1
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
2
|
Kettunen S, Suoranta T, Beikverdi S, Heikkilä M, Slita A, Räty I, Ylä-Herttuala E, Öörni K, Ruotsalainen AK, Ylä-Herttuala S. Deletion of the Murine Ortholog of the Human 9p21.3 Locus Leads to Insulin Resistance and Obesity in Hypercholesterolemic Mice. Cells 2024; 13:983. [PMID: 38891115 PMCID: PMC11171903 DOI: 10.3390/cells13110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The 9p21.3 genomic locus is a hot spot for disease-associated single-nucleotide polymorphisms (SNPs), and its strongest associations are with coronary artery disease (CAD). The disease-associated SNPs are located within the sequence of a long noncoding RNA ANRIL, which potentially contributes to atherogenesis by regulating vascular cell stress and proliferation, but also affects pancreatic β-cell proliferation. Altered expression of a neighboring gene, CDKN2B, has been also recognized to correlate with obesity and hepatic steatosis in people carrying the risk SNPs. In the present study, we investigated the impact of 9p21.3 on obesity accompanied by hyperlipidemia in mice carrying a deletion of the murine ortholog for the 9p21.3 (Chr4Δ70/Δ70) risk locus in hyperlipidemic Ldlr-/-ApoB100/100 background. The Chr4Δ70/Δ70 mice showed decreased mRNA expression of insulin receptors in white adipose tissue already at a young age, which developed into insulin resistance and obesity by aging. In addition, the Sirt1-Ppargc1a-Ucp2 pathway was downregulated together with the expression of Cdkn2b, specifically in the white adipose tissue in Chr4Δ70/Δ70 mice. These results suggest that the 9p21.3 locus, ANRIL lncRNA, and their murine orthologues may regulate the key energy metabolism pathways in a white adipose tissue-specific manner in the presence of hypercholesterolemia, thus contributing to the pathogenesis of metabolic syndrome.
Collapse
Affiliation(s)
- Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Tuisku Suoranta
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Sadegh Beikverdi
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Anna Slita
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Iida Räty
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Elias Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
- Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | | | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, 70210 Kuopio, Finland; (S.K.); (T.S.); (S.B.); (M.H.); (A.S.); (I.R.); (E.Y.-H.); (S.Y.-H.)
| |
Collapse
|
3
|
Shao B, Shimizu-Albergine M, Kramer F, Kanter JE, Heinecke JW, Vaisar T, Mittendorfer B, Patterson BW, Bornfeldt KE. A targeted proteomics method for quantifying plasma apolipoprotein kinetics in individual mice using stable isotope labeling. J Lipid Res 2024; 65:100531. [PMID: 38490635 PMCID: PMC11002879 DOI: 10.1016/j.jlr.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 μl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.
Collapse
Affiliation(s)
- Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Bettina Mittendorfer
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA; Departments of Medicine and Nutrition & Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Bruce W Patterson
- Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University, St Louis, MO, USA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Kettunen S, Ruotsalainen AK, Örd T, Suoranta T, Heikkilä J, Kaikkonen MU, Laham-Karam N, Ylä-Herttuala S. Deletion of the murine ortholog of human 9p21.3 locus promotes atherosclerosis by increasing macrophage proinflammatory activity. Front Cardiovasc Med 2023; 10:1113890. [PMID: 36950286 PMCID: PMC10025322 DOI: 10.3389/fcvm.2023.1113890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Background Several genome-wide association studies have reported a risk locus for coronary artery disease (CAD) in the 9p21. 3 chromosomal region. This region encodes a lncRNA in the INK4 locus (ANRIL) and its genetic variance has a strong association with CAD, but its mechanisms in atherogenesis remain unclear. Objectives This study aimed to investigate the role of the murine ortholog of human 9p21.3 locus in atherogenesis in hypercholesterolemic mice. Methods Murine 9p21.3 ortholog knockout mice (Chr4Δ70kb/Δ70kb ) were crossbred with Ldlr -/- ApoB 100/100 mice, and atherosclerotic plaque size and morphology were analyzed on a standard or a high-fat diet (HFD). The hematopoietic cell-specific effect of Chr4Δ70kb/Δ70kb on atherosclerotic plaque development was studied via bone marrow (BM) transplantation, where Chr4Δ70kb/Δ70kb or wild-type BM was transplanted into Ldlr -/- ApoB 100/100 mice. The role of Chr4Δ70kb/Δ70kb in macrophage M1/M2 polarization was studied. In addition, single-cell sequencing data from human and mouse atheroma were analyzed to show the expression profiles of ANRIL and its murine equivalent, Ak148321, in the plaques. Results Both systemic and hematopoietic Chr4Δ70kb/Δ70kb increased atherosclerosis in Ldlr -/- ApoB 100/100 mice after 12 weeks of HFD. The systemic Chr4Δ70kb/Δ70kb also elevated the number of circulating leukocytes. Chr4Δ70kb/Δ70kb BMDMs showed enhanced M1 polarization in vitro. Single-cell sequencing data from human and mouse atheroma revealed that ANRIL and Ak148321 were mainly expressed in the immune cells. Conclusion These data demonstrate that both systemic and BM-specific deletion of the murine 9p21.3 risk locus ortholog promotes atherosclerosis and regulates macrophage pro-inflammatory activity, suggesting the inflammation-driven mechanisms of the risk locus on atherogenesis.
Collapse
Affiliation(s)
- Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Tiit Örd
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Tuisku Suoranta
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Janne Heikkilä
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Nihay Laham-Karam
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Distinct Influence of Hypercaloric Diets Predominant with Fat or Fat and Sucrose on Adipose Tissue and Liver Inflammation in Mice. Molecules 2020; 25:molecules25194369. [PMID: 32977558 PMCID: PMC7584000 DOI: 10.3390/molecules25194369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
Overfeeding of a hypercaloric diet leads to obesity, diabetes, chronic inflammation, and fatty liver disease. Although limiting fat or carbohydrate intake is the cornerstone for obesity management, whether lowering fat or reducing carbohydrate intake is more effective for health management remains controversial. This study used murine models to determine how dietary fat and carbohydrates may influence metabolic disease manifestation. Age-matched C57BL/6J mice were fed 2 hypercaloric diets with similar caloric content, one with very high fat and low carbohydrate content (VHF) and the other with moderately high fat levels with high sucrose content (HFHS) for 12 weeks. Both groups gained more weight and displayed hypercholesterolemia, hyperglycemia, hyperinsulinemia, and liver steatosis compared to mice fed a normal low-fat (LF) diet. Interestingly, the VHF-fed mice showed a more robust adipose tissue inflammation compared to HFHS-fed mice, whereas HFHS-fed mice showed liver fibrosis and inflammation that was not observed in VHF-fed mice. Taken together, these results indicate macronutrient-specific tissue inflammation with excess dietary fat provoking adipose tissue inflammation, whereas moderately high dietary fat with extra sucrose is necessary and sufficient for hepatosteatosis advancement to steatohepatitis. Hence, liver and adipose tissues respond to dietary fat and sucrose in opposite manners, yet both macronutrients are contributing factors to metabolic diseases.
Collapse
|
6
|
Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. ACTA ACUST UNITED AC 2020; 53:e9557. [PMID: 32428130 PMCID: PMC7266502 DOI: 10.1590/1414-431x20209557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerosis retains the leading position among the causes of global morbidity and mortality worldwide, especially in the industrialized countries. Despite the continuing efforts to investigate disease pathogenesis and find the potential points of effective therapeutic intervention, our understanding of atherosclerosis mechanisms remains limited. This is partly due to the multifactorial nature of the disease pathogenesis, when several factors so different as altered lipid metabolism, increased oxidative stress, and chronic inflammation act together leading to the formation and progression of atherosclerotic plaques. Adequate animal models are currently indispensable for studying these processes and searching for novel therapies. Animal models based on rodents, such as mice and rats, and rabbits represent important tools for studying atherosclerosis. Currently, genetically modified animals allow for previously unknown possibilities in modelling the disease and its most relevant aspects. In this review, we describe the recent progress made in creating such models and discuss the most important findings obtained with them to date.
Collapse
Affiliation(s)
- A V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Y Y Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - A V Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Yu B, Zhang M, Chen J, Wang L, Peng X, Zhang X, Wang H, Wang A, Zhao D, Pang D, OuYang H, Tang X. Abnormality of hepatic triglyceride metabolism in Apc Min/+ mice with colon cancer cachexia. Life Sci 2019; 227:201-211. [PMID: 31002917 DOI: 10.1016/j.lfs.2019.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
AIMS Colorectal cancer syndrome has been one of the greatest concerns in the world. Although several epidemiological studies have shown that hepatic low lipoprotein lipase (LPL) mRNA expression may be associated with dyslipidemia and tumor progression, it is still not known whether the liver plays an essential role in hyperlipidemia of ApcMin/+ mice. MAIN METHODS We measured the expression of metabolic enzymes that involved fatty acid uptake, de novo lipogenesis (DNL), β-oxidation and investigated hepatic triglyceride production in the liver of wild-type and ApcMin/+ mice. KEY FINDINGS We found that hepatic fatty acid uptake and DNL decreased, but there was no significant difference in fatty acid β-oxidation. Interestingly, the production of hepatic very low-density lipoprotein-triglyceride (VLDL-TG) decreased at 20 weeks of age, but marked steatosis was observed in the livers of the ApcMin/+ mouse. To further explore hypertriglyceridemia, we assessed the function of hepatic glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) for the first time. GPIHBP1 is governed by the transcription factor octamer-binding transcription factor-1 (Oct-1) which are involved in the nuclear factor-κB (NF-κB) signaling pathway in the liver of ApcMin/+ mice. Importantly, it was also confirmed that sn50 (100 μg/mL, an inhibitor of the NF-κB) reversed the tumor necrosis factor α (TNFα)-induced Oct-1 and GPIHBP1 reduction in HepG2 cells. SIGNIFICANCE Altogether, these findings highlighted a novel role of GPIHBP1 that might be responsible for hypertriglyceridemia in ApcMin/+ mice. Hypertriglyceridemia in these mice may be associated with their hepatic lipid metabolism development.
Collapse
Affiliation(s)
- Biao Yu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Mingjun Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Jiahuan Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Lingyu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xiaohuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - He Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Anbei Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Dazhong Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Hongsheng OuYang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, No.5333 Xi'an Road, Lvyuan District, Changchun 130062, Jilin Province, China.
| |
Collapse
|
8
|
Predilection of Low Protein C-induced Spontaneous Atherothrombosis for the Right Coronary Sinus in Apolipoprotein E deficient mice. Sci Rep 2018; 8:15106. [PMID: 30305662 PMCID: PMC6180072 DOI: 10.1038/s41598-018-32584-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/24/2018] [Indexed: 01/31/2023] Open
Abstract
Silencing of anticoagulant protein C using RNA interference (siProc) evokes low incident but spontaneous atherothrombosis in the aortic root of apolipoprotein E–deficient (Apoe−/−) mice. The aims of the current study were (1) to analyze if plaque characteristics or circulating factors could be linked to atherothrombosis susceptibility, (2) to increase the incidence of atherothrombosis by transiently increasing blood pressure, and (3) to direct atherothrombosis to an additional predefined vascular site by applying a semi-constrictive collar around the carotid artery. siProc-driven spontaneous atherothrombosis in the aortic root of Apoe−/− mice was reproduced and occurred at an incidence of 23% (9 out of 39 mice), while the incidence of collar-induced atherothrombosis in the carotid artery was 2.6% (1 out of 39 mice). Treatment with phenylephrine, to transiently increase blood pressure, did not increase atherothrombosis in the aortic root of the Apoe−/− mice nor in the carotid arteries with collars. Plaques in the aortic root with an associated thrombus were lower in collagen and macrophage content, and mice with atherothrombosis had significantly more circulating platelets. Plasma protein C, white blood cell counts, total cholesterol, fibrinogen, serum amyloid A, and IL-6 were not different amongst siProc treated mice with or without thrombosis. Remarkably, our data revealed that thrombus formation preferably occurred on plaques in the right coronary sinus of the aortic root. In conclusion, there is a predilection of low protein C-induced spontaneous atherothrombosis in Apoe−/− mice for the right coronary sinus, a process that is associated with an increase in platelets and plaques lower in collagen and macrophage content.
Collapse
|
9
|
Getz GS, Reardon CA. T Cells in Atherosclerosis in Ldlr-/- and Apoe-/- Mice. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:69-76. [PMID: 30854522 PMCID: PMC6404748 DOI: 10.29245/2578-3009/2018/3.1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is the underlying basis for most cardiovascular diseases. It is a chronic inflammation affecting the arterial intima and is promoted by hypercholesterolemia. Cells of both the innate and adaptive immune systems contribute to this inflammation with macrophages and T cells being the most abundant immune cells in the atherosclerotic plaques. In this review, we discuss the studies that examined the role of T cells and T cell subsets in Apoe-/- and Ldlr-/- murine models of atherosclerosis. While there is a general consensus that Th1 cells are pro-atherogenic and regulatory T cells are atheroprotective, the role of other subsets is more ambiguous. In addition, the results in the two models of atherosclerosis do not always yield similar results. Additional studies in the two murine models using cell specific gene manipulations are needed.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Catherine A. Reardon
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Ruotsalainen AK, Lappalainen JP, Heiskanen E, Merentie M, Sihvola V, Näpänkangas J, Lottonen-Raikaslehto L, Kansanen E, Adinolfi S, Kaarniranta K, Ylä-Herttuala S, Jauhiainen M, Pirinen E, Levonen AL. Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice. Cardiovasc Res 2018; 115:243-254. [DOI: 10.1093/cvr/cvy143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
Abstract
Aims
Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR−/−), and LDLR−/− mice expressing apoB-100 only (LDLR−/− ApoB100/100) having a humanized lipoprotein profile.
Methods and results
LDLR−/− mice were fed a high-fat diet (HFD) for 6 or 12 weeks and LDLR−/−ApoB100/100 mice a regular chow diet for 6 or 12 months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR−/− mice reduced total plasma cholesterol after 6 weeks of HFD and triglycerides in LDLR−/−ApoB100/100 mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR−/−ApoB100/100 mice as it increased plaque calcification. Moreover, ∼36% of Nrf2−/−LDLR−/−ApoB100/100 females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12 months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR−/−ApoB100/100 female mice at age of 12 months.
Conclusions
Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR−/−ApoB100/100 mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.
Collapse
Affiliation(s)
| | - Jari P Lappalainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - Emmi Heiskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Emilia Kansanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Simone Adinolfi
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- National Institute for Health and Welfare, Genomics and Biomarkes Unit, Helsinki, Finland; and
| | - Eija Pirinen
- Research Program for Molecular Neurology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Basu D, Hu Y, Huggins LA, Mullick AE, Graham MJ, Wietecha T, Barnhart S, Mogul A, Pfeiffer K, Zirlik A, Fisher EA, Bornfeldt KE, Willecke F, Goldberg IJ. Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 2018; 122:560-567. [PMID: 29321129 DOI: 10.1161/circresaha.117.311361] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Animal models have been used to explore factors that regulate atherosclerosis. More recently, they have been used to study the factors that promote loss of macrophages and reduction in lesion size after lowering of plasma cholesterol levels. However, current animal models of atherosclerosis regression require challenging surgeries, time-consuming breeding strategies, and methods that block liver lipoprotein secretion. OBJECTIVE We sought to develop a more direct or time-effective method to create and then reverse hypercholesterolemia and atherosclerosis via transient knockdown of the hepatic LDLR (low-density lipoprotein receptor) followed by its rapid restoration. METHODS AND RESULTS We used antisense oligonucleotides directed to LDLR mRNA to create hypercholesterolemia in wild-type C57BL/6 mice fed an atherogenic diet. This led to the development of lesions in the aortic root, aortic arch, and brachiocephalic artery. Use of a sense oligonucleotide replicating the targeted sequence region of the LDLR mRNA rapidly reduced circulating cholesterol levels because of recovery of hepatic LDLR expression. This led to a decrease in macrophages within the aortic root plaques and brachiocephalic artery, that is, regression of inflammatory cell content, after a period of 2 to 3 weeks. CONCLUSIONS We have developed an inducible and reversible hepatic LDLR knockdown mouse model of atherosclerosis regression. Although cholesterol reduction decreased early en face lesions in the aortic arches, macrophage area was reduced in both early and late lesions within the aortic sinus after reversal of hypercholesterolemia. Our model circumvents many of the challenges associated with current mouse models of regression. The use of this technology will potentially expedite studies of atherosclerosis and regression without use of mice with genetic defects in lipid metabolism.
Collapse
Affiliation(s)
- Debapriya Basu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Yunying Hu
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Lesley-Ann Huggins
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Adam E Mullick
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Mark J Graham
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Tomasz Wietecha
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Shelley Barnhart
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Allison Mogul
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Katharina Pfeiffer
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Andreas Zirlik
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Edward A Fisher
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Karin E Bornfeldt
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Florian Willecke
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.)
| | - Ira J Goldberg
- From the Department of Medicine, New York University Langone Health, New York (D.B., Y.H., L.-A.H., A.M., E.A.F., I.J.G.); Ionis Pharmaceuticals, Carlsbad, CA (A.E.M., M.J.G.); Division of Cardiology, Department of Medicine (T.W.), Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Diabetes Institute (S.B., K.E.B.), and Department of Pathology (K.E.B.), University of Washington, Seattle; and Department of Cardiology and Angiology I, Heart Center, Freiburg University, Germany (K.P., A.Z., F.W.).
| |
Collapse
|
12
|
Gelrud A, Williams KR, Hsieh A, Gwosdow AR, Gilstrap A, Brown A. The burden of familial chylomicronemia syndrome from the patients’ perspective. Expert Rev Cardiovasc Ther 2017; 15:879-887. [DOI: 10.1080/14779072.2017.1372193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andres Gelrud
- Center for Pancreatic Disorders, University of Chicago, Chicago, IL, USA
| | - Karren R. Williams
- Akcea Therapeutics Inc, A Subsidiary of Ionis Pharmaceuticals, Cambridge, MA, USA
| | - Andrew Hsieh
- Akcea Therapeutics Inc, A Subsidiary of Ionis Pharmaceuticals, Cambridge, MA, USA
| | - Andrea R. Gwosdow
- Akcea Therapeutics Inc, A Subsidiary of Ionis Pharmaceuticals, Cambridge, MA, USA
| | - Alan Gilstrap
- Akcea Therapeutics Inc, A Subsidiary of Ionis Pharmaceuticals, Cambridge, MA, USA
| | - Alan Brown
- Division of Cardiology, Advocate Lutheran General Hospital, Park Ridge, IL, USA
| |
Collapse
|
13
|
Davidson M, Stevenson M, Hsieh A, Ahmad Z, Crowson C, Witztum JL. The burden of familial chylomicronemia syndrome: interim results from the IN-FOCUS study. Expert Rev Cardiovasc Ther 2017; 15:415-423. [DOI: 10.1080/14779072.2017.1311786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Moreno-Gordaliza E, van der Lee SJ, Demirkan A, van Duijn CM, Kuiper J, Lindenburg PW, Hankemeier T. A novel method for serum lipoprotein profiling using high performance capillary isotachophoresis. Anal Chim Acta 2016; 944:57-69. [DOI: 10.1016/j.aca.2016.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/22/2023]
|
15
|
Getz GS, Reardon CA. Do the Apoe-/- and Ldlr-/- Mice Yield the Same Insight on Atherogenesis? Arterioscler Thromb Vasc Biol 2016; 36:1734-41. [PMID: 27386935 DOI: 10.1161/atvbaha.116.306874] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
Murine models of atherosclerosis are useful for investigating the environmental and genetic influences on lesion formation and composition. Apoe(-/-) and Ldlr(-/-) mice are the 2 most extensively used models. The models differ in important ways with respect to the precise mechanism by which their absence enhances atherosclerosis, including differences in plasma lipoproteins. The majority of the gene function studies have utilized only 1 model, with the results being generalized to atherogenic mechanisms. In only a relatively few cases have studies been conducted in both atherogenic murine models. This review will discuss important differences between the 2 atherogenic models and will point out studies that have been performed in the 2 models where results are comparable and those where different results were obtained.
Collapse
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL.
| | - Catherine A Reardon
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL
| |
Collapse
|
16
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
17
|
Ma L, Guo X, Chen W. Inhibitory effects of oleoylethanolamide (OEA) on H₂O₂-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6301-6311. [PMID: 26261506 PMCID: PMC4525840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
Atherosclerosis (AS) is initiated by vascular endothelial cell injury, which is induced by lipid and protein oxidation. Oleoylethanolamide (OEA), a dietary fat-derived lipid, has shown atheroprotective effect. In vitro studies demonstrated that OEA showed cytoprotective effects on H2O2-induced primary cultured human umbilical vein endothelial cell (HUVEC) injury model. Further investigation of the cytoprotective effects of OEA demonstrated that OEA exerted its function by scavenging for reactive oxygen species, as well as increasing anti-oxidative enzymes, reducing lipid peroxidation, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and apoptosis-related proteins expression. The in vivo study using an ApoE-/- mouse model fed with high-fat diet for 8 weeks showed that OEA (10 mg/kg/day, i.g.) administration reduced blood lipid levels, prevented endothelial cell damage and inhibited early AS plaque formation. In conclusion, our results suggested that OEA exerted a pharmacological effect on ameliorating atherosclerotic plaque formation through the inhibition of oxidative stress-induced endothelial cell injury and therefore OEA can be a potential candidate drug for anti-atherosclerosis.
Collapse
Affiliation(s)
- Li Ma
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100050, China
| | - Xiaobing Guo
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100050, China
| | - Wei Chen
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100050, China
| |
Collapse
|
18
|
Haefliger JA, Martin D, Favre D, Petremand Y, Mazzolai L, Abderrahmani A, Meda P, Waeber G, Allagnat F. Reduction of connexin36 content by ICER-1 contributes to insulin-secreting cells apoptosis induced by oxidized LDL particles. PLoS One 2013; 8:e55198. [PMID: 23383107 PMCID: PMC3559396 DOI: 10.1371/journal.pone.0055198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/19/2012] [Indexed: 12/14/2022] Open
Abstract
Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.
Collapse
Affiliation(s)
| | - David Martin
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Dimitri Favre
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Yannick Petremand
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Lucia Mazzolai
- Service of Vascular Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Amar Abderrahmani
- European Genomic Institute for Diabetes, UMR 8199, University of Lille Nord de France, Lille, France
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Gérard Waeber
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Florent Allagnat
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
19
|
Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AFH. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012; 97:2969-89. [PMID: 22962670 PMCID: PMC3431581 DOI: 10.1210/jc.2011-3213] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The aim was to develop clinical practice guidelines on hypertriglyceridemia. PARTICIPANTS The Task Force included a chair selected by The Endocrine Society Clinical Guidelines Subcommittee (CGS), five additional experts in the field, and a methodologist. The authors received no corporate funding or remuneration. CONSENSUS PROCESS Consensus was guided by systematic reviews of evidence, e-mail discussion, conference calls, and one in-person meeting. The guidelines were reviewed and approved sequentially by The Endocrine Society's CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. CONCLUSIONS The Task Force recommends that the diagnosis of hypertriglyceridemia be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150-999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hypertriglyceridemia (triglycerides of > 1000 mg/dl) be considered a risk for pancreatitis. The Task Force also recommends that patients with hypertriglyceridemia be evaluated for secondary causes of hyperlipidemia and that subjects with primary hypertriglyceridemia be evaluated for family history of dyslipidemia and cardiovascular disease. The Task Force recommends that the treatment goal in patients with moderate hypertriglyceridemia be a non-high-density lipoprotein cholesterol level in agreement with National Cholesterol Education Program Adult Treatment Panel guidelines. The initial treatment should be lifestyle therapy; a combination of diet modification and drug therapy may also be considered. In patients with severe or very severe hypertriglyceridemia, a fibrate should be used as a first-line agent.
Collapse
Affiliation(s)
- Lars Berglund
- University of California, Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vaziri ND, Yuan J, Ni Z, Nicholas SB, Norris KC. Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol 2011; 16:238-43. [PMID: 22009636 DOI: 10.1007/s10157-011-0549-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/30/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Chronic renal failure (CRF) is associated with hypertriglyceridemia and impaired clearance of very low density lipoprotein (VLDL) and chylomicrons which are largely due to lipoprotein lipase (LPL) deficiency/dysfunction. After its release from myocytes and adipocytes, LPL binds to the endothelium in the adjacent capillaries where it catalyzes hydrolysis of triglycerides in VLDL and chylomicrons. The novel endothelium-derived molecule, glycosylphosphatidylinositol-anchored binding protein 1 (GPIHBP1), plays a critical role in LPL metabolism and function by anchoring LPL to the endothelium and binding chylomicrons. GPIHBP1-deficient mice and humans exhibit severe hypertriglyceridemia and diminished heparin-releasable LPL, pointing to the critical role of GPIHBP1 in regulation of LPL activity. Given its central role in regulation of LPL activity and triglyceride metabolism, we explored the effect of chronic kidney disease (CKD) on GPIHBP1 expression. METHODS Expression of GPIHBP1 and LPL were determined by reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemical analyses in the adipose tissue, skeletal muscle and myocardium of rats 12 weeks after 5/6 nephrectomy (CRF) or sham-operation (control). RESULTS Compared to the controls, the CRF group exhibited severe hypertriglyceridemia, significant reduction of the skeletal muscle, myocardium and adipose tissue LPL mRNA and protein abundance. This was accompanied by parallel reductions of GPIHBP1 mRNA abundance and immunostaining in the tested tissues. CONCLUSIONS LPL deficiency in CKD is associated with and compounded by GPIHBP1 deficiency. Together these abnormalities contribute to impaired clearance of triglyceride-rich lipoproteins, diminished availability of lipid fuel for energy storage in adipocytes and energy production in myocytes and consequent hypertriglyceridemia, cachexia, muscle weakness and atherosclerosis.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA, USA.
| | | | | | | | | |
Collapse
|
21
|
Vaarhorst AAM, Beekman M, Suchiman EHD, van Heemst D, Houwing-Duistermaat JJ, Westendorp RGJ, Slagboom PE, Heijmans BT. Lipid metabolism in long-lived families: the Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2011; 33:219-27. [PMID: 20811950 PMCID: PMC3127468 DOI: 10.1007/s11357-010-9172-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/28/2010] [Indexed: 05/05/2023]
Abstract
Mechanisms underlying the variation in human life expectancy are largely unknown, but lipid metabolism and especially lipoprotein size was suggested to play an important role in longevity. We have performed comprehensive lipid phenotyping in the Leiden Longevity Study (LLS). By applying multiple logistic regression analysis we tested for the first time the effects of parameters in lipid metabolism (i.e., classical serum lipids, lipoprotein particle sizes, and apolipoprotein E levels) on longevity independent of each other. Parameters in lipid metabolism were measured in offspring of nonagenarian siblings from 421 families of the LLS (n = 1,664; mean age, 59 years) and in the partners of the offspring as population controls (n = 711; mean age, 60 years). In the initial model, where lipoprotein particles sizes, classical serum lipids and apolipoprotein E were included, offspring had larger low-density lipoprotein (LDL) particle sizes (p = 0.017), and lower triglyceride levels (p = 0.026), indicating that they displayed a more beneficial lipid profile. After backwards regression only LDL size (p = 0.014) and triglyceride levels (p = 0.05) were associated with offspring from long-lived families. Sex-specific backwards regression analysis revealed that LDL particle sizes were associated with male longevity (increase in log odds ratio (OR) per unit = 0.21; p = 0.023). Triglyceride levels (decrease OR per unit = 0.22; p = 0.01), but not LDL particle size, were associated with female longevity. Due to the analysis of a comprehensive lipid profile, we confirmed an important role of lipid metabolism in human longevity, with LDL size and triglyceride levels as major predicting factors.
Collapse
Affiliation(s)
- Anika A M Vaarhorst
- Molecular Epidemiology Section, Department Medical Statistics and Bioinformatics, Leiden University Medical Centre, RC, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
23
|
Beigneux AP, Davies BSJ, Bensadoun A, Fong LG, Young SG. GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res 2008; 50 Suppl:S57-62. [PMID: 18854402 DOI: 10.1194/jlr.r800030-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GPIHBP1, a small glycosylphosphatidylinositol-anchored glycoprotein, is required for the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1 knockout mice exhibit chylomicronemia, even on a low-fat diet, with plasma triglyceride levels of 3,500-5,000 mg/dl. GPIHBP1 is expressed highly in heart, adipose tissue, and skeletal muscle, the same tissues that express high levels of lipoprotein lipase (LPL). In each of these tissues, GPIHBP1 is located in capillary endothelial cells. Chinese hamster ovary (CHO) cells transfected with a GPIHBP1 expression vector bind LPL and chylomicrons avidly. The expression of GPIHBP1 in mice is modulated by fasting and refeeding and is also regulated by peroxisome proliferator-activated receptor (PPAR)gamma agonists. Here, we review recent progress in understanding GPIHBP1 and discuss its role in lipolysis.
Collapse
Affiliation(s)
- Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|