1
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
2
|
Estfanous RS, Elseady WS, Kabel AM, Abd Ellatif RA. Amelioration of Cisplatin-Induced Ototoxicity in Rats by L-arginine: The Role of Nitric Oxide, Transforming Growth Factor Beta 1 and Nrf2/HO-1 Pathway. Asian Pac J Cancer Prev 2020; 21:2155-2162. [PMID: 32711445 PMCID: PMC7573422 DOI: 10.31557/apjcp.2020.21.7.2155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cisplatin is an alkylating agent that inhibits DNA replication and interferes with proliferation of cancer cells. However, the major limiting factor for its use is the possible development of adverse effects, including ototoxicity. Up till now, the mechanisms of this ototoxicity remain poorly understood. However, induction of oxidative stress and activation of the inflammatory cascade were suggested as contributing factors. Purpose: The aim of this study was to explore the effect of L-arginine on cisplatin-induced ototoxicity in rats. Methods: Thirty male adult Wistar rats were divided into three equal groups as follows: control group; cisplatin group and cisplatin + L-arginine group. Auditory brainstem response (ABR), tissue oxidative stress parameters, total nitrate/nitrite, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) content, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α) and interleukin 15 (IL-15) were assessed. Also, the cochlear tissues were subjected to histopathological and electron microscopic examination. Results: Administration of L-arginine to cisplatin-treated rats induced significant decrease in the average ABR threshold shifts at all frequencies, tissue TGF-β1, TNF-α and IL-15 associated with significant increase in tissue antioxidant enzymes, total nitrate/nitrite and Nrf2/HO-1 content compared to cisplatin group. Also, pretreatment of cisplatin-injected rats with L-arginine induced significant improvement of the histopathological and electron microscopic picture compared to cisplatin group. Conclusion: L-arginine may serve as a promising therapeutic modality for amelioration of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Remon S Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa S Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.,Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Rasha A Abd Ellatif
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Mutual inter-regulation between iNOS and TGF-β1: Possible molecular and cellular mechanisms of iNOS in wound healing. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165850. [PMID: 32497615 DOI: 10.1016/j.bbadis.2020.165850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/20/2023]
Abstract
Abnormal wound healing with excessive scarring is a major health problem with socioeconomic and psychological impacts. In human, chronic wounds and scarring are associated with upregulation of the inducible nitric oxide synthase (iNOS). Recently, we have shown physiological regulation of iNOS in wound healing. Here, we sought to investigate the possible mechanistic role of iNOS in wound healing using biochemical and immunohistochemical assays. We found: (a) iNOS is the main source of wound nitric oxide (NO), (b) NOS inhibition in the wound, downregulated iNOS protein, mRNA and enzymatic activity, and reduced wound NO, and (c) iNOS inhibition resulted in delayed healing at early time points, and excessive scarring at late time points. Furthermore, molecular and cellular analysis of the wound showed that iNOS inhibition significantly (P < 0.05) increased TGF-β1 mRNA and protein levels, fibroblasts and collagen deposition. These latter findings suggest that iNOS might be exerting its action in the wound by signaling through TGF-β1 that activates wound fibroblasts to produce excessive collagen. Our current findings provide further support that iNOS is crucial for physiological wound healing, and suggest that dysregulation of iNOS during the inflammatory phase impairs healing, and results in disfiguring post-healing scarring. Thus, the mutual feedback regulation between iNOS and TGF-β1 at the gene, protein and functional levels might be the mechanism through which iNOS regulates the healing. Monitoring and maintenance of wound NO levels might be important for healing and avoiding long-term complications in susceptible people including patients with diabetic wounds, venous ulcers or keloid prone.
Collapse
|
4
|
Abd El-Aleem SA, Abdelwahab S, Am-Sherief H, Sayed A. Cellular and physiological upregulation of inducible nitric oxide synthase, arginase, and inducible cyclooxygenase in wound healing. J Cell Physiol 2019; 234:23618-23632. [PMID: 31161614 DOI: 10.1002/jcp.28930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- Cell Biology, School of Biological Sciences, University of Manchester, Manchester, UK.,Histology and Cell Biology, Minia University, Minia, Egypt
| | - Soha Abdelwahab
- Histology and Cell Biology, Minia University, Minia, Egypt.,Histology, Deraya University, New Minia, Egypt
| | - Hany Am-Sherief
- Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Jouf, Sakaka, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| | - Ahmed Sayed
- Histology and Cell Biology, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Di-Blasi T, Telleria EL, Marques C, Couto RDM, da Silva-Neves M, Jancarova M, Volf P, Tempone AJ, Traub-Csekö YM. Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector. Front Cell Infect Microbiol 2019; 9:71. [PMID: 30972305 PMCID: PMC6445956 DOI: 10.3389/fcimb.2019.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the increasing number of studies concerning insect immunity, Lutzomyia longipalpis immune responses in the presence of Leishmania infantum chagasi infection has not been widely investigated. The few available studies analyzed the role of the Toll and IMD pathways involved in response against Leishmania and microbial infections. Nevertheless, effector molecules responsible for controlling sand fly infections have not been identified. In the present study we investigated the role a signal transduction pathway, the Transforming Growth Factor-beta (TGF-β) pathway, on the interrelation between L. longipalpis and L. i. chagasi. We identified an L. longipalpis homolog belonging to the multifunctional cytokine TGF-β gene family (LlTGF-β), which is closely related to the activin/inhibin subfamily and potentially involved in responses to infections. We investigated this gene expression through the insect development and in adult flies infected with L. i. chagasi. Our results showed that LlTGF-β was expressed in all L. longipalpis developmental stages and was upregulated at the third day post L. i. chagasi infection, when protein levels were also higher as compared to uninfected insects. At this point blood digestion is finished and parasites are in close contact with the insect gut. In addition, we investigated the role of LlTGF-β on L. longipalpis infection by L. i. chagasi using either gene silencing by RNAi or pathway inactivation by addition of the TGF-β receptor inhibitor SB431542. The blockage of the LlTGF-β pathway increased significantly antimicrobial peptides expression and nitric oxide levels in the insect gut, as expected. Both methods led to a decreased L. i. chagasi infection. Our results show that inactivation of the L. longipalpis TGF-β signal transduction pathway reduce L. i. chagasi survival, therefore suggesting that under natural conditions the parasite benefits from the insect LlTGF-β pathway, as already seen in Plamodium infection of mosquitoes.
Collapse
Affiliation(s)
- Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.,Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Christiane Marques
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo de Macedo Couto
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monique da Silva-Neves
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Magdalena Jancarova
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Pakpour N, Riehle MA, Luckhart S. Effects of ingested vertebrate-derived factors on insect immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:1-5. [PMID: 25401083 PMCID: PMC4228800 DOI: 10.1016/j.cois.2014.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During the process of blood feeding insect vectors are exposed to an array of vertebrate-derived blood factors ranging from byproducts of blood meal digestion to naturally occurring products in the blood including growth hormones, cytokines and factors derived from blood-borne pathogens themselves. In this review, we examine the ability of these ingested vertebrate blood factors to alter the innate pathogen defenses of insect vectors. The ability of these factors to modify the immune responses of insect vectors offers new intriguing targets for blocking or reducing transmission of human disease-causing pathogens.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, Arizona 85721
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| |
Collapse
|
7
|
Price I, Ermentrout B, Zamora R, Wang B, Azhar N, Mi Q, Constantine G, Faeder JR, Luckhart S, Vodovotz Y. In vivo, in vitro, and in silico studies suggest a conserved immune module that regulates malaria parasite transmission from mammals to mosquitoes. J Theor Biol 2013; 334:173-86. [PMID: 23764028 DOI: 10.1016/j.jtbi.2013.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/24/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Human malaria can be caused by the parasite Plasmodium falciparum that is transmitted by female Anopheles mosquitoes. "Immunological crosstalk" between the mammalian and anopheline hosts for Plasmodium functions to control parasite numbers. Key to this process is the mammalian cytokine transforming growth factor-β1 (TGF-β1). In mammals, TGF-β1 regulates inducible nitric oxide (NO) synthase (iNOS) both positively and negatively. In some settings, high levels of NO activate latent TGF-β1, which in turn suppresses iNOS expression. In the mosquito, ingested TGF-β1 induces A. stephensi NOS (AsNOS), which limits parasite development and which in turn is suppressed by activation of the mosquito homolog of the mitogen-activated protein kinases MEK and ERK. Computational models linking TGF-β1, AsNOS, and MEK/ERK were developed to provide insights into this complex biology. An initial Boolean model suggested that, as occurs in mammalian cells, MEK/ERK and AsNOS would oscillate upon ingestion of TGF-β1. An ordinary differential equation (ODE) model further supported the hypothesis of TGF-β1-induced multiphasic behavior of MEK/ERK and AsNOS. To achieve this multiphasic behavior, the ODE model was predicated on the presence of constant levels of TGF-β1 in the mosquito midgut. Ingested TGF-β1, however, did not exhibit this behavior. Accordingly, we hypothesized and experimentally verified that ingested TGF-β1 induces the expression of the endogenous mosquito TGF-β superfamily ligand As60A. Computational simulation of these complex, cross-species interactions suggested that TGF-β1 and NO-mediated induction of As60A expression together may act to maintain multiphasic AsNOS expression via MEK/ERK-dependent signaling. We hypothesize that multiphasic behavior as represented in this model allows the mosquito to balance the conflicting demands of parasite killing and metabolic homeostasis in the face of damaging inflammation.
Collapse
Affiliation(s)
- Ian Price
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S. The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 2013; 15:243-54. [PMID: 23370408 DOI: 10.1016/j.micinf.2013.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/11/2022]
Abstract
The blood feeding behavior of disease-transmitting arthropods creates a unique intersection between vertebrate and invertebrate physiology. Here, we review host blood-derived factors that persist through blood digestion to affect the lifespan, reproduction, and immune responses of some of the most common arthropod vectors of human disease.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
9
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 2010; 32:181-95. [PMID: 20170421 PMCID: PMC3134151 DOI: 10.3109/08923970903369867] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Tyagi P, Tyagi V, Yoshimura N, Witteemer E, Barclay D, Loughran PA, Zamora R, Vodovotz Y. Gender-based reciprocal expression of transforming growth factor-beta1 and the inducible nitric oxide synthase in a rat model of cyclophosphamide-induced cystitis. JOURNAL OF INFLAMMATION-LONDON 2009; 6:23. [PMID: 19691848 PMCID: PMC2736585 DOI: 10.1186/1476-9255-6-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND The pluripotent cytokine transforming growth factor-beta1 (TGF-beta1) is the central regulator of inducible Nitric Oxide Synthase (iNOS) that is responsible for nitric oxide (NO) production in inflammatory settings. Previous studies have implicated a role for NO, presumably derived from iNOS, in cyclophosphamide (CYP)-induced cystitis in the bladder. TGF-beta1 is produced in latent form and requires dissociation from the latency-associated peptide (LAP) to act as primary anti-inflammatory and pro-healing modulator following tissue injury in the upper urinary tract. Since the role of TGF-beta1 in lower urinary tract inflammation is currently unknown, and since gender-based differences exist in the setting of interstitial cystitis (IC), the present study examined the relationship between TGF-beta1 and iNOS/NO in the pathogenesis of CYP-induced cystitis in both male and female rats. METHODS Sprague-Dawley rats, 4 months of age, of either gender were given 150 mg/kg CYP intraperitoneally. Urinary and bladder tissue TGF-beta1 and NO reaction products (NO2-/NO3-) were quantified as a function of time following CYP. Expression of active and latent TGF-beta1 as well as iNOS in harvested bladder tissue was assessed by immunohistochemistry. RESULTS Female rats had significantly higher levels of NO2-/NO3- in urine even at baseline as compared to male rats (p < 0.001), whereas there was no gender based significant difference in urine levels of active or latent TGF-beta1 prior to CYP injection. Inflammatory and cytotoxic changes were induced by CYP in the bladder of both sexes that were accompanied by differences in the urine levels of NO2-/NO3- and TGF-beta1. Male rats responded to CYP with significantly lower levels of NO2-/NO3- and significantly higher levels of TGF-beta1 in urine (p < 0.05) as compared to females at all time points after CYP. The urine levels of NO2-/NO3- after CYP were inversely correlated to latent and active TGF-beta1 (Pearson coefficient of -0.72 and -0.69 in females and -0.89 and -0.76 in males, respectively; p < 0.01). Bladder tissue of male rats exhibited significantly higher levels of both latent and active TGF-beta1 (p < 0.01) compared to female rats after CYP. TGF-beta1 and iNOS protein was mostly localized in the urothelium. CONCLUSION The results of this study suggest that there exists an inverse relationship between the expression of TGF-beta1 and iNOS/NO2-/NO3- in CYP-inflamed bladder. The gender of the animal appears to magnify the differences in urine levels of TGF-beta1 and NO2-/NO3- in this inflammatory setting. These results support the hypothesis that TGF-beta1 can suppress iNOS expression associated with bladder inflammation and reduce systemic levels of NO2-/NO3-, and further suggest that this feature of TGF-beta1 can be harnessed for therapy and diagnosis of interstitial cystitis.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Surgery, University of Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 2009; 5:e1000366. [PMID: 19343212 PMCID: PMC2658807 DOI: 10.1371/journal.ppat.1000366] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/05/2009] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anopheles is controlled by ingested human TGF-beta1 and finely tunes mosquito innate immunity to parasite infection. Specifically, MEK-ERK signaling was dose-dependently induced in response to TGF-beta1 in immortalized cells in vitro and in the A. stephensi midgut epithelium in vivo. At the highest treatment dose of TGF-beta1, inhibition of ERK phosphorylation increased TGF-beta1-induced expression of the anti-parasite effector gene nitric oxide synthase (NOS), suggesting that increasing levels of ERK activation negatively feed back on induced NOS expression. At infection levels similar to those found in nature, inhibition of ERK activation reduced P. falciparum oocyst loads and infection prevalence in A. stephensi and enhanced TGF-beta1-mediated control of P. falciparum development. Taken together, our data demonstrate that malaria parasite development in the mosquito is regulated by a conserved MAPK signaling pathway that mediates the effects of an ingested cytokine.
Collapse
|
14
|
Low levels of mammalian TGF-beta1 are protective against malaria parasite infection, a paradox clarified in the mosquito host. Exp Parasitol 2007; 118:290-6. [PMID: 17920060 DOI: 10.1016/j.exppara.2007.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/22/2007] [Accepted: 08/28/2007] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO), derived from catalysis of inducible NO synthase (iNOS), limits malaria parasite growth in mammals. Transforming growth factor (TGF)-beta1 suppresses iNOS in cells in vitro as well as in vivo in mice, but paradoxically severe malaria in humans is associated with low levels of TGF-beta1. We hypothesized that this paradox is a universal feature of infection and occurs in the mosquito Anopheles stephensi, an invertebrate host for Plasmodium that also regulates parasite development with inducible NO synthase (AsNOS). We show that exogenous human TGF-beta1 dose-dependently regulates mosquito AsNOS expression and that parasite killing by low dose TGF-beta1 depends on AsNOS catalysis. Furthermore, induction of AsNOS expression by TGF-beta1 is regulated by NO synthesis. These results suggest that TGF-beta1 plays similar roles during parasite infection in mammals and mosquitoes and that this role is linked to the effects of TGF-beta1 on inducible NO synthesis.
Collapse
|
15
|
Luckhart S, Riehle MA. The insulin signaling cascade from nematodes to mammals: insights into innate immunity of Anopheles mosquitoes to malaria parasite infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:647-56. [PMID: 17161866 PMCID: PMC2233911 DOI: 10.1016/j.dci.2006.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/24/2006] [Accepted: 10/27/2006] [Indexed: 05/12/2023]
Abstract
As revealed over the past 20 years, the insulin signaling cascade plays a central role in regulating immune and oxidative stress responses that affect the life spans of mammals and two model invertebrates, the nematode Caenorhabitis elegans and the fruit fly Drosophila melanogaster. In mosquitoes, insulin signaling regulates key steps in egg maturation and immunity and likely affects aging, although the latter has yet to be examined in detail. Reproduction, immunity and aging critically influence the capacity of mosquitoes to effectively transmit malaria parasites. Current work has demonstrated that molecules from the invading parasite and the blood meal elicit functional responses in female mosquitoes that are regulated through the insulin signaling pathway or by cross-talk with interacting pathways. Defining the details of these regulatory interactions presents significant challenges for future research, but will increase our understanding of mosquito/malaria parasite transmission and of the conservation of insulin signaling as a key regulatory nexus in animal biology.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Medical Microbiology and Immunology School of Medicine, University of California at Davis 3437 Tupper Hall, One Shields Avenue, Davis, CA 95616 USA, Tel: (530) 754-6963, Fax: (530) 752-8692, E-mail:
| | - Michael A. Riehle
- Department of Entomology College of Agriculture & Life Sciences, University of Arizona 410 Forbes, PO Box 210036 Tucson AZ 85721 USA Tel: (520) 626-8500 Fax: (520) 621-1150 E-mail:
| |
Collapse
|