by domestication in soybean, we performed a comprehensive metabolite profiling of 56 soybean varieties, including 28 CBS and 28 wild black soybean (WBS) varieties. A total of 48 metabolites were characterized, including 45 primary and 3 secondary metabolites, from CBS and WBS. The results of principal component analysis and hierarchical cluster analysis (HCA) revealed significant metabolic differences between CBS and WBS that were closely related to metabolic pathways. The results indicate that flavonoids correlated positively with phenylalanine, a precursor for phenylpropanoid biosynthesis; the contents of flavonoids and phenylpropanoids were higher in WBS. Pathway analysis revealed that CBS contained large amounts of TCA cycle intermediates, amino acids, and fatty acids as a result of increased energy metabolism, amino acid metabolism, and seed filling. The projection to latent structure method, using the partial least squares method, was applied to predict the flavonoid content in soybean seed, which indicated that sucrose, threonic acid, citric acid, and fatty acids are important in predicting the antioxidant content of samples. This work will provide important information for designing new soybean cultivars with enhanced nutritional and agricultural traits.
Collapse
Affiliation(s)
- Hyejin Hyeon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiu Liang Xu
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; School of Agriculture Green Development, China Agricultural University, 100193 Beijing, China
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Yongsoo Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Biological Chemistry, University of Science and Technology, Youseng-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
19
|
Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 2020; 191:1653-1669. [PMID: 32198601 DOI: 10.1007/s12010-020-03312-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
Collapse
Affiliation(s)
- Ramlee Norlina
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Md Nor Norashikin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Saw Hong Loh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Aziz
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
20
|
Nouairi I, Jalali K, Essid S, Zribi K, Mhadhbi H. Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean ( Vicia faba L. var. minor) roots. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:921-931. [PMID: 31404213 PMCID: PMC6656902 DOI: 10.1007/s12298-019-00681-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 05/07/2023]
Abstract
Alleviation of cadmium-induced root genotoxicity and cytotoxicity by calcium chloride (CaCl2) in faba bean (Vicia faba L. var. minor) seedlings were studied. Faba bean seeds were treated with H2O or 2% CaCl2 for 6 h before germination. Seeds were then exposed to 0 and 50 µM CdCl2 concentrations for 7 days. Genotoxic damaging effects of Cd was examined through the determination of the mitotic index (MI), chromosomal aberrations (CA) and micronucleus (MN) in the meristem cells of faba bean roots. Similarly, effects of Cd stress on metal accumulation, total membrane lipid contents, total fatty acid composition (TFA), lipid peroxidation as indicated by malondialdehyde production, soluble protein and non-protein thiols (NP-SH) contents, hydrogen peroxide production and the activities of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) were evaluated after 7 days of Cd stress in the seedling roots. Cd stress resulted in the reduction of MI, in addition to MN formation and CA induction in the roots of non-primed seeds (treated with H2O). Moreover, Cd induced lipid peroxidation, H2O2 overproduction and loss of membrane lipid amount and soluble protein content, and changes in the TFA composition in roots of faba bean seedlings. SOD activity declined, but CAT and GPX activities increased. However, seed pre-treatment with CaCl2 attenuated the genotoxic and cytotoxic effects of Cd on Vicia faba roots. The results showed that CaCl2 induced reduction of Cd accumulation, improved cell membrane stability and increased the antioxidant defence systems, thus reducing and alleviating Cd genotoxicity and oxidative damage.
Collapse
Affiliation(s)
- Issam Nouairi
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - Karima Jalali
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 El Manar Tunis, Tunisia
| | - Sabrine Essid
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 El Manar Tunis, Tunisia
| | - Kais Zribi
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
21
|
Studies on preparation of dietetic rasgulla (cheese ball) from edible quality flours and antioxidant rich vegetable oils. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhang C, Lin C, Fu F, Zhong X, Peng B, Yan H, Zhang J, Zhang W, Wang P, Ding X, Zhang W, Zhao L. Comparative transcriptome analysis of flower heterosis in two soybean F1 hybrids by RNA-seq. PLoS One 2017; 12:e0181061. [PMID: 28708857 PMCID: PMC5510844 DOI: 10.1371/journal.pone.0181061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Heterosis has been widely exploited as an approach to enhance crop traits during breeding. However, its underlying molecular genetic mechanisms remain unclear. Recent advances in RNA sequencing technology (RNA-seq) have provided an opportunity to conduct transcriptome profiling for heterosis studies. We used RNA-seq to analyze the flower transcriptomes of two F1 hybrid soybeans (HYBSOY-1 and HYBSOY-5) and their parents. More than 385 million high-quality reads were generated and aligned against the soybean reference genome. A total of 681 and 899 genes were identified as being differentially expressed between HYBSOY-1 and HYBSOY-5 and their parents, respectively. These differentially expressed genes (DEGs) were categorized into four major expression categories with 12 expression patterns. Furthermore, gene ontology (GO) term analysis showed that the DEGs were enriched in the categories metabolic process and catalytic activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that metabolic pathway and biosynthesis of secondary metabolites were enriched in the two F1 hybrids. Comparing the DEGs of the two F1 hybrids by GO term and KEGG pathway analyses identified 26 common DEGs that showed transgressive up-regulation, and which could be considered potential candidate genes for heterosis in soybean F1 hybrids. This identification of an extensive transcriptome dataset gives a comprehensive overview of the flower transcriptomes in two F1 hybrids, and provides useful information for soybean hybrid breeding. These findings lay the foundation for future studies on molecular mechanisms underlying soybean heterosis.
Collapse
Affiliation(s)
- Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunjing Lin
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, United States of America
| | - Xiaofang Zhong
- Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Peng
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hao Yan
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingyong Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Weilong Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengnian Wang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Ding
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Limei Zhao
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
23
|
Wan L, Li B, Lei Y, Yan L, Ren X, Chen Y, Dai X, Jiang H, Zhang J, Guo W, Chen A, Liao B. Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1900. [PMID: 29170673 PMCID: PMC5684126 DOI: 10.3389/fpls.2017.01900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/20/2017] [Indexed: 05/22/2023]
Abstract
Pod size is the major yield component and a key target trait that is selected for in peanut breeding. However, although numerous quantitative trait loci (QTLs) for peanut pod size have been described, the molecular mechanisms underlying the development of this characteristic remain elusive. A peanut mutant with a narrower pod was developed in this study using ethyl methanesulfonate (EMS) mutagenesis and designated as the "pod width" mutant line (pw). The fresh pod weight of pw was only about 40% of that seen in the wild-type (WT) Zhonghua16, while the hull and seed filling of the mutant both also developed at earlier stages. Pods from both pw and WT lines were sampled 20, 40, and 60 days after flowering (DAF) and used for RNA-Seq analysis; the results revealed highly differentially expressed lignin metabolic pathway genes at all three stages, but especially at DAF 20 and DAF 40. At the same time, expression of genes related to auxin signal transduction was found to be significantly repressed during the pw early pod developmental stage. A genome-wide comparative analysis of expression profiles revealed 260 differentially expressed genes (DEGs) across all three stages, and two candidate genes, c26901_g1 (CAD) and c37339_g1 (ACS), responsible for pod width were identified by integrating expression patterns and function annotation of the common DEGs within the three stages. Taken together, the information provided in this study illuminates the processes underlying peanut pod development, and will facilitate further identification of causal genes and the development of improved peanut varieties with higher yields.
Collapse
Affiliation(s)
- Liyun Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bei Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaofeng Dai
- Institute of Food Science and Technology of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Juncheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Guo
- Institute of Food Science and Technology of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ao Chen
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Boshou Liao
| |
Collapse
|