1
|
Chen W, Meng F, Li F, Tian C. The core septin gene CgSEP5 is associated with formation of infection structures and pathogenicity in Colletotrichum gloeosporioides. Int J Biol Macromol 2024; 283:137759. [PMID: 39557259 DOI: 10.1016/j.ijbiomac.2024.137759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Colletotrichum gloeosporioides is a model plant pathogenic fungus, and the appressoria are the main infection structures integral to the pathogenic process. Septin proteins play fundamental roles in facilitating shape alteration and organizing the F-actin cytoskeleton, thereby aiding the invasive growth of various fungi. Herein, we examined the roles of four septin-coding genes (CgSEP3, CgSEP4, CgSEP5, and CgSEP6) in C. gloeosporioides. Our findings reveal the diverse functions of septins in C. gloeosporioides, which encompass the regulation of vegetative growth, conidiation, cell wall integrity, and stress responses. Critically, septins are involved in the formation, invasion, and expansion of infection structures and they directly influence virulence on unwounded hosts. Interestingly, the deletion of CgSEP4 resulted in the formation of hooked and bent germ tubes and caused a significant decrease in appressorium turgor pressure, which has not been reported in other fungi. Our findings demonstrated that CgSEP3 and CgSEP6 were regulated by ROS signal transduction during the formation of infection structure. Moreover, the knockout of the key component, CgSEP5, significantly decreased growth rate compared to the wild type, completely blocking the penetration of infection structures and subsequently abolishing virulence on poplar leaves. By subcellular localization of GFP fusions, it was proved that CgSEP5 may regulate the formation of appressorial pegs in C. gloeosporioides through forming a ring-like structure inside the appressorium. Collectively, our research underscores the pivotal role of septins in fungal pathogenicity, by orchestrating the formation and development of infection structures. We speculate that CgSEP5 function as a promising anti-fungal target, and believe these findings provide a substantial reference for future investigations into the mechanisms underpinning the invasion of fungi appressoria on woody plants.
Collapse
Affiliation(s)
- Wenyan Chen
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhan Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Jiang J, He K, Wang X, Zhang Y, Guo X, Qian L, Gao X, Liu S. Transcriptional dynamics of Fusarium pseudograminearum under high fungicide stress and the important role of FpZRA1 in fungal pathogenicity and DON toxin production. Int J Biol Macromol 2024; 276:133662. [PMID: 39025188 DOI: 10.1016/j.ijbiomac.2024.133662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Fusarium pseudograminearum, the causal agent of Fusarium crown rot, poses a significant threat to cereal crops. Building upon our previous investigation of the transcriptional response of this pathogen to four key fungicides (carbendazim, phenamacril, pyraclostrobin, and tebuconazole), this study delves into the impact of elevated fungicide concentrations using RNA-seq. Global transcriptomic analysis and gene clustering revealed significant enrichment of genes involved in the ABC transporter pathway. Among these transporters, FPSE_06011 (FpZRA1), a conserved gene in eukaryotes, exhibited consistent upregulation at both low and high fungicide concentrations. Targeted deletion of FpZRA1 resulted in reduced sporulation, spore germination, and tolerance to cell wall stress, osmotic stress, and oxidative stress. Furthermore, the FpZRA1 knockout mutants exhibited decreased pathogenicity on wheat coleoptiles and reduced production of the mycotoxin deoxynivalenol (DON), as evidenced by the markedly down-regulated expression of TRI5, TRI6, and TRI10 in the RT-qPCR analysis. In summary, our findings highlight the impact of fungicide concentration on transcriptional reprogramming in F. pseudograminearum and identify FpZRA1 as a critical regulator of fungal development, stress tolerance, and pathogenicity.
Collapse
Affiliation(s)
- Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Kai He
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyu Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Yuan Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Xuheng Gao
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Green Plant Protection, Luoyang 471023, China.
| |
Collapse
|
3
|
Xu J, Zhao Y, Zhou Y, Dai S, Zhu N, Meng Q, Fan S, Zhao W, Yuan X. Fungal Extracellular Vesicle Proteins with Potential in Biological Interaction. Molecules 2024; 29:4012. [PMID: 39274860 PMCID: PMC11396447 DOI: 10.3390/molecules29174012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like structures composed of lipid bilayers, which can be divided into apoptotic bodies, microbubbles and exosomes. They are nanoparticles used for the exchange of information between cells. EVs contains many substances, including protein. With the development of proteomics, we know more about the types and functions of protein in vesicles. The potential functions of proteins in the envelope are mainly discussed, including cell wall construction, fungal virulence transmission, signal transmission and redox reactions, which provides a new perspective for studying the interaction mechanism between fungi and other organisms. The fungal protein markers of EVs are also summarized, which provided an exploration tool for studying the mechanism of vesicles. In addition, the possible role of immune protein in the EVs in the treatment of human diseases is also discussed, which provides new ideas for vaccine development.
Collapse
Affiliation(s)
- Jingyan Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yanguang Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Qingling Meng
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Sen Fan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| |
Collapse
|
4
|
Ling LZ, Chen LL, Liu ZZ, Luo LY, Tai SH, Zhang SD. Genome sequencing and CAZymes repertoire analysis of Diaporthe eres P3-1W causing postharvest fruit rot of 'Hongyang' kiwifruit in China. PeerJ 2024; 12:e17715. [PMID: 39119104 PMCID: PMC11308996 DOI: 10.7717/peerj.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, β-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.
Collapse
Affiliation(s)
- Li-Zhen Ling
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Ling-Ling Chen
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
- College of Life and Health, Dalian University, Dalian, Liaoning, China
| | - Zhen-Zhen Liu
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Lan-Ying Luo
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Si-Han Tai
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Shu-Dong Zhang
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| |
Collapse
|
5
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Parada J, Tortella G, Seabra AB, Fincheira P, Rubilar O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics (Basel) 2024; 13:215. [PMID: 38534650 DOI: 10.3390/antibiotics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.
Collapse
Affiliation(s)
- Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Xu M, Godana EA, Li J, Deng Y, Ma Y, Ya H, Zhang H. Infection of postharvest pear by Penicillium expansum is facilitated by the glycoside hydrolase (eglB) gene. Int J Food Microbiol 2024; 410:110465. [PMID: 37980812 DOI: 10.1016/j.ijfoodmicro.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, β-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.
Collapse
Affiliation(s)
- Meiqiu Xu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Jingyu Li
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yaping Deng
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yufei Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Yang H, Cui S, Wei Y, Li H, Hu J, Yang K, Wu Y, Zhao Z, Li J, Wang Y, Yang H. Antagonistic effects of Talaromyces muroii TM28 against Fusarium crown rot of wheat caused by Fusarium pseudograminearum. Front Microbiol 2024; 14:1292885. [PMID: 38235437 PMCID: PMC10791928 DOI: 10.3389/fmicb.2023.1292885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is a serious threat to wheat production worldwide. This study aimed to assess the effects of Talaromyces muroii strain TM28 isolated from root of Panax quinquefolius against F. pseudograminearum. The strain of TM28 inhibited mycelial growth of F. pseudograminearum by 87.8% at 72 h, its cell free fermentation filtrate had a strong antagonistic effect on mycelial growth and conidial germination of F. pseudograminearum by destroying the integrity of the cell membrane. In the greenhouse, TM28 significantly increased wheat fresh weight and height in the presence of pathogen Fp, it enhanced the antioxidant defense activity and ameliorated the negative effects of F. pseudograminearum, including disease severity and pathogen abundance in the rhizosphere soil, root and stem base of wheat. RNA-seq of F. pseudograminearum under TM28 antagonistic revealed 2,823 differentially expressed genes (DEGs). Most DEGs related to cell wall and cell membrane synthesis were significantly downregulated, the culture filtrate of TM28 affected the pathways of fatty acid synthesis, steroid synthesis, glycolysis, and the citrate acid cycle. T. muroii TM28 appears to have significant potential in controlling wheat Fusarium crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | - Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | |
Collapse
|
9
|
Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, Choi SI, Yun JY, Ahn YS. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. Int J Mol Sci 2023; 24:16889. [PMID: 38069212 PMCID: PMC10707167 DOI: 10.3390/ijms242316889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree production. Even though chemical pesticides have been effective in the control of plant diseases and insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues that affect human life, animals, and the environment, as well as the growing challenge of pesticide resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as chitinases, β-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides. This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp. as effective biocontrol alternatives against phytopathogens/insect pests through the degradation of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins, β-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit tree production.
Collapse
Affiliation(s)
- Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Hyo-In Lim
- Forest Bioinformation Division, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Vantha Choub
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Ju-Yeol Yun
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| |
Collapse
|
10
|
Cai M, Wu X, Liang X, Hu H, Liu Y, Yong T, Li X, Xiao C, Gao X, Chen S, Xie Y, Wu Q. Comparative proteomic analysis of two divergent strains provides insights into thermotolerance mechanisms of Ganoderma lingzhi. Fungal Genet Biol 2023; 167:103796. [PMID: 37146899 DOI: 10.1016/j.fgb.2023.103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.
Collapse
Affiliation(s)
- Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tianqiao Yong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
11
|
Usman S, Ge X, Xu Y, Qin Q, Xie J, Wang B, Jin C, Fang W. Loss of Phosphomannose Isomerase Impairs Growth, Perturbs Cell Wall Integrity, and Reduces Virulence of Fusarium oxysporum f. sp. cubense on Banana Plants. J Fungi (Basel) 2023; 9:jof9040478. [PMID: 37108932 PMCID: PMC10145770 DOI: 10.3390/jof9040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) causes Fusarium wilt of banana, necessitating urgent measures to control this disease. However, the molecular mechanisms underlying Foc TR4 virulence remain elusive. Phosphomannose isomerase is a key enzyme involved in the biosynthesis of GDP mannose, an important precursor of fungal cell walls. In this study, two phosphomannose isomerases were identified in the Foc TR4 genome, of which only Focpmi1 was highly expressed throughout all developmental stages. Generated null mutants in Foc TR4 showed that only the ΔFocpmi1 mutant required exogenous mannose for growth, indicating that Focpmi1 is the key enzyme involved in GDP mannose biosynthesis. The Focpmi1 deficient strain was unable to grow without exogenous mannose and exhibited impaired growth under stress conditions. The mutant had reduced chitin content in its cell wall, rendering it vulnerable to cell wall stresses. Transcriptomic analysis revealed up- and down-regulation of several genes involved in host cell wall degradation and physiological processes due to the loss of Focpmi1. Furthermore, Focpmi1 was also found to be crucial for Foc TR4 infection and virulence, making it a potential antifungal target to address the threats posed by Foc TR4.
Collapse
Affiliation(s)
- Sayed Usman
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinwei Ge
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yueqiang Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qijian Qin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jin Xie
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
12
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
13
|
Notte AM, Plaza V, Marambio-Alvarado B, Olivares-Urbina L, Poblete-Morales M, Silva-Moreno E, Castillo L. Molecular identification and characterization of Botrytis cinerea associated to the endemic flora of semi-desert climate in Chile. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100049. [PMID: 34841340 PMCID: PMC8610304 DOI: 10.1016/j.crmicr.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
For the first time was detected the presence of B. cinerea on fourteen new host plant. We provide evidence for phenotype and genotype diversity in these B. cinerea isolates, where 83.3% of the isolates presented both transposable elements, boty and flipper. We found in this study, that some isolates of this fungus lose the ability to produce conidia or sclerotia formation and revealed a great diversity among the isolates concerning both features. The 16.6% of the isolates of B. cinerea showed substantially reduced virulence. According to fungicide resistance studies the results indicate that resistance to Fenhexamid or Boscalid was observed in the 22.6% of isolates. These findings are of great epidemiological importance to several regions, because of the distribution and the possible ecological impact of this disease on native and endemic plants in Chile.
Botrytis cinerea is a phytopathogenic fungus that infects over 200 plant species and can cause significant crop losses in local and worldwide agricultural industries. However, its presence in the endemic flora in the Coquimbo Region and its impact on local flora have not been studied yet. In order to determine whether Botrytis spp is present in the native plant in the Coquimbo Region, fifty-two field-samples were analysed. A total of 30 putative Botrytis spp were isolated and phenotypic and genetically characterized. The internal transcribed spacer (ITS) analysis of these isolates revealed that it corresponded to genus Botrytis. For further confirmation, nuclear protein-coding genes (G3PDH, HSP60, and RPB2) were sequenced and showed 100% identity against B. cinerea. Complementary to this, Botrytis can also be clustered in two different groups, group I (B. pseudocinerea) and group II (B. cinerea), based on DNA polymorphism, the Botrytis isolates were identified as member of group II. On the order hand, we investigated the presence and frequency distribution of the transposable elements boty and flipper in the isolates obtained. The results indicate that 83.3% of the isolates presented both transposable elements, boty and flipper, indicating that the most prevalent genotype was transpose. In addition, 16.6% of the isolates showed substantially reduced virulence in apple fruit in comparison to B05.10 strain. According to fungicide resistance studies, the results indicate that resistance to Fenhexamid or Boscalid was observed in the 22.6% of isolates. The results show for the first time that B. cinerea has not been described before in fourteen new host plants and contributes to our fundamental understanding of the presence of B. cinerea in the native plant in the Coquimbo Region and the possible ecological impact of this disease on native and endemic plants.
Collapse
Affiliation(s)
- Ana-Maria Notte
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, Facultad de Ciencias, La Serena, Chile
| | - Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, Facultad de Ciencias, La Serena, Chile
| | - Bárbara Marambio-Alvarado
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, Facultad de Ciencias, La Serena, Chile
| | - Lila Olivares-Urbina
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, Facultad de Ciencias, La Serena, Chile
| | | | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santiago, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, Facultad de Ciencias, La Serena, Chile
| |
Collapse
|
14
|
Yu M, Yu J, Cao H, Song T, Pan X, Qi Z, Du Y, Zhang R, Huang S, Liu W, Liu Y. SUN-Family Protein UvSUN1 Regulates the Development and Virulence of Ustilaginoidea virens. Front Microbiol 2021; 12:739453. [PMID: 34589077 PMCID: PMC8473917 DOI: 10.3389/fmicb.2021.739453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAS), Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
15
|
Li T, Li L, Du F, Sun L, Shi J, Long M, Chen Z. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review. Molecules 2021; 26:molecules26113438. [PMID: 34198909 PMCID: PMC8201221 DOI: 10.3390/molecules26113438] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Harmful fungi in nature not only cause diseases in plants, but also fungal infection and poisoning when people and animals eat food derived from crops contaminated with them. Unfortunately, such fungi are becoming increasingly more resistant to traditional synthetic antifungal drugs, which can make prevention and control work increasingly more difficult to achieve. This means they are potentially very harmful to human health and lifestyle. Antifungal peptides are natural substances produced by organisms to defend themselves against harmful fungi. As a result, they have become an important research object to help deal with harmful fungi and overcome their drug resistance. Moreover, they are expected to be developed into new therapeutic drugs against drug-resistant fungi in clinical application. This review focuses on antifungal peptides that have been isolated from bacteria, fungi, and other microorganisms to date. Their antifungal activity and factors affecting it are outlined in terms of their antibacterial spectra and effects. The toxic effects of the antifungal peptides and their common solutions are mentioned. The mechanisms of action of the antifungal peptides are described according to their action pathways. The work provides a useful reference for further clinical research and the development of safe antifungal drugs that have high efficiencies and broad application spectra.
Collapse
Affiliation(s)
- Tianxi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lulu Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Fangyuan Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lei Sun
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China;
| | - Jichao Shi
- Liaoning Agricultural Development Service Center, Shenyang 110032, China;
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| | - Zeliang Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| |
Collapse
|
16
|
Mora-Montes HM. Proteins as Virulence Factors and Immune Modulators During the Host-Fungus Interaction. Curr Protein Pept Sci 2020; 21:226. [DOI: 10.2174/138920372103200224122128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas Campus Guanajuato, Universidad de Guanajuato Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| |
Collapse
|