1
|
Miao H, Wu Y, Ouyang H, Zhang P, Zheng W, Ma X. Screening and construction of nanobodies against human CD93 using phage libraries and study of their antiangiogenic effects. Front Bioeng Biotechnol 2024; 12:1372245. [PMID: 38751868 PMCID: PMC11094214 DOI: 10.3389/fbioe.2024.1372245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Cluster of Differentiation 93 (CD93) plays an important role in angiogenesis and is considered an important target for inhibiting tumor angiogenesis, but there are currently no therapeutic antibodies against CD93 in the clinic. Thus, we describe the screening of novel nanobodies (Nbs) targeting human CD93 from a phage library of shark-derived Nbs. Methods Screening and enrichment of phage libraries by enzyme-linked immunosorbent assay (ELISA). Anti-CD93 Nbs were purified by expression in E. coli. The binding affinity of anti-CD93 Nbs NC81/NC89 for CD93 was examined by flow cytometry (FC) and ELISA. The thermal stability of NC81/NC89 was examined by ELISA and CD spectroscopy. Afterward, the anti-angiogenic ability of NC81/NC89 was examined by MTT, wound healing assay, and tube formation assay. The expression level of VE-cadherin (VE-Ca) and CD93 was detected by Western Blot (WB). The binding sites and binding forms of NC81/NC89 to CD93 were analyzed by molecular docking. Results The anti-CD93 Nbs were screened in a phage library, expressed in E. coli, and purified to >95% purity. The results of FC and ELISA showed that NC81/NC89 have binding ability to human umbilical vein endothelial cells (HUVECs). The results of ELISA and CD spectroscopy showed that NC81/NC89 retained the ability to bind CD93 at 80°C and that the secondary structure remained stable. In vitro, the results showed that NC81 and NC89 significantly inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) as well as tube formation on Matrigel. Western Blot showed that NC81 and NC89 also inhibited the expression of VE-Ca thereby increasing vascular permeability. It was found during molecular docking that the CDR regions of NC81 and NC89 could be attached to CD93 by strong hydrogen bonds and salt bridges, and the binding sites were different. Conclusion We have successfully isolated NC81 and NC89, which bind CD93, and both Nbs significantly inhibit angiogenesis and increase vascular permeability. These results suggest that NC81 and NC89 have potential clinical applications in angiogenesis-related therapies.
Collapse
Affiliation(s)
- Hui Miao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiling Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Ouyang
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiwen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Lee SY, Park SY, Park HJ. Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients 2024; 16:597. [PMID: 38474724 DOI: 10.3390/nu16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the immunomodulatory potential of Galium aparine L. (GAE) in immunodeficient animals. In this study, animals were categorized into five groups: the normal group, CYP group (cyclophosphamide intraperitoneal injection), GA5 group (cyclophosphamide + 5 μg GAE), GA50 group (cyclophosphamide + 50 μg GAE), and GA500 group (cyclophosphamide + 500 μg GAE). The CYP group exhibited significantly reduced spleen weights compared to the normal group, while the groups obtaining GAE displayed a dose-dependent increase in spleen weight. Furthermore, the GAE demonstrated dose-dependent enhancement of splenocyte proliferating activity, with significant increases observed in both LPS and ConA-induced assays. NK cell activity significantly increased in the GA50 and GA500 groups compared to the CYP group. Cytokine analysis revealed a significant increase in IL-6, TNF-α, and IFN-γ levels in ConA-induced splenocytes treated with GAE. Gene expression analysis identified 2434 DEG genes in the extract groups. Notable genes, such as Entpd1, Pgf, Thdb, Syt7, Sqor, and Rsc1al, displayed substantial differences in individual gene expression levels, suggesting their potential as target genes for immune enhancement. In conclusion, Galium aparine L. extract exhibits immunomodulatory properties. The observed gene expression changes further support the potential of Galium aparine L. extract as a natural agent for immune augmentation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seo-Yeon Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hee-Jung Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
3
|
Benedet PO, Safikhan NS, Pereira MJ, Lum BM, Botezelli JD, Kuo CH, Wu HL, Craddock BP, Miller WT, Eriksson JW, Yue JTY, Conway EM. CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation. EBioMedicine 2024; 99:104906. [PMID: 38061240 PMCID: PMC10750038 DOI: 10.1016/j.ebiom.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3β, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Patricia O Benedet
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nooshin S Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Bryan M Lum
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - José Diego Botezelli
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; Veterans Affairs Medical Center, Northport, NY, USA
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Puasri P, Dechkhajorn W, Dekumyoy P, Yoonuan T, Ampawong S, Reamtong O, Boonyuen U, Benjathummarak S, Maneerat Y. Regulation of immune response against third-stage Gnathostoma spinigerum larvae by human genes. Front Immunol 2023; 14:1218965. [PMID: 37600806 PMCID: PMC10436992 DOI: 10.3389/fimmu.2023.1218965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Gnathostomiasis is an important zoonosis in tropical areas that is mainly caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3). Objectives This study aimed to prove whether G. spinigerum L3 produces extracellular vesicles (EVs) and investigate human gene profiles related to the immune response against the larvae. Methods We created an immune cell model using normal human peripheral blood mononuclear cells (PBMCs) co-cultured with the larvae for 1 and 3 days, respectively. The PBMCs were harvested for transcriptome sequencing analysis. The EV ultrastructure was examined in the larvae and the cultured medium. Results Extracellular vesicle-like particles were observed under the larval teguments and in the pellets in the medium. RNA-seq analysis revealed that 2,847 and 3,118 genes were significantly expressed on days 1 and 3 after culture, respectively. The downregulated genes on day 1 after culture were involved in pro-inflammatory cytokines, the complement system and apoptosis, whereas those on day 3 were involved in T cell-dependent B cell activation and wound healing. Significantly upregulated genes related to cell proliferation, activation and development, as well as cytotoxicity, were observed on day 1, and genes regulating T cell maturation, granulocyte function, nuclear factor-κB and toll-like receptor pathways were predominantly observed on day 3 after culture. Conclusion G. spinigerum L3 produces EV-like particles and releases them into the excretory-secretory products. Overall, genotypic findings during our 3-day observation revealed that most significant gene expressions were related to T and B cell signalling, driving T helper 2 cells related to chronic infection, immune evasion of the larvae, and the pathogenesis of gnathostomiasis. Further in-depth studies are necessary to clarify gene functions in the pathogenesis and immune evasion mechanisms of the infective larvae.
Collapse
Affiliation(s)
- Pattarasuda Puasri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Jiang Q, Kuai J, Jiang Z, Que W, Wang P, Huang W, Ding W, Zhong L. CD93 overexpresses in liver hepatocellular carcinoma and represents a potential immunotherapy target. Front Immunol 2023; 14:1158360. [PMID: 37483608 PMCID: PMC10359974 DOI: 10.3389/fimmu.2023.1158360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is one of the malignant tumors with high incidence as well as high death, which is ranked as the sixth most common tumor and the third highest mortality worldwide. CD93, a transmembrane protein, has been widely reported to play an important role in different types of diseases, including many types of cancer by mainly functioning in extracellular matrix formation and vascular maturation. However, there are few researches focusing on the role and potential function of CD93 in LIHC. Methods In this study, we comprehensively analyzed the relationship between CD93 and LIHC. We not only discovered transcriptional expression of CD93 in LIHC by using the TIMER, GEPIA and UALCAN database, but also performed WB and IHC to verify the protein expression of CD93 in LIHC. Meantime, Kaplan-Meier Plotter Database Analysis were used to assess the prognosis of CD93 in LIHC. After knowing close correlation between CD93 expression and LIHC, there were STRING, GeneMania and GO and KEGG enrichment analyses to find how CD93 functions in LIHC. We further applied CIBERSORT Algorithm to explore the correlation between CD93 and immune cells and evaluate prognostic value of CD93 based on them in LIHC patients. Results The transcriptional and protein expression of CD93 were both obviously increased in LIHC by above methods. There was also a significant and close correlation between the expression of CD93 and the prognosis of LIHC patients by using Kaplan-Meier Analysis, which showed that LIHC patients with elevated expression of CD93 were associated with a predicted poor prognosis. We found that the functions of CD93 in different cancers are mainly related to Insulin like growth factor binding protein 7 Gene (IGFBP7)/CD93 pathway via STRING, GeneMania and functional enrichment analyses. Further, our data obtained from CIBERSORT Algorithm suggested CD93 was also associated with the immune response. There is a close positive correlation between CD93 expression and the infiltration levels of all six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). Importantly, CD93 can affect the prognosis of patients with LIHC partially due to immune infiltration. Conclusion Our results demonstrated CD93 may be a candidate predictor of clinical prognosis and immunotherapy response in LIHC.
Collapse
Affiliation(s)
- Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Kuai
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Ding
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Shandong, Weifang, Shandong, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu S, Liu F, Zhang Z, Zhuang Z, Yuan X, Chen Y. The SELP, CD93, IL2RG, and VAV1 Genes Associated with Atherosclerosis May Be Potential Diagnostic Biomarkers for Psoriasis. J Inflamm Res 2023; 16:827-843. [PMID: 36876153 PMCID: PMC9983575 DOI: 10.2147/jir.s398862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose Psoriasis and atherosclerosis are immunometabolic diseases. This study aimed to integrate bioinformatics and updated public resources to find potential biological markers associated with atherosclerosis that can cause psoriasis. Patients and Methods Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened, and functional enrichment analysis was performed. We identified psoriasis and atherosclerosis common immune-related genes (PA-IRGs) by overlapping immune-related genes (IRGs) with genes in the module most associated with psoriasis and atherosclerosis obtained by weighted gene co-expression network analysis (WGCNAs). Receiver operating characteristic (ROC) was conducted to evaluate the predictive ability. The skin expression levels of diagnostic biomarkers were further verified by immunohistochemical staining. CIBERSORT, single-sample gene set enrichment analysis (ssGSEA), and Pearson's correlation analysis were applied to evaluate immune and lipid metabolism relationships in psoriatic tissues. In addition, a lincRNA-miRNA-mRNA network was constructed to find the pathogenesis in which diagnostic markers may be involved. Results Four PA-IRGs (SELP, CD93, IL2RG, and VAV1) demonstrated the optimal diagnostic value, with an AUC above 0.8. The immune cell infiltration analysis showed that dendritic resting cells, NK cell activation, neutrophils, macrophages M2, macrophages M0, and B-cell memory were highly abundant in psoriasis. Immune response analysis showed that TNF family members, chemokine receptors, interferons, natural killer cells, and TGF-β family members might be involved in psoriasis. Diagnostic biomarkers are strongly associated with various infiltrating immune cells, immune responses, and lipid metabolism. A lincRNA-miRNA-mRNA regulatory network consisting of 31 lincRNAs and 23 miRNAs was constructed. LINC00662 is involved in modulating four diagnostic biomarkers. Conclusion This study identified atherosclerosis-related genes SELP, CD93, VAV1, and IL2RG as potential psoriasis diagnostic markers. Provide novel insights into the possible regulatory mechanisms involved in psoriasis.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Fanghua Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhe Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
7
|
Jiang X, Zhang X, Jiang N, Sun Y, Li T, Zhang J, Shen Y, Cao J. The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity. Front Immunol 2022; 13:1067338. [PMID: 36569953 PMCID: PMC9772464 DOI: 10.3389/fimmu.2022.1067338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Hydatid cysts and angiogenesis are the key characteristics of cystic echinococcosis, with immune cells and endothelial cells mediating essential roles in disease progression. Recent single-cell analysis studies demonstrated immune cell infiltration after Echinococcus granulosus infection, highlighting the diagnostic and therapeutic potential of targeting certain cell types in the lesion microenvironment. However, more detailed immune mechanisms during different periods of E. granulosus infection were not elucidated. Methods Herein, we characterized immune and endothelial cells from the liver samples of mice in different stages by single-cell RNA sequencing. Results We profiled the transcriptomes of 45,199 cells from the liver samples of mice at 1, 3, and 6 months after infection (two replicates) and uninfected wild-type mice. The cells were categorized into 26 clusters with four distinct cell types: natural killer (NK)/T cells, B cells, myeloid cells, and endothelial cells. An SPP1+ macrophage subset with immunosuppressive and pro-angiogenic functions was identified in the late infection stage. Single-cell regulatory network inference and clustering (SCENIC) analysis suggested that Cebpe, Runx3, and Rora were the key regulators of the SPP1+ macrophages. Cell communication analysis revealed that the SPP1+ macrophages interacted with endothelial cells and had pro-angiogenic functions. There was an obvious communicative relationship between SPP1+ macrophages and endothelial cells via Vegfa-Vegfr1/Vegfr2, and SPP1+ macrophages interacted with other immune cells via specific ligand-receptor pairs, which might have contributed to their immunosuppressive function. Discussion Our comprehensive exploration of the cystic echinococcosis ecosystem and the first discovery of SPP1+ macrophages with infection period specificity provide deeper insights into angiogenesis and the immune evasion mechanisms associated with later stages of infection.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Xiaofan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,Department of Laboratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yeting Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,*Correspondence: Yujuan Shen, ; Jianping Cao,
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yujuan Shen, ; Jianping Cao,
| |
Collapse
|
8
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of P < 0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Cicaloni V, Karmakar M, Frusciante L, Pettini F, Visibelli A, Orlandini M, Galvagni F, Mongiat M, Silk M, Nardi F, Ascher D, Santucci A, Spiga O. Bioinformatics Approaches to Predict Mutation Effects in the Binding Site of the Proangiogenic Molecule CD93. FRONTIERS IN BIOINFORMATICS 2022; 2:891553. [PMID: 36353214 PMCID: PMC9638713 DOI: 10.3389/fbinf.2022.891553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumor angiogenesis. Recently, Multimerin-2 (MMRN2), a pan-endothelial extracellular matrix protein, has been identified as a ligand for CD93, but the interaction mechanism between these two proteins is yet to be studied. In this article, we aim to investigate the structural and functional effects of induced mutations on the binding domain of CD93 to MMRN2. Starting from experimental data, we assessed how specific mutations in the C-type lectin-like domain (CTLD) affect the binding interaction profile. We described a four-step workflow in order to predict the effects of variations on the inter-residue interaction network at the PPI, based on evolutionary information, complex network metrics, and energetic affinity. We showed that the application of computational approaches, combined with experimental data, allowed us to gain more in-depth molecular insights into the CD93–MMRN2 interaction, offering a platform for developing innovative therapeutics able to target these molecules and block their interaction. This comprehensive molecular insight might prove useful in drug design in cancer therapy.
Collapse
Affiliation(s)
| | - Malancha Karmakar
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Luisa Frusciante
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francesco Pettini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michael Silk
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - David Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- *Correspondence: Ottavia Spiga, ; Maurizio Orlandini, ; Federico Galvagni, ; Francesco Pettini,
| |
Collapse
|
10
|
Yu M, Chang S, Xu J, Zhang H, Jiang Y. Genome-wide identification of endosialin family of C-type lectins in common carp (Cyprinus carpio) and their response following Aeromonas hydrophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104338. [PMID: 34995551 DOI: 10.1016/j.dci.2021.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The endosialin family is the group XIV of C-type lectin, regulating several processes involved in innate immunity and inflammation. Endosialin family genes have been extensively studied in human and mammals, however, rarely reported in teleost. In the present study, a set of 8 endosialin family genes was identified across the entire common carp genome. Functional domain and motif prediction and phylogenetic analysis supported their annotation and orthologies. Through examining gene copy number across several vertebrates, endosialin family genes were found have undergone gene duplication. Most of the endosialin family genes were ubiquitously expressed during common carp early developmental stages, and presented tissue-specific expression patterns in various healthy tissues, with relatively high expression in intestine, liver, gill, spleen and kidney, indicating their likely essential roles in maintaining homeostasis and host immune response. After Aeromonas hydrophila infection, gene thbd-1, thbd-2 and cd93-2 were significantly up-regulated at one or more timepoints in spleen and kidney, while gene cd248a-1, cd248a-2, cd248b-1, cd248b-2, and cd93-1 were significantly down-regulated. Taken together, all these results suggested that endosialin family genes were involved in host immune response to A. hydrophila infection in common carp, and provided fundamental genomic resources for better understanding the critical roles of endosialin family on the primary innate immune processes in teleost.
Collapse
Affiliation(s)
- Minghui Yu
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Songhuan Chang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
11
|
Sant'Ana AN, Araújo AB, Gonçalves FDC, Paz AH. Effects of living and metabolically inactive mesenchymal stromal cells and their derivatives on monocytes and macrophages. World J Stem Cells 2021; 13:1160-1176. [PMID: 34630856 PMCID: PMC8474715 DOI: 10.4252/wjsc.v13.i9.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a non-classical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs (metabolically active cells) and metabolically inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and their derivatives (extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic approaches, which induce the anti-inflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Anelise Bergmann Araújo
- Centro de Processamento Celular, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil.
| | | | - Ana Helena Paz
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
12
|
Riether C, Radpour R, Kallen NM, Bürgin DT, Bachmann C, Schürch CM, Lüthi U, Arambasic M, Hoppe S, Albers CE, Baerlocher GM, Ochsenbein AF. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep 2021; 34:108663. [PMID: 33503440 DOI: 10.1016/j.celrep.2020.108663] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Self-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and maintenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and proliferation of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93 promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of ligation of the extracellular domain. In a drug library screen, we identify the anti-emetic agent metoclopramide as an efficient blocker of CD93 signaling. Metoclopramide treatment reduces murine and human LSCs in vitro and prolongs survival of chronic myeloid leukemia (CML) mice through downregulation of pathways related to stemness and proliferation in LSCs. Overall, these results identify CD93 signaling as an LSC-specific regulator of self-renewal and proliferation and a targetable pathway to eliminate LSCs in CML.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nils M Kallen
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Damian T Bürgin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chantal Bachmann
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Miroslav Arambasic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Wirbelsäulenmedizin Bern, Hirslanden Salem-Spital, Bern, Switzerland; Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gabriela M Baerlocher
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Arnone M, Konantz M, Hanns P, Paczulla Stanger AM, Bertels S, Godavarthy PS, Christopeit M, Lengerke C. Acute Myeloid Leukemia Stem Cells: The Challenges of Phenotypic Heterogeneity. Cancers (Basel) 2020; 12:E3742. [PMID: 33322769 PMCID: PMC7764578 DOI: 10.3390/cancers12123742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.
Collapse
Affiliation(s)
- Marlon Arnone
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Anna M. Paczulla Stanger
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Sarah Bertels
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Parimala Sonika Godavarthy
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Maximilian Christopeit
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| |
Collapse
|
14
|
Alehagen U, Shamoun L, Wågsäter D. Genetic variance and plasma concentration of CD93 is associated with cardiovascular mortality: Results from a 6.7‑year follow‑up of a healthy community‑living elderly population. Mol Med Rep 2020; 22:4629-4636. [PMID: 33173973 PMCID: PMC7646846 DOI: 10.3892/mmr.2020.11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Inflammation is one of the fundamental processes in numerous diseases. Cluster of differentiation (CD) 93, a glycoprotein, has been reported to be associated with a number of these diseases. There are reports indicating that a high plasma level of CD93 is associated with adverse events in ischaemic heart disease. Additionally, there are reports indicating different cardiovascular risks between different single nucleotide polymorphisms (SNPs) of CD93. Therefore, the present study aimed to determine whether the plasma concentration of CD93 and polymorphism of rs2749812 in CD93 were associated with clinical conditions and mortality in an elderly population. In 470 healthy elderly community-living individuals a novel clinical examination involving echocardiography and blood sampling was performed. The population was followed for 6.7 years. Plasma levels of CD93 and SNP analyses of rs2749812 of CD93 using PCR methodology were used. During the follow-up period, 106 (22.6%) all-cause and 61 (13.0%) cardiovascular deaths were registered. Those with the highest plasma concentration had markedly higher all-cause mortality. Evaluating the A/A, A/G and G/G genotypes, the G/G group exhibited significantly higher cardiovascular mortality (P=0.026), and an almost two-fold increased risk in a multivariate Cox regression model compared with the A/G genotype. Evaluation of subgroups with respect to sex, diabetes and hypertension revealed markedly increased cardiovascular risk in the G/G genotype in all subgroups. All results persisted in the multiple models used. In the present study, the glycoprotein CD93 was demonstrated to have prognostic cardiovascular information, with increased risk for those with a high plasma concentration. Furthermore, the G/G genotype of rs2749812 of CD93 has a significantly higher cardiovascular risk, as demonstrated here, and could therefore be regarded as a possible cardiovascular risk biomarker that might in the future be used to offer optimised cardiovascular patient handling. However, this was a small study, and more research is required.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Faculty of Medicine, Linköping University, SE‑581 85 Linköping, Sweden
| | - Levar Shamoun
- Division of Medical Diagnostics, Department of Laboratory Medicine, Jönköping County, SE‑553 05 Jönköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, SE‑752 36 Uppsala, Sweden
| |
Collapse
|
15
|
Liang Q, Su L, Zhang D, Jiao J. CD93 negatively regulates astrogenesis in response to MMRN2 through the transcriptional repressor ZFP503 in the developing brain. Proc Natl Acad Sci U S A 2020; 117:9413-9422. [PMID: 32291340 PMCID: PMC7196765 DOI: 10.1073/pnas.1922713117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Astrogenesis is repressed in the early embryonic period and occurs in the late embryonic period. A variety of external and internal signals contribute to the sequential differentiation of neural stem cells. Here, we discovered that immune-related CD93 plays a critical negative role in the regulation of astrogenesis in the mouse cerebral cortex. We show that CD93 expression is detected in neural stem cells and neurons but not in astrocytes and declines as differentiation proceeds. Cd93 knockout increases astrogenesis at the expense of neuron production during the late embryonic period. CD93 responds to the extracellular matrix protein Multimerin 2 (MMRN2) to trigger the repression of astrogenesis. Mechanistically, CD93 delivers signals to β-Catenin through a series of phosphorylation cascades, and then β-Catenin transduces these signals to the nucleus to activate Zfp503 transcription. The transcriptional repressor ZFP503 inhibits the transcription of glial fibrillary acidic protein (Gfap) by binding to the Gfap promoter with the assistance of Grg5. Furthermore, Cd93 knockout mice exhibit autism-like behaviors. Taken together, our results reveal that CD93 is a negative regulator of the onset of astrogenesis and provide insight into therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Qingli Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
- Innovation Academy for Stem Cell and Regeneration, 100101 Beijing, China
| |
Collapse
|
16
|
Abstract
Antibody-secreting plasma cells are the central pillars of humoral immunity. They are generated in a fundamental cellular restructuring process from naive B cells upon contact with antigen. This outstanding process is guided and controlled by a complex transcriptional network accompanied by a fascinating morphological metamorphosis, governed by the combined action of Blimp-1, Xbp-1 and IRF-4. The survival of plasma cells requires the intimate interaction with a specific microenvironment, consisting of stromal cells and cells of hematopoietic origin. Cell-cell contacts, cytokines and availability of metabolites such as glucose and amino acids modulate the survival abilities of plasma cells in their niches. Moreover, plasma cells have been shown to regulate immune responses by releasing cytokines. Furthermore, plasma cells are central players in autoimmune diseases and malignant transformation of plasma cells can result in the generation of multiple myeloma. Hence, the development of sophisticated strategies to deplete autoreactive plasma cells and myeloma cells represents a challenge for current and future research.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Park HJ, Oh EY, Han HJ, Park KH, Jeong KY, Park JW, Lee JH. Soluble CD93 in allergic asthma. Sci Rep 2020; 10:323. [PMID: 31941986 PMCID: PMC6962376 DOI: 10.1038/s41598-019-57176-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
CD93 has been shown critical roles in inflammatory and immune diseases. However, in allergic asthma, the potential roles of soluble CD93 (sCD93) have not been well studied. We conducted house dust mite (HDM) stimulation with Der p 1 in BEAS-2B and U937 cells, followed by treatment with dexamethasone or small interfering RNA against CD93. A HDM-induced murine allergic asthma model was also established. We estimated the power of sCD93 to predict allergic asthma in a retrospective post-hoc analysis containing 96 human samples. HDM-stimulated BEAS-2B cells showed increased mRNA expression levels of IL-6, IL-8, IL-33, TSLP, and CD93. The CD93 level in culture supernatants steadily increased for 24 h after allergen stimulation, which was significantly suppressed by both dexamethasone and CD93 silencing. CD93 silencing increased IL-6 and TSLP, but not IL-33 levels in culture supernatants. HDM-induced asthma mice showed significant airway hyperresponsiveness and inflammation with Th2 cytokine activation, along with decreased CD93 expression in bronchial epithelial cells and lung homogenates but increased serum CD93 levels. The sCD93 level in asthma patients was significantly higher than that in healthy controls and could predict asthma diagnosis with moderate sensitivity (71.4%) and specificity (82.4%) (AUC = 0.787, P < 0.001). The level of sCD93 which has potential role to predict asthma significantly increased after HDM stimulation via IL-6 and TSLP in vitro and in vivo.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Eun-Yi Oh
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee-Jae Han
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Yong Jeong
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Liu W, Zhang C, Cao H, Shi D, Zhao S, Liang T, Hou G. Radioimmunoimaging of 125I-labeled anti-CD93 monoclonal antibodies in a xenograft model of non-small cell lung cancer. Oncol Lett 2019; 18:6413-6422. [PMID: 31819775 PMCID: PMC6896371 DOI: 10.3892/ol.2019.11036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Lung cancer, especially non-small cell lung cancer (NSCLC), is the most common malignant tumor associated with poor prognosis. Angiogenesis plays a vital role in NSCLC, and could be used in tumor staging and therapy evaluation. CD93 (C1q receptor) is reportedly a key regulator of tumor angiogenesis. In the present study, the efficacy and specificity of a 125I-labeled CD93-specific monoclonal antibody (125I-anti-CD93 mAb) in detecting NSCLC xenografts were analyzed, and the association between CD93 expression and 125I-anti-CD93 mAb uptake by tumors was evaluated. The targeting ability of 125I-anti-CD93 mAb enabled its rapid, continuous and highly specific accumulation in CD93-expressing tumors in vivo. These results revealed the potential applicability of 125I-anti-CD93 mAb for non-invasive imaging diagnosis of CD93-positive NSCLC.
Collapse
Affiliation(s)
- Weiwei Liu
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Cao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dai Shi
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shanshan Zhao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ting Liang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guihua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Nativel B, Ramin-Mangata S, Mevizou R, Figuester A, Andries J, Iwema T, Ikewaki N, Gasque P, Viranaïcken W. CD93 is a cell surface lectin receptor involved in the control of the inflammatory response stimulated by exogenous DNA. Immunology 2019; 158:85-93. [PMID: 31335975 DOI: 10.1111/imm.13100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Bacterial DNA contains CpG oligonucleotide (ODN) motifs to trigger innate immune responses through the endosomal receptor Toll-like receptor 9 (TLR9). One of the cell surface receptors to capture and deliver microbial DNA to intracellular TLR9 is the C-type lectin molecule DEC-205 through its N-terminal C-type lectin-like domain (CTLD). CD93 is a cell surface protein and member of the lectin group XIV with a CTLD. We hypothesized that CD93 could interact with CpG motifs, and possibly serve as a novel receptor to deliver bacterial DNA to endosomal TLR9. Using ELISA and tryptophan fluorescence binding studies we observed that the soluble histidine-tagged CD93-CTLD was specifically binding to CpG ODN and bacterial DNA. Moreover, we found that CpG ODN could bind to CD93-expressing IMR32 neuroblastoma cells and induced more robust interleukin-6 secretion when compared with mock-transfected IMR32 control cells. Our data argue for a possible contribution of CD93 to control cell responsiveness to bacterial DNA in a manner reminiscent of DEC-205. We postulate that CD93 may act as a receptor at plasma membrane for DNA or CpG ODN and to grant delivery to endosomal TLR9.
Collapse
Affiliation(s)
- Brice Nativel
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France.,Université de La Réunion, INSERM 1188, Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Stéphane Ramin-Mangata
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France.,Université de La Réunion, INSERM 1188, Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Rudy Mevizou
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France
| | - Audrey Figuester
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France
| | - Jessica Andries
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France
| | - Thomas Iwema
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France
| | - Nobunao Ikewaki
- Laboratories of Clinical Immunology, Department of Animal Pharmaceutical Science, Welfare School of Pharmaceutical Sciences, Kyushu University of Health, Miyazaki, Japan
| | - Philippe Gasque
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France.,Université de La Réunion, INSERM 1187, CNRS, 9192, IRD 249, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Saint-Denis de La Réunion, France.,Laboratoire d'Immunologie Clinique et Expérimentale, ZOI (LICE-OI). CHU site Bellepierre, Saint-Denis de La Réunion, France
| | - Wildriss Viranaïcken
- GRI, Groupe de recherche en immunopathologie, EA4517, Université de la Réunion, Saint-Denis, France.,Université de La Réunion, INSERM 1187, CNRS, 9192, IRD 249, UM 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Saint-Denis de La Réunion, France
| |
Collapse
|
20
|
Lightman SM, Utley A, Lee KP. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front Immunol 2019; 10:965. [PMID: 31130955 PMCID: PMC6510054 DOI: 10.3389/fimmu.2019.00965] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Durable humoral immunity is dependent upon the generation of antigen-specific antibody titers, produced by non-proliferating bone marrow resident long-lived plasma cells (LLPC). Longevity is the hallmark of LLPC, but why and how they survive and function for years after antigen exposure is only beginning to be understood. LLPC are not intrinsically long-lived; they require continuous signals from the LLPC niche to survive. Signals unique to LLPC survival (vs. PC survival in general) most notably include those that upregulate the anti-apoptotic factor Mcl-1 and activation of the CD28 receptor expressed on LLPC. Other potential factors include expression of BCMA, upregulation of the transcription factor ZBTB20, and upregulation of the enzyme ENPP1. Metabolic fitness is another key component of LLPC longevity, facilitating the diversion of glucose to generate pyruvate during times of stress to facilitate long term survival. A third major component of LLPC survival is the microenvironment/LLPC niche itself. Cellular partners such as stromal cells, dendritic cells, and T regulatory cells establish a niche for LLPC and drive survival signaling by expressing ligands such as CD80/CD86 for CD28 and producing soluble and stromal factors that contribute to LLPC longevity. These findings have led to the current paradigm wherein both intrinsic and extrinsic mechanisms are required for the survival of LLPC. Here we outline this diverse network of signals and highlight the mechanisms thought to regulate and promote the survival of LLPC. Understanding this network of signals has direct implications in increasing our basic understanding of plasma cell biology, but also in vaccine and therapeutic drug development to address the pathologies that can arise from this subset.
Collapse
Affiliation(s)
- Shivana M Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
21
|
Park HJ, Oh EY, Park YH, Yang M, Park KH, Park JW, Lee JH. Potential of serum soluble CD93 as a biomarker for asthma in an ovalbumin-induced asthma murine model. Biomarkers 2018; 23:446-452. [PMID: 29498549 DOI: 10.1080/1354750x.2018.1443510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND CD93 is a membrane-associated glycoprotein, which can be released in a soluble form (sCD93) into the serum. CD93 has received renewed attention as a candidate biomarker of inflammation in various inflammatory and immune-mediated diseases, including asthma. OBJECTIVE We aimed to evaluate the effects of airway inflammation on CD93 levels in murine models. METHODS We established an ovalbumin (OVA)-induced acute asthma murine model (OVA model) and a lipopolysaccharide (LPS)-induced airway inflammation murine model (LPS model). Dexamethasone was administered by gavage to attenuate the airway inflammation. RESULTS The OVA model demonstrated typical allergic asthma features with increased airway hyper-responsiveness, inflammatory cell infiltration, increased Th2 cytokine levels, compared to the control group. CD93 levels were decreased in lung homogenates and, respiratory epithelial cells, whereas serum sCD93 levels were increased in the OVA model, as compared to the control group. Dexamethasone reversed these effects of OVA. In contrast, in the LPS model, CD93 levels were not affected in neither respiratory epithelial cells nor serum. CONCLUSIONS Our findings demonstrate the potential of using sCD93 as a biomarker for allergic asthma.
Collapse
Affiliation(s)
- Hye Jung Park
- a Department of Internal Medicine , Gangnam Severance Hospital, Yonsei University College of Medicine , Seoul , Korea
| | - Eun-Yi Oh
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea
| | - Yoon Hee Park
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea
| | - Misuk Yang
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea
| | - Kyung Hee Park
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea.,c Division of Allergy and Immunology, Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Jung-Won Park
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea.,c Division of Allergy and Immunology, Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Jae-Hyun Lee
- b Institute of Allergy , Yonsei University College of Medicine , Seoul , Korea.,c Division of Allergy and Immunology, Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
22
|
Galvagni F, Nardi F, Spiga O, Trezza A, Tarticchio G, Pellicani R, Andreuzzi E, Caldi E, Toti P, Tosi GM, Santucci A, Iozzo RV, Mongiat M, Orlandini M. Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biol 2017; 64:112-127. [DOI: 10.1016/j.matbio.2017.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/20/2023]
|
23
|
Park HJ, Han H, Lee SC, Son YW, Sim DW, Park KH, Park YH, Jeong KY, Park JW, Lee JH. Soluble CD93 in Serum as a Marker of Allergic Inflammation. Yonsei Med J 2017; 58:598-603. [PMID: 28332366 PMCID: PMC5368146 DOI: 10.3349/ymj.2017.58.3.598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 01/17/2023] Open
Abstract
PURPOSE CD93 is receiving renewed attention as a biomarker of inflammation. We aimed to evaluate the potential for serum sCD93 to serve as a novel biomarker for allergic inflammation. MATERIALS AND METHODS We enrolled 348 subjects with an allergic disease [allergic rhinitis (AR), chronic spontaneous urticaria (CSU), or bronchial asthma (BA)], including 14 steroid-naïve BA patients who were serially followed-up. RESULTS The serum sCD93 levels (ng/mL) in patients with exacerbated AR (mean±standard deviation, 153.1±58.4) were significantly higher than in patients without AR (132.2±49.0) or with stable AR (122.3±42.1). Serum sCD93 levels in exacerbated CSU (169.5±42.8) were also significantly higher than those in non-CSU (132.4±51.6) and stable CSU (122.8±36.2). This trend was also seen in BA. Serum levels in patients with ICS-naïve BA (161.4±53.1) were significantly higher than those in healthy controls without BA (112.2±30.8), low- and medium-dose ICS users. Serum sCD93 levels in high-dose ICS users (72.2±20.6) were significantly lower than those in low- and medium-dose users. The serum sCD93 levels in steroid-naïve patients with BA (195.1±72.7) decreased after ICS use for 4 weeks (134.4±42.8) and 8 weeks (100.7±13.4), serially. CONCLUSION Elevated serum sCD93 levels reflected exacerbated status of allergic diseases, including CSU, AR, and asthma. ICS use significantly diminished serum sCD93 levels in steroid-naïve patients with BA. This result may suggest sCD93 in serum as a therapeutic marker for allergic inflammation.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Heejae Han
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Chul Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Woong Son
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Da Woon Sim
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Hee Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Yong Jeong
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Won Park
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hyun Lee
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Galvagni F, Nardi F, Maida M, Bernardini G, Vannuccini S, Petraglia F, Santucci A, Orlandini M. CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget 2017; 7:10090-103. [PMID: 26848865 PMCID: PMC4891106 DOI: 10.18632/oncotarget.7136] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
CD93 is a transmembrane glycoprotein predominantly expressed in endothelial cells. Although CD93 displays proangiogenic activity, its molecular function in angiogenesis still needs to be clarified. To get molecular insight into the biological role of CD93 in the endothelium, we performed proteomic analyses to examine changes in the protein profile of endothelial cells after CD93 silencing. Among differentially expressed proteins, we identified dystroglycan, a laminin-binding protein involved in angiogenesis, whose expression is increased in vascular endothelial cells within malignant tumors. Using immunofluorescence, FRET, and proximity ligation analyses, we observed a close interaction between CD93 and β-dystroglycan. Moreover, silencing experiments showed that CD93 and dystroglycan promoted endothelial cell migration and organization into capillary-like structures. CD93 proved to be phosphorylated on tyrosine 628 and 644 following cell adhesion on laminin through dystroglycan. This phosphorylation was shown to be necessary for a proper endothelial migratory phenotype. Moreover, we showed that during cell spreading phosphorylated CD93 recruited the signaling protein Cbl, which in turn was phosphorylated on tyrosine 774. Altogether, our results identify a new signaling pathway which is activated by the cooperation between CD93 and dystroglycan and involved in the control of endothelial cell function.
Collapse
Affiliation(s)
- Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Maida
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
25
|
Nativel B, Figuester A, Andries J, Planesse C, Couprie J, Gasque P, Viranaicken W, Iwema T. Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli. J Immunol Methods 2016; 439:67-73. [PMID: 27742562 DOI: 10.1016/j.jim.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
CD93 belongs to the group XIV C-type lectin like domain (CTLD) and is closely related to thrombomodulin (CD141). Although CD93 is known to be involved in the regulation of cell adhesion and phagocytosis, its role in innate immunity remains to be fully investigated. Critically, published data about CD141 suggest that CD93 CTLD could be involved in the control of inflammation. In order to address further functional and structural analyses, we expressed human CD93 CTLD with several disulfide bonds in an E. coli expression system. As the E. coli cytoplasm is a reducing compartment, production of disulfide-bond proteins remains a challenge. Hence, we decided to over express CD93 CTLD in commercially available strains of E. coli and co-expressed a sulfhydryl oxidase (Erv1p) and a disulfide isomerase (DsbC). This strategy led to high yield expression of a native form of CD93 CTLD. NMR studies revealed that Ca2+ was not able to bind to CD93 CTLD. We also showed that the recombinant protein could alter LPS pro-inflammatory activity on THP1. This work provides new tool for further functional and structural studies to decipher the functions associated to the CTLD of CD93. This approach may also be used for others members of the group XIV C-type lectin like domain (CD141, CD248 and CLec14A).
Collapse
Affiliation(s)
- Brice Nativel
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France; GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France
| | - Audrey Figuester
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Jessica Andries
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Joël Couprie
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Plateforme CYROI, Sainte-Clotilde, F-97490, France
| | - Philippe Gasque
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; UM134, Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM1187, CNRS 9192, IRD 249, Plateforme CYROI, Sainte-Clotilde F-97490, France; Laboratoire de Biologie, LICE-OI, CHU de la Réunion, 1 allée des Topazes, 97400, France
| | - Wildriss Viranaicken
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; UM134, Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM1187, CNRS 9192, IRD 249, Plateforme CYROI, Sainte-Clotilde F-97490, France.
| | - Thomas Iwema
- GRI, EA4517, Université de la Réunion, Saint-Denis F-97400, France; CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France
| |
Collapse
|
26
|
Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss. Sci Rep 2016; 6:28340. [PMID: 27311356 PMCID: PMC4911607 DOI: 10.1038/srep28340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TMflox/flox) and from TM lectin-like domain deleted mice (TMLeD/LeD) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TMLeD/LeD mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss.
Collapse
|
27
|
Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2016; 476:467-474. [PMID: 27255994 DOI: 10.1016/j.bbrc.2016.05.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
CD93, also known as the complement component C1q receptor (C1qRp), has been reported to promote the progression of some cancer types. However, the expression and physiological significance of CD93 in nasopharyngeal carcinoma (NPC) remain largely elusive. In this study, we first examined the expression of CD93 in NPC and experimentally manipulated its expression. We observed that vascular CD93 expression is elevated in NPC and is correlated with T classification, N classification, distant metastasis, clinical stage and poor prognosis (all P < 0.05). In addition, overexpression of CD93 promoted angiogenesis in vitro. What's more, we found that CD93 was highly expressed in NPC tissues and cells, and the regulation of CD93 on cell proliferation was determined by cell counting kit (CCK)-8 assay and cell cycle analyses. Our findings provide unique insight into the pathogenesis of NPC and underscore the need to explore novel therapeutic targets such as CD93 to improve NPC treatment.
Collapse
|
28
|
Guo S, Lok J, Zhao S, Leung W, Som AT, Hayakawa K, Wang Q, Xing C, Wang X, Ji X, Zhou Y, Lo EH. Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. J Neurotrauma 2016; 33:1303-16. [PMID: 26528928 DOI: 10.1089/neu.2015.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. The core of the traumatic lesion was removed and then cortical microvesels were isolated from nondirectly damaged ipsilateral cortex. Compared to contralateral cortex and normal cortex from sham-operated mice, we identified a wide spectrum of responses in the vasculome after trauma. Up-regulated pathways included those involved in regulation of inflammation and extracellular matrix processes. Decreased pathways included those involved in regulation of metabolism, mitochondrial function, and transport systems. These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury.
Collapse
Affiliation(s)
- Shuzhen Guo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Josephine Lok
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts.,2 Department of Pediatrics, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Song Zhao
- 3 The Department of Spine Surgery, the First Hospital of Jilin University , Changchun, China
| | - Wendy Leung
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Angel T Som
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Kazuhide Hayakawa
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Qingzhi Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Changhong Xing
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xiaoying Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xunming Ji
- 4 Cerebrovascular Research Center, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yiming Zhou
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Eng H Lo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
29
|
Langenkamp E, Zhang L, Lugano R, Huang H, Elhassan TEA, Georganaki M, Bazzar W, Lööf J, Trendelenburg G, Essand M, Pontén F, Smits A, Dimberg A. Elevated Expression of the C-Type Lectin CD93 in the Glioblastoma Vasculature Regulates Cytoskeletal Rearrangements That Enhance Vessel Function and Reduce Host Survival. Cancer Res 2015; 75:4504-16. [DOI: 10.1158/0008-5472.can-14-3636] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/26/2015] [Indexed: 11/16/2022]
|
30
|
Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M. The Effect of Hypoxia on Mesenchymal Stem Cell Biology. Adv Pharm Bull 2015; 5:141-9. [PMID: 26236651 DOI: 10.15171/apb.2015.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, differentiation and etc. Mesenchymal stem cells (MSC) are unique cells which take important role in tissue regeneration. They are characterized by self-renewal capacity, multilineage potential, and immunosuppressive property. Like so many kind of cells, hypoxia induces different responses in MSCs by HIF- 1 activation. The activation of this molecule changes the growth, multiplication, differentiation and gene expression profile of MSCs in their niche by a complex of signals. This article briefly discusses the most important effects of hypoxia in growth kinetics, signalling pathways, cytokine secretion profile and expression of chemokine receptors in different conditions.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Drug Applied Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Dehdilani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvaneh Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Molaeipour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Orlandini M, Galvagni F, Bardelli M, Rocchigiani M, Lentucci C, Anselmi F, Zippo A, Bini L, Oliviero S. The characterization of a novel monoclonal antibody against CD93 unveils a new antiangiogenic target. Oncotarget 2015; 5:2750-60. [PMID: 24809468 PMCID: PMC4058042 DOI: 10.18632/oncotarget.1887] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The inhibition of tumor angiogenesis is one of the main challenges in cancer therapy. With the aim of developing monoclonal antibodies able to inhibit angiogenesis, we immunized mice with proliferating human umbilical vein endothelial cells. We generated a library of monoclonal antibodies able to recognize antigens expressed on endothelial cells and screened the antibodies for their ability to inhibit endothelial cell proliferation, migration, and sprouting in vitro. Here, we show that the antibody, designated as 4E1, is able to neutralize the formation of new vessels both in vitro and in vivo without affecting endothelial cell survival. By mass spectrometry we identified CD93 as the antigen bound by 4E1 and mapped the recognized epitope. CD93 is a transmembrane protein heavily glycosylated preferentially expressed in the vascular endothelium. CD93 silencing by lentiviral-mediated small hairpin RNA expression impairs human endothelial cell proliferation, migration, and sprouting. Altogether these findings reveal 4E1 as a novel antiangiogenic antibody and identify CD93 as a new target suitable for antiangiogenic therapy.
Collapse
Affiliation(s)
- Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2 - 53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Olsen RS, Lindh M, Vorkapic E, Andersson RE, Zar N, Löfgren S, Dimberg J, Matussek A, Wågsäter D. CD93 gene polymorphism is associated with disseminated colorectal cancer. Int J Colorectal Dis 2015; 30:883-90. [PMID: 26008729 PMCID: PMC4471320 DOI: 10.1007/s00384-015-2247-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Cluster of differentiation 93 (CD93) is involved in apoptosis and inflammation and has a suggested role in angiogenesis, and all of which are involved in the development and dissemination of cancer. We evaluated the expression of CD93 and the association with two single nucleotide polymorphisms (SNPs), rs2749812 and rs2749817, as possible biomarkers in colorectal cancer (CRC). METHODS Tissue levels and plasma levels of CD93 were measured using an enzyme-linked immunosorbent assay (ELISA). Expression of CD93 was determined by immunohistochemistry, western blot and gene expression analysis. Genotype frequencies were established for the SNPs by real-time polymerase chain reaction (PCR), and the association with tumour stage and survival was analysed. RESULTS Total CD93 levels were 82% higher (P < 0.001) in tumours compared to matched normal tissues. Mean levels of soluble CD93 in plasma were 30% lower (P < 0.001) in the patients compared to the controls. The T/T genotype of SNP rs2749817 was more common in stage IV patients, with consequently higher risk of CRC death (T/T vs. C/C and C/T; hazard ratio (HR) = 1.73, 95% confidence interval (CI) = 1.11-2.67, P = 0.014), and was associated with a higher risk of CRC recurrence after radical operation (T/T vs. C/C and C/T; HR = 2.07, CI = 1.22-3.51, P = 0.007). CONCLUSIONS We showed that the T/T genotype of SNP rs2749817 is associated with disseminated cancer at diagnosis and an increased recurrence rate after radical operation. Patients with this genotype may benefit from early identification.
Collapse
Affiliation(s)
- Renate S Olsen
- Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, University of Linköping, 58185, Linköping, Sweden,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ikewaki N, Sonoda T, Inoko H. Unique properties of cluster of differentiation 93 in the umbilical cord blood of neonates. Microbiol Immunol 2014; 57:822-32. [PMID: 24033555 DOI: 10.1111/1348-0421.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/19/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
It has previously been reported by these authors that cluster of differentiation (CD) 93 is co-expressed on naive T-lymphocytes (CD4(+) CD45RA(+) cells) in neonatal umbilical cord blood cells (UCBCs) but not on normal adult peripheral blood cells (PBCs). In this study, expression of CD93 on other lymphocyte subsets and the concentration of soluble formed CD93 (sCD93) in serum or culture supernatants from neonatal umbilical cord blood (UCB) was examined. It was found that CD93 is also co-expressed on CD2(+) , CD16(+) , CD56(+) or CD25(+) cells in the lymphocyte population of neonatal UCBCs, but not on normal adult PBCs. The concentrations of sCD93 in serum and culture supernatants from neonatal UCB were significantly greater than those from normal adult peripheral blood. The concentrations of sCD93 in culture supernatants from neonatal UCBCs and normal adult PBCs treated with phorbol 12-myristate 13-acetate (PMA) were significantly enhanced compared with those without PMA treatment. The degree of enhancement of sCD93 by PMA in culture supernatants from neonatal UCBCs was significantly greater than that of normal adult PBCs and enhancement of sCD93 by PMA in the culture supernatants from neonatal UCBCs and normal adult PBCs was significantly suppressed by PKC inhibitor. Interestingly, the high concentration of serum sCD93 in neonates was significantly decreased in sera from infants at 1 month after birth. Expression of CD93 on the lymphocyte population of PBCs from infants at 1 month after birth was also significantly decreased, compared with that for neonatal UCBCs. These findings indicate that CD93 in neonatal UCB has unique properties as an immunological biomarker.
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Laboratories of Clinical Immunology, Department of Animal Pharmaceutical Science, Kyushu University of Health and Welfare School of Pharmaceutical Sciences, 1714-1 Yoshino-machi, Nobeoka-shi, Miyazaki, 882-8508
| | | | | |
Collapse
|
34
|
Zanivan S, Maione F, Hein MY, Hernández-Fernaud JR, Ostasiewicz P, Giraudo E, Mann M. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers. Mol Cell Proteomics 2013; 12:3599-611. [PMID: 23979707 PMCID: PMC3861710 DOI: 10.1074/mcp.m113.031344] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/21/2013] [Indexed: 02/04/2023] Open
Abstract
Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carbon Isotopes
- Cell Adhesion
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Collagen/chemistry
- Drug Combinations
- Extracellular Matrix/chemistry
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Isotope Labeling
- Laminin/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mass Spectrometry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Morphogenesis/genetics
- Neovascularization, Pathologic
- Primary Cell Culture
- Protein Binding
- Proteoglycans/chemistry
- Proteomics
- Signal Transduction
Collapse
Affiliation(s)
- Sara Zanivan
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- §The Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Federica Maione
- ¶Laboratory of Transgenic Mouse Models, Institute for Cancer Research at Candiolo (IRCC), 10060 Candiolo, Italy
- ‖Department of Science and Drug Technology, University of Torino, 10125, Torino, Italy
| | - Marco Y. Hein
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Pawel Ostasiewicz
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- **Department of Pathology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Enrico Giraudo
- ¶Laboratory of Transgenic Mouse Models, Institute for Cancer Research at Candiolo (IRCC), 10060 Candiolo, Italy
- ‖Department of Science and Drug Technology, University of Torino, 10125, Torino, Italy
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- ‡‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci U S A 2013; 110:7123-30. [PMID: 23580620 DOI: 10.1073/pnas.1303919110] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The partial purification of mouse mammary gland stem cells (MaSCs) using combinatorial cell surface markers (Lin(-)CD24(+)CD29(h)CD49f(h)) has improved our understanding of their role in normal development and breast tumorigenesis. Despite the significant improvement in MaSC enrichment, there is presently no methodology that adequately isolates pure MaSCs. Seeking new markers of MaSCs, we characterized the stem-like properties and expression signature of label-retaining cells from the mammary gland of mice expressing a controllable H2b-GFP transgene. In this system, the transgene expression can be repressed in a doxycycline-dependent fashion, allowing isolation of slowly dividing cells with retained nuclear GFP signal. Here, we show that H2b-GFP(h) cells reside within the predicted MaSC compartment and display greater mammary reconstitution unit frequency compared with H2b-GFP(neg) MaSCs. According to their transcriptome profile, H2b-GFP(h) MaSCs are enriched for pathways thought to play important roles in adult stem cells. We found Cd1d, a glycoprotein expressed on the surface of antigen-presenting cells, to be highly expressed by H2b-GFP(h) MaSCs, and isolation of Cd1d(+) MaSCs further improved the mammary reconstitution unit enrichment frequency to nearly a single-cell level. Additionally, we functionally characterized a set of MaSC-enriched genes, discovering factors controlling MaSC survival. Collectively, our data provide tools for isolating a more precisely defined population of MaSCs and point to potentially critical factors for MaSC maintenance.
Collapse
|
36
|
Seuter S, Heikkinen S, Carlberg C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1α,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res 2012; 41:110-24. [PMID: 23093607 PMCID: PMC3592476 DOI: 10.1093/nar/gks959] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3 or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)2D3 and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)2D3 and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)2D3 and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)2D3 and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)2D3. Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.
Collapse
Affiliation(s)
| | | | - Carsten Carlberg
- *To whom correspondence should be addressed. Tel: +358 40 355 3062; Fax: +358 17 281 1510;
| |
Collapse
|
37
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Greenlee-Wacker MC, Briseño C, Galvan M, Moriel G, Velázquez P, Bohlson SS. Membrane-associated CD93 regulates leukocyte migration and C1q-hemolytic activity during murine peritonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3353-61. [PMID: 21849679 PMCID: PMC3169757 DOI: 10.4049/jimmunol.1100803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD93 is emerging as a novel regulator of inflammation; however, its molecular function is unknown. CD93 exists as a membrane-associated glycoprotein on the surface of cells involved in the inflammatory cascade, including endothelial and myeloid cells. A soluble form (sCD93) is detectable in blood and is elevated with inflammation. In this study, we demonstrate heightened susceptibility to thioglycollate-induced peritonitis in CD93(-/-) mice. CD93(-/-) mice showed a 1.6-1.8-fold increase in leukocyte infiltration during thioglycollate-induced peritonitis between 3 and 24 h that returned to wild type levels by 96 h. Impaired vascular integrity in CD93(-/-) mice during peritonitis was demonstrated using fluorescence multiphoton intravital microscopy; however, no differences in cytokine or chemokine levels were detected with Luminex Multiplex or ELISA analysis. C1q-hemolytic activity in CD93(-/-) mice was decreased by 22% at time zero and by 46% 3 h after thioglycollate injection, suggesting a defect in the classical complement pathway. Leukocyte recruitment and C1q-hemolytic activity was restored to wild type levels when CD93 was expressed on either hematopoietic cells or nonhematopoietic cells in bone marrow chimeric mice. However, elevated levels of sCD93 in inflammatory fluid were observed only when CD93 was expressed on nonhematopoietic cells. Because cell-associated CD93 was sufficient to restore a normal inflammatory response, these data suggest that cell-associated CD93, and not sCD93, regulates leukocyte recruitment and complement activation during murine peritonitis.
Collapse
Affiliation(s)
- Mallary C. Greenlee-Wacker
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Carlos Briseño
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Manuel Galvan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| | - Gabriela Moriel
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Peter Velázquez
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| | - Suzanne S. Bohlson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| |
Collapse
|
39
|
Mälarstig A, Silveira A, Wågsäter D, Öhrvik J, Bäcklund A, Samnegård A, Khademi M, Hellenius ML, Leander K, Olsson T, Uhlén M, de Faire U, Eriksson P, Hamsten A. Plasma CD93 concentration is a potential novel biomarker for coronary artery disease. J Intern Med 2011; 270:229-36. [PMID: 21332844 DOI: 10.1111/j.1365-2796.2011.02364.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES A common nonsynonymous single nucleotide polymorphism (SNP) in the CD93 gene (rs3746731, Pro541Ser) has been associated with risk of coronary artery disease (CAD). CD93 is a transmembrane glycoprotein, which is detectable in soluble form in human plasma. We investigated whether the concentration of soluble CD93 in plasma is related to risk of myocardial infarction (MI) and CAD, using a case-control study of premature MI (n = 764) and a nested case-control analysis of a longitudinal cohort study of 60-year-old subjects (analysis comprising 844 of 4232 subjects enrolled at baseline). In addition, SNPs in the CD93 gene were studied in relation to plasma CD93 concentration and CD93 mRNA expression. METHODS AND RESULTS A sensitive and specific enzyme-linked immunosorbent assay was established for determination of the plasma CD93 concentration. Subjects were divided into three groups according to tertiles of the distribution of CD93 concentration. Lower odds ratios for risk of MI and incidence of CAD were observed in the middle CD93 tertile (142-173 μg L(-1) ): odds ratio (95% confidence interval), 0.69 (0.49-0.97) and 0.61 (0.40-0.94), respectively. These associations were independent of traditional CAD risk factors. The minor allele of a SNP in the 3' untranslated region of CD93 (rs2749812) was associated with increased plasma CD93 concentrations (P = 0.03) and increased CD93 mRNA expression levels (P = 0.02). CONCLUSION The results of the present study suggest that the concentration of soluble CD93 in plasma is a potential novel biomarker for CAD, including MI.
Collapse
Affiliation(s)
- A Mälarstig
- Atherosclerosis Research Unit, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Heikkinen S, Väisänen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 2011; 39:9181-93. [PMID: 21846776 PMCID: PMC3241659 DOI: 10.1093/nar/gkr654] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were strongly associated with the ligand-responsiveness of VDR occupation. Only 20% of the VDR peaks diminishing most after ligand treatment have a DR3-type RE, in contrast to 90% for the most growing peaks. Ligand treatment revealed 638 1α,25(OH)2D3 target genes enriched in gene ontology categories associated with immunity and signaling. From the 408 upregulated genes, 72% showed VDR binding within 400 kb of their transcription start sites (TSSs), while this applied only for 43% of the 230 downregulated genes. The VDR loci showed considerable variation in gene regulatory scenarios ranging from a single VDR location near the target gene TSS to very complex clusters of multiple VDR locations and target genes. In conclusion, ligand binding shifts the locations of VDR occupation to DR3-type REs that surround its target genes and occur in a large variety of regulatory constellations.
Collapse
Affiliation(s)
- Sami Heikkinen
- Department of Biosciences, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Tang C, Zelenak C, Völkl J, Eichenmüller M, Regel I, Fröhlich H, Kempe D, Jimenez L, Le Bellego L, Vergne S, Lang F. Hydration-sensitive gene expression in brain. Cell Physiol Biochem 2011; 27:757-68. [PMID: 21691093 DOI: 10.1159/000330084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Dehydration has a profound influence on neuroexcitability. The mechanisms remained, however, incompletely understood. The present study addressed the effect of water deprivation on gene expression in the brain. To this end, animals were exposed to a 24 hours deprivation of drinking water and neuronal gene expression was determined by microarray technology with subsequent confirmation by RT-PCR. As a result, water deprivation was followed by significant upregulation of clathrin (light polypeptide Lcb), serum/glucocorticoid-regulated kinase (SGK) 1, and protein kinase A (PRKA) anchor protein 8-like. Water deprivation led to downregulation of janus kinase and microtubule interacting protein 1, neuronal PAS domain protein 4, thrombomodulin, purinergic receptor P2Y - G-protein coupled 13 gene, gap junction protein beta 1, neurotrophin 3, hyaluronan and proteoglycan link protein 1, G protein-coupled receptor 19, CD93 antigen, forkhead box P1, suppressor of cytokine signaling 3, apelin, immunity-related GTPase family M, serine (or cysteine) peptidase inhibitor clade B member 1a, serine (or cysteine) peptidase inhibitor clade H member 1, glutathion peroxidase 8 (putative), discs large (Drosophila) homolog-associated protein 1, zinc finger and BTB domain containing 3, and H2A histone family member V. Western blotting revealed the downregulation of forkhead box P1, serine (or cysteine) peptidase inhibitor clade H member 1, and gap junction protein beta 1 protein abundance paralleling the respective alterations of transcript levels. In conclusion, water deprivation influences the transcription of a wide variety of genes in the brain, which may participate in the orchestration of brain responses to water deprivation.
Collapse
Affiliation(s)
- Cai Tang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hardie DL, Baldwin MJ, Naylor A, Haworth OJ, Hou TZ, Lax S, Curnow SJ, Willcox N, MacFadyen J, Isacke CM, Buckley CD. The stromal cell antigen CD248 (endosialin) is expressed on naive CD8+ human T cells and regulates proliferation. Immunology 2011; 133:288-95. [PMID: 21466550 DOI: 10.1111/j.1365-2567.2011.03437.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD248 (endosialin) is a transmembrane glycoprotein that is dynamically expressed on pericytes and fibroblasts during tissue development, tumour neovascularization and inflammation. Its role in tissue remodelling is associated with increased stromal cell proliferation and migration. We show that CD248 is also uniquely expressed by human, but not mouse (C57BL/6), CD8(+) naive T cells. CD248 is found only on CD8(+) CCR7(+) CD11a(low) naive T cells and on CD8 single-positive T cells in the thymus. Transfection of the CD248 negative T-cell line MOLT-4 with CD248 cDNA surprisingly reduced cell proliferation. Knock-down of CD248 on naive CD8 T cells increased cell proliferation. These data demonstrate opposing functions for CD248 on haematopoietic (CD8(+)) versus stromal cells and suggests that CD248 helps to maintain naive CD8(+) human T cells in a quiescent state.
Collapse
Affiliation(s)
- Debbie L Hardie
- Rheumatology Research Group, MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Basciano L, Nemos C, Foliguet B, de Isla N, de Carvalho M, Tran N, Dalloul A. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol 2011; 12:12. [PMID: 21450070 PMCID: PMC3073900 DOI: 10.1186/1471-2121-12-12] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/30/2011] [Indexed: 12/28/2022] Open
Abstract
Background In the bone marrow, hematopietic and mesenchymal stem cells form a unique niche in which the oxygen tension is low. Hypoxia may have a role in maintaining stem cell fate, self renewal and multipotency. However, whereas most studies addressed the effect of transient in vitro exposure of MSC to hypoxia, permanent culture under hypoxia should reflect the better physiological conditions. Results Morphologic studies, differentiation and transcriptional profiling experiments were performed on MSC cultured in normoxia (21% O2) versus hypoxia (5% O2) for up to passage 2. Cells at passage 0 and at passage 2 were compared, and those at passage 0 in hypoxia generated fewer and smaller colonies than in normoxia. In parallel, MSC displayed (>4 fold) inhibition of genes involved in DNA metabolism, cell cycle progression and chromosome cohesion whereas transcripts involved in adhesion and metabolism (CD93, ESAM, VWF, PLVAP, ANGPT2, LEP, TCF1) were stimulated. Compared to normoxic cells, hypoxic cells were morphologically undifferentiated and contained less mitochondrias. After this lag phase, cells at passage 2 in hypoxia outgrew the cells cultured in normoxia and displayed an enhanced expression of genes (4-60 fold) involved in extracellular matrix assembly (SMOC2), neural and muscle development (NOG, GPR56, SNTG2, LAMA) and epithelial development (DMKN). This group described herein for the first time was assigned by the Gene Ontology program to "plasticity". Conclusion The duration of hypoxemia is a critical parameter in the differentiation capacity of MSC. Even in growth promoting conditions, hypoxia enhanced a genetic program that maintained the cells undifferentiated and multipotent. This condition may better reflect the in vivo gene signature of MSC, with potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Leticia Basciano
- Nancy University Medical School (EA 4369) and School of Surgery (NT), 54500 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ, Conway EM. CD248 and its cytoplasmic domain: a therapeutic target for arthritis. ACTA ACUST UNITED AC 2011; 62:3595-606. [PMID: 20722022 DOI: 10.1002/art.27701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE CD248 is a transmembrane glycoprotein expressed on the surface of activated perivascular and fibroblast-like cells. This study was undertaken to explore the function of CD248 and its cytoplasmic domain in arthritis. METHODS Synovial tissue biopsy samples from healthy controls, from patients with psoriatic arthritis (PsA), and from patients with rheumatoid arthritis (RA) were stained for CD248. Transgenic mice that were CD248-deficient (CD248-knockout [CD248(KO/KO) ]) or mice with CD248 lacking the cytoplasmic domain (CD248(CyD/CyD) ) were generated. Collagen antibody-induced arthritis (CAIA) was induced in these mice and in corresponding wild-type (WT) mice as controls. Clinical signs and histologic features of arthritis were evaluated. Cytokine levels were determined by enzyme-linked immunosorbent assay, and the number of infiltrating inflammatory cells was quantified by immunohistochemistry. In vitro studies were performed with fibroblasts from CD248-transgenic mouse embryos to explain the observed effects on inflammation. RESULTS Immunostaining of synovium from patients with PsA and patients with RA and that from mice after the induction of CAIA revealed strong CD248 expression in perivascular and fibroblast-like stromal cells. CD248(KO/KO) and CD248(CyD/CyD) mice had less severe arthritis, with lower plasma levels of proinflammatory cytokines, as compared with WT controls. Moreover, the joints of these mice had less synovial hyperplasia, reduced accumulation of inflammatory cells, and less articular cartilage and bone damage. Tumor necrosis factor α-induced monocyte adhesion to CD248(CyD/CyD) fibroblasts was impaired. CD248(CyD/CyD) fibroblasts exhibited reduced expression of hypoxia-inducible factor 1α, placental growth factor, vascular endothelial growth factor, and matrix metalloproteinase 9 activity in response to transforming growth factor β. CONCLUSION CD248 contributes to synovial hyperplasia and leukocyte accumulation in inflammatory arthritis, the effects of which are mediated partly via its cytoplasmic domain. CD248 is therefore a potential new target in the treatment of arthritis.
Collapse
Affiliation(s)
- Margarida Maia
- Katholieke Universiteit-Leuven, Flanders Interuniversity Institute for Biotechnology (VIB)-Leuven, VIB-Ghent, and Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bagley RG. Endosialin: from vascular target to biomarker for human sarcomas. Biomark Med 2010; 3:589-604. [PMID: 20477527 DOI: 10.2217/bmm.09.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biomarkers have been the focus of investigations to diagnose disease, track response to therapy and predict prognosis. Meanwhile, the identification of new targets for therapeutic intervention is an ongoing quest in the field of oncology. The recognition of endosialin as an antigen that is selectively overexpressed in human tumor tissues offers new strategies for treating cancer. Not only do the tumor vasculature and stromal compartments upregulate endosialin but, importantly, the malignant cells of sarcomas strongly express endosialin as well. A diagnostic assay that measures the intensity of endosialin expression in malignant tissues would assist in selecting patients that could benefit from an antiendosialin therapy. Thus, endosialin holds potential value both as a therapeutic target and as a biomarker for certain human cancers.
Collapse
Affiliation(s)
- Rebecca G Bagley
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01710-9322, USA.
| |
Collapse
|
46
|
Ikewaki N, Yamao H, Kulski JK, Inoko H. Flow cytometric identification of CD93 expression on naive T lymphocytes (CD4(+)CD45RA (+) cells) in human neonatal umbilical cord blood. J Clin Immunol 2010; 30:723-33. [PMID: 20512406 DOI: 10.1007/s10875-010-9426-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/12/2010] [Indexed: 11/24/2022]
Abstract
Human CD93 has a molecular weight of about 100 kDa and is selectively expressed by myeloid cell lineages in peripheral blood (PB) mononuclear cells. Although CD93 was initially identified as a receptor for complement component 1, subcomponent q phagocytosis (C1qRp) involved in the C1q-mediated enhancement of the phagocytosis of various antigens, several recent studies have reported that CD93 is not a receptor for the C1q-mediated enhancement of phagocytosis. The expression patterns of CD93 have been previously investigated in PB mononuclear cells (lymphocytes, monocytes, and granulocytes) from adult PB and neonatal umbilical cord blood (UCB), and the expression of CD93 was not found on lymphocytes from either normal adult PB or neonatal UCB. However, the detection of CD93 expression in neonatal UCB using CD93 monoclonal antibodies (mAbs) that recognize different antigenic epitopes remains poorly understood. In this study, we examined the expression of CD93 on lymphocytes, monocytes, and granulocytes from neonatal UCB using four different types of CD93 mAb detection probes, mNI-11, R139, R3, and X-2, using flow cytometric and western blot analyses. We found that CD93, as defined using all four mAbs, was expressed on monocytes and granulocytes in PB mononuclear cells from adult PB and neonatal UCB. On the other hand, we observed for the first time that the expression of CD93 on lymphocytes in neonatal UCB can only be detected using the mNI-11 mAb, established in our laboratory, and not with commercially available CD93 mAbs (R139, R3, and X-2). However, CD93 expression on lymphocytes from normal adults was not detected using any of the four CD93 mAbs. Two-color flow cytometric analyses showed that the CD93 recognized by mNI-11 mAb was expressed on CD3(+) T lymphocytes (mainly CD4(+) helper T lymphocytes), but not on CD19(+) B lymphocytes or on CD8(+) suppressor/cytotoxic T lymphocytes from neonatal UCB. In addition, CD93 was expressed on CD45RA(+) (naive antigen) lymphocytes from neonatal UCB, but not on CD45RO(+) (memory antigen) lymphocytes from neonatal UCB or on CD45RA(+) and CD45RO(+) lymphocytes from normal adult PB. Three-color flow cytometric analysis showed that CD93 was co-expressed on naive T lymphocytes (CD4(+)CD45RA(+)) from neonatal UCB. In a western blot analysis, the CD93 mAb (mNI-11) immunoprecipitated at a molecular weight of 98 kDa, identified as a CD93 molecule, in the CD4(+)CD45RA(+) cells from neonatal UCB but not from adult PB, similar to the results in the human monocyte-like cell line U937 (human CD93-positive cells). Taken together, these results provide the first direct evidence of a novel/naive cell population (CD4(+)CD45RA(+)CD93(+)) in neonatal UCB that may have an important role in cell biology, transplantation, and immature/mature immune responses.
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Department of Animal Pharmaceutical Science, Kyushu University of Health and Welfare School of Pharmaceutical Sciences, 1714-1 Yoshino-cho, Nobeoka, Miyazaki 882-8508, Japan.
| | | | | | | |
Collapse
|
47
|
Schäfer R, Bantleon R, Kehlbach R, Siegel G, Wiskirchen J, Wolburg H, Kluba T, Eibofner F, Northoff H, Claussen CD, Schlemmer HP. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biol 2010; 11:22. [PMID: 20370915 PMCID: PMC2871263 DOI: 10.1186/1471-2121-11-22] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 04/06/2010] [Indexed: 12/17/2022] Open
Abstract
Background For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Results Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic differentiation as detected by qRT-PCR. Moreover, microarray analyses revealed that exposition of labeled MSCs to magnetic fields led to an up regulation of CD93 mRNA and cadherin 7 mRNA and to a down regulation of Zinc finger FYVE domain mRNA. Exposition of unlabeled MSCs to magnetic fields led to an up regulation of CD93 mRNA, lipocalin 6 mRNA, sialic acid acetylesterase mRNA, and olfactory receptor mRNA and to a down regulation of ubiquilin 1 mRNA. No influence of the exposition to magnetic fields could be observed on the migration capacity, the viability, the proliferation rate and the chondrogenic differentiation capacity of labeled or unlabeled MSCs. Conclusions In our study an innovative labeling protocol for tracking MSCs by MRI using SPIO in combination with magnetic fields was established. Both, SPIO and the static magnetic field were identified as independent factors which affect the functional biology of human MSCs. Further in vivo investigations are needed to elucidate the molecular mechanisms of the interaction of magnetic fields with stem cell biology.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res 2009; 58:909-19. [DOI: 10.1007/s00011-009-0064-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022] Open
|