1
|
Bibars RS, Al-Balas QA. Computational fragment-based drug design of potential Glo-I inhibitors. J Enzyme Inhib Med Chem 2024; 39:2301758. [PMID: 38247330 PMCID: PMC10810659 DOI: 10.1080/14756366.2024.2301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, a fragment-based drug design approach, particularly de novo drug design, was implemented utilising three different crystal structures in order to discover new privileged scaffolds against glyoxalase-I enzyme as anticancer agents. The fragments were evoluted to indicate potential inhibitors with high receptor affinities. The resulting compounds were served as a benchmark for choosing similar compounds from the ASINEX® database by applying different computational ligand-based drug design techniques. Afterwards, the selection of potential hits was further aided by various structure-based approaches. Then, 14 compounds were purchased, and tested in vitro against Glo-I enzyme. Of the tested 14 hits, the biological screening results showed humble activities where the percentage of Glo-I inhibition ranged from 0-18.70 %. Compound 19 and compound 28, whose percentage of inhibitions are 18.70 and 15.80%, respectively, can be considered as hits that need further optimisation in order to be converted into lead-like compounds.
Collapse
Affiliation(s)
- Roaa S. Bibars
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qosay A. Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Yanagi K, Komatsu T, Fujikawa Y, Kojima H, Okabe T, Nagano T, Ueno T, Hanaoka K, Urano Y. Development of pathway-oriented screening to identify compounds to control 2-methylglyoxal metabolism in tumor cells. Commun Chem 2023; 6:68. [PMID: 37055561 PMCID: PMC10102174 DOI: 10.1038/s42004-023-00864-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Controlling tumor-specific alterations in metabolic pathways is a useful strategy for treating tumors. The glyoxalase pathway, which metabolizes the toxic electrophile 2-methylglyoxal (MG), is thought to contribute to tumor pathology. We developed a live cell-based high-throughput screening system that monitors the metabolism of MG to generate D-lactate by glyoxalase I and II (GLO1 and GLO2). It utilizes an extracellular coupled assay that uses D-lactate to generate NAD(P)H, which is detected by a selective fluorogenic probe designed to respond exclusively to extracellular NAD(P)H. This metabolic pathway-oriented screening is able to identify compounds that control MG metabolism in live cells, and we have discovered compounds that can directly or indirectly inhibit glyoxalase activities in small cell lung carcinoma cells.
Collapse
Affiliation(s)
- Kouichi Yanagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, 192-0392, Japan
| | - Hirotatsu Kojima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuo Nagano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Chugai Foundation for Innovative Drug Discover Science, 4-11-5 Nihonbashi Honcho, Chuo-ku, Tokyo, 103-0023, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shiba-koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Xu Y, Zhou X, Gao L, Yan S, Li Z, Zhang D, Pu J, Zou S, Mao Z. Identification of HAGHL as a novel metabolic oncogene regulating human colorectal cancer progression. Clin Transl Oncol 2023; 25:1033-1042. [PMID: 36417085 DOI: 10.1007/s12094-022-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Cancer development remains the most challenging obstacle in colorectal cancer (CRC) treatment. The current study aims to identify and demonstrate novel oncogenes for CRC. METHODS The CRC data of the Cancer Genome Atlas database and the Gene Expression Omnibus database were subjected to bioinformatics analysis to identify the novel potential diagnostic and prognostic biomarkers for CRC. Immunohistochemical assay, western blot, and quantitative PCR (qPCR) were used to analyze hydroxyacylglutathione hydrolase-like (HAGHL) gene expression in CRC tissues and cultured CRC cells. D-Lactate colorimetric assay was applied to determine concentration of D-lactate in supernatants from CRC tissues and cell culture medium. Cell counting kit-8 (CCK-8) assay, flow cytometry, tumor xenografts experiment, and TUNEL staining analysis were performed to evaluate the function of HAGHL in CRC. RESULTS We comprehensively analyzed the CRC data of the Cancer Genome Atlas database and the Gene Expression Omnibus database, and identified several novel potential diagnostic and prognostic biomarkers for CRC, including HAGHL, DNTTIP1, DHX34, and AP1S3. The expression of HAGHL, the strongest oncogenic activity gene, is positively related to D-lactate levels in CRC tissues and negatively associated with patient prognosis. HAGHL downregulation suppressed the production of D-lactate and induced apoptosis, resulting in inhibition of cell proliferation in vitro. In vivo experiment showed that knockdown of HAGHL induced cell apoptosis and inhibited tumor growth. CONCLUSION These findings suggest that HAGHL acts as a novel metabolic oncogene and demonstrate the underlying mechanism by which HAGHL regulates CRC progression, highlighting its utility as a diagnostic and prognostic factor and as a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Yan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhenyun Li
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Daiyi Zhang
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Jianhong Pu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, 16 Baita West Road, Suzhou, 215001, Jiangsu, People's Republic of China.
| | - Zhongqi Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Audat SA, Al-Balas QA, Al-Oudat BA, Athamneh MJ, Bryant-Friedrich A. Design, Synthesis and Biological Evaluation of 1,4-Benzenesulfonamide Derivatives as Glyoxalase I Inhibitors. Drug Des Devel Ther 2022; 16:873-885. [PMID: 35378924 PMCID: PMC8976160 DOI: 10.2147/dddt.s356621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glyoxalase system is one of the defense cellular mechanisms that protect cells against endogenous harmful metabolites, mainly methylglyoxal (MG), through conversion of cytotoxic methylglyoxal into the non-toxic lactic acid. Glyoxalase system comprises of two enzymes glyoxalase I, glyoxalase II, and a catalytic amount of reduced glutathione. Cancerous cells overexpress glyoxalase I, making it a target for cancer therapy. Many studies have been conducted to identify potent Glx-I inhibitors. Methods Aiming to discover and develop novel Glx-I inhibitors, a series of 1,4-benzenesulfonamide derivatives were designed, synthesized, and biologically evaluated in vitro against human Glx-I enzyme. Seventeen compounds were designed based on the hit compound that was obtained from searching the National Cancer Institute (NCI) database. The synthesis of the target compounds (13-29) was accomplished utilizing an azo coupling reaction of aniline derivatives and activated substituted aromatic compounds. To understand the binding mode of the active compounds at the active site of Glx-I, docking studies were performed. Results Structure activity relationship (SAR) studies were accomplished which led to the identification of several compounds that showed potent inhibitory activity with IC50 values below 10 μM. Among the compounds tested, compounds (E)-2-hydroxy-5-((4-sulfamoylphenyl)diazenyl)benzoic acid (26) and (E)-4-((8-hydroxyquinolin-5-yl)diazenyl) benzenesulfonamide (28) displayed potent Glx-I inhibitory activity with IC50 values of 0.39 μM and 1.36 µM, respectively. Docking studies of compounds 26 and 28 were carried out to illustrate the binding mode of the molecules into the Glx-I active site. Conclusion Our results show that compounds 26 and 28 displayed potent Glx-I inhibitory activity and can bind the Glx-I well. These findings should lead us to discover new classes of compounds with better Glx-I inhibition.
Collapse
Affiliation(s)
- Suaad Abdallah Audat
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Qosay Ali Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Buthina Abdallah Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mo’ad Jamil Athamneh
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amanda Bryant-Friedrich
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
5
|
Hu Y, Li H, Min J, Yu Y, Liu W, Huang JW, Zhang L, Yang Y, Dai L, Chen CC, Guo RT. Crystal structure and biochemical analysis of the specialized deoxynivalenol-detoxifying glyoxalase SPG from Gossypium hirsutum. Int J Biol Macromol 2022; 200:388-396. [PMID: 35051496 DOI: 10.1016/j.ijbiomac.2022.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
Abstract
Deoxynivalenol (DON) and its acetylated derivatives such as 3-acetyldeoxynivalenol (3A-DON) and 15-acetyldeoxynivalenol (15A-DON) are notorious mycotoxins in Fusarium contaminated cereals, which pose a great threat to human and livestock health. The specialized glyoxalase I from Gossypium hirsutum (SPG) can lower the toxicity of 3A-DON by conducting isomerization to transfer C8 carbonyl to C7 and double bond from C9-C10 to C8-C9. Here we report that the substrate-flexible SPG can also recognize 15A-DON and DON, probably following the same isomerization mechanism as that for 3A-DON. The crystallographic, mutagenesis, and biochemical analyses revealed that SPG provides a hydrophobic pocket to accommodate the substrate and residue E167 might serve as the catalytic base. A variant SPGY62A that was constructed based on structure-based protein engineering exhibited elevated catalytic activity towards DON, 3A-DON, and 15A-DON by >70%. Furthermore, variant SPGY62A was successfully expressed in Pichia pastoris, whose catalytic activity was also compared to that produced in Escherichia coli. These results provide a blueprint for further protein engineering of SPG and reveal the potential applications of the enzyme in detoxifying DON, 3A-DON and 15A-DON.
Collapse
Affiliation(s)
- Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yuanyuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Weidong Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yunyun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Lead Optimization and Biological Evaluation of Diazenylbenzenesulfonamides Inhibitors Against Glyoxalase-I Enzyme as Potential Anticancer Agents. Bioorg Chem 2022; 120:105657. [DOI: 10.1016/j.bioorg.2022.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/25/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
|
7
|
Zhang N, Jiang N, Yu L, Guan T, Sang X, Feng Y, Chen R, Chen Q. Protein Lactylation Critically Regulates Energy Metabolism in the Protozoan Parasite Trypanosoma brucei. Front Cell Dev Biol 2021; 9:719720. [PMID: 34722503 PMCID: PMC8551762 DOI: 10.3389/fcell.2021.719720] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Lysine lactylation has been recognized as a novel post-translational modification occurring on histones. However, lactylation in non-histone proteins, especially in proteins of early branching organisms, is not well understood. Energy metabolism and the histone repertoire in the early diverging protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis, markedly diverge from those of conventional eukaryotes. Here, we present the first exhaustive proteome-wide investigation of lactylated sites in T. brucei. We identified 387 lysine-lactylated sites in 257 proteins of various cellular localizations and biological functions. Further, we revealed that glucose metabolism critically regulates protein lactylation in T. brucei although the parasite lacks lactate dehydrogenase. However, unlike mammals, increasing the glucose concentration reduced the level of lactate, and protein lactylation decreased in T. brucei via a unique lactate production pathway. In addition to providing a valuable resource, these foregoing data reveal the regulatory roles of protein lactylation of trypanosomes in energy metabolism and gene expression.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Liying Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Tiandong Guan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
8
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
9
|
Al-Balas QA, Al-Sha'er MA, Hassan MA, Al Zu'bi E. Identification of the first "two digit nano-molar" inhibitors of the human glyoxalase-I enzyme as potential anticancer agents. Med Chem 2021; 18:473-483. [PMID: 34264188 DOI: 10.2174/1573406417666210714170403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyoxalase-I (Glo-I) enzyme is recognized as an indispensable druggable target in cancer treatment. Its inhibition will lead to the accumulation of toxic aldehyde metabolites and cell death. Paramount efforts were spent to discover potential competitive inhibitors to eradicate cancer. OBJECTIVE Based on our previously work on this target for discovering potent inhibitors of this enzyme, herein, we address the discovery of the most potent Glo-I inhibitors reported in literature with two digits nano-molar activity. METHODS Molecular docking and in vitro assay were performed to discover these inhibitors and explore the active site's binding pattern. A detailed SAR scheme was generated, which identifies the significant functionalities responsible for the observed activity. RESULTS Compound 1 with an IC50 of 16.5 nM exhibited the highest activity, catechol moiety as an essential zinc chelating functionality. It has been shown by using molecular modeling techniques that the catechol moiety is responsible for the chelation zinc atom at the active site, an essential feature for enzyme inhibition. CONCLUSION Catechol derivatives are successful zinc chelators in the Glo-I enzyme while showing exceptional activity against the enzyme to the nanomolar level.
Collapse
Affiliation(s)
- Qosay A Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Mohammad A Hassan
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Esra'a Al Zu'bi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:115-130. [PMID: 32697740 DOI: 10.2478/acph-2021-0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 01/19/2023]
Abstract
The glyoxalase system, particularly glyoxalase-I (GLO-I), has been approved as a potential target for cancer treatment. In this study, a set of structurally diverse polyphenolic natural compounds were investigated as potential GLO-I inhibitors. Ellagic acid was found, computationally and experimentally, to be the most potent GLO-I inhibitor among the tested compounds which showed an IC50 of 0.71 mmol L-1. Its binding to the GLO-I active site seemed to be mainly driven by ionic interaction via its ionized hydroxyl groups with the central Zn ion and Lys156, along with other numerous hydrogen bonding and hydrophobic interactions. Due to its unique and rigid skeleton, it can be utilized to search for other novel and potent GLO-I inhibitors via computational approaches such as pharmacophore modeling and similarity search methods. Moreover, an inspection of the docked poses of the tested compounds showed that chlorogenic acid and dihydrocaffeic acid could be considered as lead compounds worthy of further optimization.
Collapse
|
11
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
12
|
Al-Oudat BA, Jaradat HM, Al-Balas QA, Al-Shar'i NA, Bryant-Friedrich A, Bedi MF. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents. Bioorg Med Chem 2020; 28:115608. [PMID: 32690268 DOI: 10.1016/j.bmc.2020.115608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
The enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure-activity relationships. Among the compounds tested, compounds 9h and 9j exhibited the highest activity with IC50 1.28 µM and 1.13 µM, respectively. Docking studies to explore the binding mode of the compounds identified key moieties that may contribute to the observed activities. The active compounds will serve as suitable leads for further chemical optimization.
Collapse
Affiliation(s)
- Buthina A Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Hana'a M Jaradat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Qosay A Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Amanda Bryant-Friedrich
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mel F Bedi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
13
|
Jin T, Zhao L, Wang HP, Huang ML, Yue Y, Lu C, Zheng ZB. Recent advances in the discovery and development of glyoxalase I inhibitors. Bioorg Med Chem 2019; 28:115243. [PMID: 31879183 DOI: 10.1016/j.bmc.2019.115243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Glyoxalase I (GLO1) is a homodimeric Zn2+-metalloenzyme that catalyses the transformation of methylglyoxal (MG) to d-lacate through the intermediate S-d-lactoylglutathione. Growing evidence indicates that GLO1 has been identified as a potential target for the treatment cancer and other diseases. Various inhibitors of GLO1 have been discovered or developed over the past several decades including natural or natural product-based inhibitors, GSH-based inhibitors, non-GSH-based inhibitors, etc. The aim of this review is to summarize recent achievements of concerning discovery, design strategies, as well as pharmacological aspects of GLO1 inhibitors with the target of promoting their development toward clinical application.
Collapse
Affiliation(s)
- Tian Jin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| | - Lu Zhao
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China.
| | - Hong-Ping Wang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, People's Republic of China
| | - Mao-Lin Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Yan Yue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China
| | - Chichong Lu
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Zhe-Bin Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, People's Republic of China.
| |
Collapse
|
14
|
Al-Shar’i NA, Al-Balas QA, Al-Waqfi RA, Hassan MA, Alkhalifa AE, Ayoub NM. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking. J Comput Aided Mol Des 2019; 33:799-815. [DOI: 10.1007/s10822-019-00226-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
|
15
|
Antognelli C, Moretti S, Frosini R, Puxeddu E, Sidoni A, Talesa VN. Methylglyoxal Acts as a Tumor-Promoting Factor in Anaplastic Thyroid Cancer. Cells 2019; 8:cells8060547. [PMID: 31174324 PMCID: PMC6627963 DOI: 10.3390/cells8060547] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Methylglyoxal (MG) is a potent inducer of advanced glycation end products (AGEs). MG, long considered a highly cytotoxic molecule with potential anticancer value, is now being re-evaluated to a protumorigenic agent in some malignancies. Anaplastic thyroid cancer (ATC) is an extremely aggressive and highly lethal cancer for which conventional therapies have proved ineffective. Successful therapeutic intervention in ATC is undermined by our poor understanding of its molecular etiology. In the attempt to understand the role of MG in ATC aggressiveness, we used immunohistochemistry to examine the level of MG protein adducts in ATC and slow-growing papillary thyroid cancer (PTC). We detected a high level of MG adducts in ATC compared to PTC ones, suggesting a protumor role for MG-mediated dicarbonyl stress in ATC. Accordingly, MG adduct accumulation in ATC cells in vitro was associated with a marked mesenchymal phenotype and increased migration/invasion, which were both reversed by aminoguanidine (AG)—a scavenger of MG—and resveratrol—an activator of Glyoxalase 1 (Glo1), the key metabolizing enzyme of MG. Our study represents the first demonstration that MG, via AGEs, acts as a tumor-promoting factor in ATC and suggests that MG scavengers and/or Glo1 activators merit investigations as potential therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Efisio Puxeddu
- Department of Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Angelo Sidoni
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
16
|
Al-Sha'er MA, Al-Balas QA, Hassan MA, Al Jabal GA, Almaaytah AM. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents. Comput Biol Chem 2019; 80:102-110. [DOI: 10.1016/j.compbiolchem.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
17
|
Perez C, Barkley-Levenson AM, Dick BL, Glatt PF, Martinez Y, Siegel D, Momper JD, Palmer AA, Cohen SM. Metal-Binding Pharmacophore Library Yields the Discovery of a Glyoxalase 1 Inhibitor. J Med Chem 2019; 62:1609-1625. [PMID: 30628789 DOI: 10.1021/acs.jmedchem.8b01868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anxiety and depression are common, highly comorbid psychiatric diseases that account for a large proportion of worldwide medical disability. Glyoxalase 1 (GLO1) has been identified as a possible target for the treatment of anxiety and depression. GLO1 is a Zn2+-dependent enzyme that isomerizes a hemithioacetal, formed from glutathione and methylglyoxal, to a lactic acid thioester. To develop active inhibitors of GLO1, fragment-based drug discovery was used to identify fragments that could serve as core scaffolds for lead development. After screening a focused library of metal-binding pharmacophores, 8-(methylsulfonylamino)quinoline (8-MSQ) was identified as a hit. Through computational modeling and synthetic elaboration, a potent GLO1 inhibitor was developed with a novel sulfonamide core pharmacophore. A lead compound was demonstrated to penetrate the blood-brain barrier, elevate levels of methylglyoxal in the brain, and reduce depression-like behavior in mice. These findings provide the basis for GLO1 inhibitors to treat depression and related psychiatric illnesses.
Collapse
|