1
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Aazad AA, Choudhury A, Hussain A, AlAjmi MF, Mohammad T, Prabha S, Sharma MK, Shamsi A, Hassan MI. Exploring phytochemical inhibitors of protein kinase C alpha for therapeutic targeting of Alzheimer's disease. J Alzheimers Dis 2024; 102:703-719. [PMID: 39523500 DOI: 10.1177/13872877241289620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy. OBJECTIVE Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial. METHODS In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database. RESULTS Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα. CONCLUSIONS Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.
Collapse
Affiliation(s)
- A A Aazad
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
4
|
Anannya O, Huang W, August A. The kinase ITK controls a Ca 2+-mediated switch that balances T H17 and T reg cell differentiation. Sci Signal 2024; 17:eadh2381. [PMID: 39042726 PMCID: PMC11445781 DOI: 10.1126/scisignal.adh2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/13/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
The balance of proinflammatory T helper type 17 (TH17) and anti-inflammatory T regulatory (Treg) cells is crucial for immune homeostasis in health and disease. The differentiation of naïve CD4+ T cells into TH17 and Treg cells depends on T cell receptor (TCR) signaling mediated, in part, by interleukin-2-inducible T cell kinase (ITK), which stimulates mitogen-activated protein kinases (MAPKs) and Ca2+ signaling. Here, we report that, in the absence of ITK activity, naïve murine CD4+ T cells cultured under TH17-inducing conditions expressed the Treg transcription factor Foxp3 and did not develop into TH17 cells. Furthermore, ITK inhibition in vivo during allergic inflammation increased the Treg:TH17 ratio in the lung. These switched Foxp3+ Treg-like cells had suppressive function, and their transcriptomic profile resembled that of differentiated, induced Treg (iTreg) cells, but their chromatin accessibility profiles were intermediate between TH17 and iTreg cells. Like iTreg cells, switched Foxp3+ Treg-like cells had reductions in the expression of genes involved in mitochondrial oxidative phosphorylation and glycolysis, in the activation of the mechanistic target of rapamycin (mTOR) signaling pathway, and in the abundance of the TH17 pioneer transcription factor BATF. This ITK-dependent switch between TH17 and Treg cells depended on Ca2+ signaling but not on MAPKs. These findings suggest potential strategies for fine-tuning TCR signal strength through ITK to control the balance of TH17 and Treg cells.
Collapse
Affiliation(s)
- Orchi Anannya
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Shi X, Liao T, Chen Y, Chen J, Liu Y, Zhao J, Dang J, Sun Q, Pan Y. Dihydroartemisinin inhibits follicular helper T and B cells: implications for systemic lupus erythematosus treatment. Arch Pharm Res 2024; 47:632-644. [PMID: 38977652 DOI: 10.1007/s12272-024-01505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton's tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Liao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingrong Chen
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Zhao
- Department of Clinical Immunology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junlong Dang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qipeng Sun
- Department of Kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfeng Pan
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Schwartz J, Capistrano KJ, Gluck J, Hezarkhani A, Naqvi AR. SARS-CoV-2, periodontal pathogens, and host factors: The trinity of oral post-acute sequelae of COVID-19. Rev Med Virol 2024; 34:e2543. [PMID: 38782605 PMCID: PMC11260190 DOI: 10.1002/rmv.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
COVID-19 as a pan-epidemic is waning but there it is imperative to understand virus interaction with oral tissues and oral inflammatory diseases. We review periodontal disease (PD), a common inflammatory oral disease, as a driver of COVID-19 and oral post-acute-sequelae conditions (PASC). Oral PASC identifies with PD, loss of teeth, dysgeusia, xerostomia, sialolitis-sialolith, and mucositis. We contend that PD-associated oral microbial dysbiosis involving higher burden of periodontopathic bacteria provide an optimal microenvironment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These pathogens interact with oral epithelial cells activate molecular or biochemical pathways that promote viral adherence, entry, and persistence in the oral cavity. A repertoire of diverse molecules identifies this relationship including lipids, carbohydrates and enzymes. The S protein of SARS-CoV-2 binds to the ACE2 receptor and is activated by protease activity of host furin or TRMPSS2 that cleave S protein subunits to promote viral entry. However, PD pathogens provide additional enzymatic assistance mimicking furin and augment SARS-CoV-2 adherence by inducing viral entry receptors ACE2/TRMPSS, which are poorly expressed on oral epithelial cells. We discuss the mechanisms involving periodontopathogens and host factors that facilitate SARS-CoV-2 infection and immune resistance resulting in incomplete clearance and risk for 'long-haul' oral health issues characterising PASC. Finally, we suggest potential diagnostic markers and treatment avenues to mitigate oral PASC.
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic Sciences, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | | | - Joseph Gluck
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Armita Hezarkhani
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| | - Afsar R. Naqvi
- Department of Periodontics, University of Illinois Chicago, Chicago, Illinois, 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, 60612, USA
| |
Collapse
|
7
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Anannya O, Huang W, August A. ITK signaling regulates a switch between T helper 17 and T regulatory cell lineages via a calcium-mediated pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535229. [PMID: 37066370 PMCID: PMC10103963 DOI: 10.1101/2023.04.01.535229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The balance of pro-inflammatory T helper type 17 (Th17) and anti-inflammatory T regulatory (Treg) cells is crucial in maintaining immune homeostasis in health and disease conditions. Differentiation of naïve CD4+ T cells into Th17/Treg cells is dependent upon T cell receptor (TCR) activation and cytokine signaling, which includes the kinase ITK. Signals from ITK can regulate the differentiation of Th17 and Treg cell fate choice, however, the mechanism remains to be fully understood. We report here that in the absence of ITK activity, instead of developing into Th17 cells under Th17 conditions, naïve CD4+ T cells switch to cells expressing the Treg marker Foxp3 (Forkhead box P3). These switched Foxp3+ Treg like cells retain suppressive function and resemble differentiated induced Tregs in their transcriptomic profile, although their chromatin accessibility profiles are intermediate between Th17 and induced Tregs cells. Generation of the switched Foxp3+ Treg like cells was associated with reduced expression of molecules involved in mitochondrial oxidative phosphorylation and glycolysis, with reduced activation of the mTOR signaling pathway, and reduced expression of BATF. This ITK dependent switch between Th17 and Treg cells was reversed by increasing intracellular calcium. These findings suggest potential strategies for fine tune the TCR signal strength via ITK to regulate the balance of Th17/Treg cells.
Collapse
Affiliation(s)
- Orchi Anannya
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Song P, Bai G, Chan S, Zhang T, Tong L, Su Y, Shen Y, Chen Y, Liu Y, Lai M, Ning Y, Tang H, Fang Y, Chen Y, Ding K, Ding J, Xie H. ASK120067 potently suppresses B-cell or T-cell malignancies in vitro and in vivo by inhibiting BTK and ITK. Front Pharmacol 2022; 13:1071114. [PMID: 36588692 PMCID: PMC9799096 DOI: 10.3389/fphar.2022.1071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperactivation of Bruton's tyrosine kinase (BTK) or interleukin-2-inducible T cell kinase (ITK) has been attributed to the pathogenesis of B-cell lymphoma or T-cell leukemia, respectively, which suggests that Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase are critical targets for the treatment of hematological malignancies. We identified a novel third-generation epidermal growth factor receptor (EGFR) inhibitor, ASK120067 (limertinib) in our previous research, which has been applied as a new drug application against non-small cell lung cancer in China. In this work, we found that ASK120067 displayed potent in vitro inhibitory efficacy against Bruton's tyrosine kinase protein and interleukin-2-inducible T cell kinase protein via covalent binding. In cell-based assays, ASK120067 dose-dependently suppressed Bruton's tyrosine kinase phosphorylation and exhibited anti-proliferation potency by inducing apoptosis in numerous B-lymphoma cells. Meanwhile, it caused growth arrest and induced the apoptosis of T-cell leukemia cells by attenuating interleukin-2-inducible T cell kinase activation. Oral administration of ASK120067 led to significant tumor regression in B-cell lymphoma and T-cell leukemia xenograft models by weakening Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase signaling, respectively. Taken together, our studies demonstrated that ASK120067 exerted preclinical anti-tumor activities against B-/T-cell malignancy by targeting BTK/ITK.
Collapse
Affiliation(s)
- Peiran Song
- 1Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gang Bai
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shingpan Chan
- 3College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Zhang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linjiang Tong
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Su
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Shen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingqiang Liu
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengzhen Lai
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,4Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Ning
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Tang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Fang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ding
- 3College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Ding
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,*Correspondence: Jian Ding, ; Hua Xie,
| | - Hua Xie
- 1Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,*Correspondence: Jian Ding, ; Hua Xie,
| |
Collapse
|
10
|
Choi YJ, Kim C, Choi EW, Lee SH, Chae MK, Jun HO, Kim BY, Yoon JS, Jang SY. MicroRNA-155 acts as an anti-inflammatory factor in orbital fibroblasts from Graves’ orbitopathy by repressing interleukin-2-inducible T-cell kinase. PLoS One 2022; 17:e0270416. [PMID: 35980936 PMCID: PMC9387810 DOI: 10.1371/journal.pone.0270416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of microRNA (miR)-155 in inflammation in an in-vitro model of Graves’ orbitopathy (GO). The expression levels of miR-155 were compared between GO and non-GO orbital tissues. The effects of inflammatory stimulation of interleukin (IL)-1β and tumour necrosis factor alpha (TNF-α) on miR-155 expression on GO and non-GO orbital fibroblasts (OFs) were investigated. The effects of miR-155 mimics and inhibitors of inflammatory proteins and IL-2-inducible T-cell kinase (ITK) expression were examined, along with those related to the knockdown of ITK with siITK transfection on inflammatory proteins. We also examined how ITK inhibitors affect miR-155 expression in GO and non-GO OFs. The expression levels of miR-155 were higher in GO orbital tissues than in non-GO tissue. The overexpression of miR-155 was induced by IL-1β and TNF-α in OFs from GO and non-GO patients. IL-1β-induced IL-6 (ICAM1) protein production was significantly reduced (increased) by miR-155 mimics and inhibitors. The mRNA and protein levels of ITK were downregulated by overexpressed miR-155 via miR-155 mimics. Knockdown of ITK via siITK transfection induced a decrease in the expression levels of ITK, IL-17, IL-6, IL-1β, and TNF-α protein. The expression of miR-155 was significantly downregulated by treatment with ITK inhibitors and Bruton’s tyrosine kinase (BTK)/ITK dual inhibitors in a time-dependent manner. Our results indicated a potential relationship between miR-155 and ITK in the context of GO OFs. The overexpression of miR-155 repressed ITK expression and relieved inflammation. Thus, miR-155 appears to have anti-inflammatory effects in GO OFs. This discovery provides a new concept for developing GO treatment therapeutics.
Collapse
Affiliation(s)
- Yeon Jeong Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Charm Kim
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Eun Woo Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Seung Hun Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Oh Jun
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Bo-Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6878495. [PMID: 35190763 PMCID: PMC8858053 DOI: 10.1155/2022/6878495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
Objective The purpose of the present study is to screen the hub genes associated with sepsis, comprehensively understand the occurrence and progress mechanism of sepsis, and provide new targets for clinical diagnosis and treatment of sepsis. Methods The microarray data of GSE9692 and GSE95233 were downloaded from the Gene Expression Omnibus (GEO) database. The dataset GSE9692 contained 29 children with sepsis and 16 healthy children, while the dataset GSE95233 included 102 septic subjects and 22 healthy volunteers. Differentially expressed genes (DEGs) were screened by GEO2R online analysis. The DAVID database was applied to conduct functional enrichment analysis of the DEGs. The STRING database was adopted to acquire protein-protein interaction (PPI) networks. Results We identified 286 DEGs (217 upregulated DEGs and 69 downregulated DEGs) in the dataset GSE9692 and 357 DEGs (236 upregulated DEGs and 121 downregulated DEGs) in the dataset GSE95233. After the intersection of DEGs of the two datasets, a total of 98 co-DEGs were obtained. DEGs associated with sepsis were involved in inflammatory responses such as T cell activation, leukocyte cell-cell adhesion, leukocyte-mediated immunity, cytokine production, immune effector process, lymphocyte-mediated immunity, defense response to fungus, and lymphocyte-mediated immunity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that sepsis was connected to bacterial and viral infections. Through PPI network analysis, we screened the most important hub genes, including ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK. Conclusions In conclusion, the present study revealed an unbalanced immune response at the transcriptome level of sepsis and identified genes for potential biomarkers of sepsis, such as ITK, CD247, MMP9, CD3D, MMP8, KLRK1, and GZMK.
Collapse
|
13
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Sarawi W, Attia SM, Alasmari AF, Alqarni SA, Alfradan AS, Bakheet SA, Al-Harbi MM. Role of ITK signaling in acute kidney injury in mice: Amelioration of acute kidney injury associated clinical parameters and attenuation of inflammatory transcription factor signaling in CD4+ T cells by ITK inhibition. Int Immunopharmacol 2021; 99:108028. [PMID: 34365077 DOI: 10.1016/j.intimp.2021.108028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a world-wide health problem and linked with increased risk of morbidity/mortality in hospitalized patients and its incidence has been on the rise in the last few decades. AKI is characterized by renal tubular injury which results from interactions between bacterial products and host immune responses which manifests as a rapid deterioration in renal function. Immune system dysfunction induced by sepsis plays a crucial role in AKI through activation of multiple immune cells of both innate and adaptive origin. These cells release pro-inflammatory cytokines such as IL-6, IL-17A, IFN-γ, and reactive oxygen metabolites. Adaptive immune cells, especially T cells also participate in the amplification of renal inflammation through release of pro-inflammatory cytokines such as IL-17A, IFN-γ, TNF-α, and IL-10. Non-receptor protein tyrosine kinases such as ITK play crucial role in T cell through modulation of key downstream molecules such as PLCγ, STAT3, NFkB, NFATc1, and p-38MAPK. However, it has not been explored in CD4+ T cells during AKI. Therefore, this study investigated the effect of ITK inhibitor on AKI linked clinical parameters (serum BUN, creatinine and renal histopathology), downstream signaling molecules in CD4+ T cells (PLCγ, STAT3, NFkB, and NFATc1), Th1/Th2/Treg cell markers (IL-17A, TNF-α, and IL-10), and neutrophil-mediated oxidative inflammation (MPO/carbonyl/nitrotyrosine formation) in mice. Our data exhibit elevated p-ITK levels in CD4+ T cells which is associated with renal dysfunction and elevated Th1/Th17/neutrophilic responses. Blockade of ITK signaling resulted in ameliorated of AKI associated biochemical; parameters through downregulation in transcription signaling in CD4+ T cells and Th1/Th17 immune responses. Therefore, this report suggests that ITK inhibition could be an effective strategy to halt renal dysfunction associated with AKI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfradan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Possible Therapeutic Strategy Involving the Purine Synthesis Pathway Regulated by ITK in Tongue Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133333. [PMID: 34283052 PMCID: PMC8269312 DOI: 10.3390/cancers13133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
The epidermal growth factor receptor is the only available tyrosine kinase molecular target for treating oral cancer. To improve the prognosis of tongue squamous cell carcinoma (TSCC) patients, a novel molecular target for tyrosine kinases is thus needed. We examined the expression of interleukin-2-inducible T-cell kinase (ITK) using immunohistochemistry, and the biological function of ITK was investigated using biochemical, phosphoproteomic, and metabolomic analyses. We found that ITK is overexpressed in TSCC patients with poor outcomes. The proliferation of oral cancer cell lines expressing ITK via transfection exhibited significant increases in three-dimensional culture assays and murine inoculation models with athymic male nude mice as compared with mock control cells. Suppressing the kinase activity using chemical inhibitors significantly reduced the increase in cell growth induced by ITK expression. Phosphoproteomic analyses revealed that ITK expression triggered phosphorylation of a novel tyrosine residue in trifunctional purine biosynthetic protein adenosine-3, an enzyme in the purine biosynthesis pathway. A significant increase in de novo biosynthesis of purines was observed in cells expressing ITK, which was abolished by the ITK inhibitor. ITK thus represents a potentially useful target for treating TSCC through modulation of purine biosynthesis.
Collapse
|
15
|
Mammadli M, Huang W, Harris R, Xiong H, Weeks S, May A, Gentile T, Henty-Ridilla J, Waickman AT, August A, Bah A, Karimi M. Targeting SLP76:ITK interaction separates GVHD from GVL in allo-HSCT. iScience 2021; 24:102286. [PMID: 33851101 PMCID: PMC8024657 DOI: 10.1016/j.isci.2021.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs. GVHD effects after allo-HSCT. CD8+ and CD4+ donor T cells from mice expressing a Y145F mutation in SLP-76 did not cause GVHD but preserved GVL effects against B-ALL cells. SLP76Y145FKI CD8+ and CD4+ donor T cells also showed less inflammatory cytokine production and migration to GVHD target organs. We developed a novel peptide to specifically inhibit SLP76:ITK interactions, resulting in decreased phosphorylation of PLCγ1 and ERK, decreased cytokine production in human T cells, and separation of GVHD from GVL effects. Altogether, our data suggest that inhibiting SLP76:ITK interaction could be a therapeutic strategy to separate GVHD from GVL effects after allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Hui Xiong
- Department of Radiology, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Teresa Gentile
- Division of Hematology, translational research, SUNY Upstate Medical University, Syracuse NY 13210, USA
| | - Jessica Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
16
|
Huang Y, Chen L, Tang Z, Min Y, Yu W, Yang G, Zhang L. A Novel Immune and Stroma Related Prognostic Marker for Invasive Breast Cancer in Tumor Microenvironment: A TCGA Based Study. Front Endocrinol (Lausanne) 2021; 12:774244. [PMID: 34867821 PMCID: PMC8636929 DOI: 10.3389/fendo.2021.774244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequent cancer in women. The tumor microenvironment (TME), consisting of blood vessels, immune cells, fibroblasts, and extracellular matrix, plays a pivotal role in tumorigenesis and progression. Increasing evidence has emphasized the importance of TME, especially the immune components, in patients with BC. Nevertheless, we still lack a deep understanding of the correlation between tumor invasion and TME status. METHODS Transcriptome and clinical data were retrieved from The Cancer Genome Atlas (TCGA) database. ESTIMATE algorithm was applied for quantifying stromal and immune scores. Then we screened out the differentially expressed genes (DEGs) through the intersection analysis. Furthermore, the establishment of protein-protein interaction (PPI) network and univariate COX regression analysis were utilized to determine the core genes in DEGs. In addition, we also performed Gene Set Enrichment Analysis (GSEA) and CIBERSORT analysis to distinguish the function of crucial gene expression and the proportion of tumor-infiltrating immune cells (TICs), respectively. RESULTS A total of 1178 samples (112 normal samples and 1066 tumor samples) were extracted from TCGA for calculation, and 226 DEGs were obtained from this assessment. Further intersection analysis revealed eight key genes, including ITK, CD3E, CCL19, CD2, SH2D1A, CD5, SLAMF6, SPN, which were proven to correlate with BC status. Moreover, ITK was picked out for further study. The results illustrated that high expression of BC patients had a more prolonged overall survival (OS) time than ITK low expression BC patients (p = 0.009), and ITK expression also presented the statistical significance in age, TNM staging, tumor size classification, and metastasis classification. Additionally, GSEA and CIBERSORT analysis indicated that ITK expression had an association with immune activity in TME. CONCLUSION ITK may be a potential indicator for prognosis prediction in patients with BC, and its biological behavior may promote our understanding of the molecular mechanism of tumor progression and targeted therapy.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lizhi Chen
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Min
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanli Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Lili Zhang, ; Gangyi Yang,
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Lili Zhang, ; Gangyi Yang,
| |
Collapse
|
17
|
Inhibition of interleukin-2-inducible T-cell kinase causes reduction in imiquimod-induced psoriasiform inflammation through reduction of Th17 cells and enhancement of Treg cells in mice. Biochimie 2020; 179:146-156. [PMID: 33007409 DOI: 10.1016/j.biochi.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023]
Abstract
Psoriasis is a debilitating chronic skin disease with a worldwide prevalence. Its main features include well-marked silvery scales on the skin of hands and feet and back which arise due to hyperproliferation of keratinocytes and infiltration of immune cells in the skin. Multiple interactions exist between adaptive immune cells such as T cells and innate immune cells such as neutrophils and macrophages which are key players in the pathogenesis of psoriasis. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. ITK has been shown to control NFATc1, NFkB and STAT3 in CD4+ T cells. Effect of ITK inhibitor in imiquimod (IMQ)-induced psoriasiform inflammation remains to be explored. In the current examination, role of ITK signaling and its inhibition blockade were evaluated on NFATc1, NFkB and STAT3, IL-17A, TNF-α, IFN-γ, Foxp3, IL-10 in CD4+ T cells in IMQ model. Our data display that ITK signaling is involved in IMQ-induced psoriatic inflammation as paralleled by enhancement of p-ITK, NFATc1, p-NFkB and p-STAT3 in CD4+ T cells. It was associated with enhancement of Th17/Th1 cells and neutrophilic inflammation in the skin. Preventive treatment with ITK inhibitor led to a reduction in Th17/Th1 cells and enhancement of Treg cells. Overall, this study suggests that ITK signaling is an important modulator of transcription factor signaling in CD4+ T cells which is associated with Th17/Th1 cells and psoriasiform inflammation in mice. ITK signaling blockade could be a therapeutic target for the treatment of psoriatic inflammation.
Collapse
|
18
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
19
|
Xu ZY, Zhao M, Chen W, Li K, Qin F, Xiang WW, Sun Y, Wei J, Yuan LQ, Li SK, Lin SH. Analysis of prognostic genes in the tumor microenvironment of lung adenocarcinoma. PeerJ 2020; 8:e9530. [PMID: 32775050 PMCID: PMC7382940 DOI: 10.7717/peerj.9530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Prognostic genes in the tumor microenvironment play an important role in immune biological processes and the response of cancer to immunotherapy. Thus, we aimed to assess new biomarkers that are associated with immune/stromal cells in lung adenocarcinomas (LUAD) using the ESTIMATE algorithm, which also significantly affects the prognosis of cancer. Methods The RNA sequencing (RNA-Seq) and clinical data of LUAD were downloaded from the the Cancer Genome Atlas (TCGA ). The immune and stromal scores were calculated for each sample using the ESTIMATE algorithm. The LUAD gene chip expression profile data and the clinical data (GSE37745, GSE11969, and GSE50081) were downloaded from the Gene Expression Omnibus (GEO) for subsequent validation analysis. Differentially expressed genes were calculated between high and low score groups. Univariate Cox regression analysis was performed on differentially expressed genes (DEGs) between the two groups to obtain initial prognosis genes. These were verified by three independent LUAD cohorts from the GEO database. Multivariate Cox regression was used to identify overall survival-related DEGs. UALCAN and the Human Protein Atlas were used to analyze the mRNA /protein expression levels of the target genes. Immune cell infiltration was evaluated using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT methods, and stromal cell infiltration was assessed using xCell. Results In this study, immune scores and stromal scores are significantly associated with the clinical characteristics of LUAD, including T stage, M stage, pathological stage, and overall survival time. 530 DEGs (18 upregulated and 512 downregulated) were found to coexist in the difference analysis with the immune scores and stromal scores subgroup. Univariate Cox regression analysis showed that 286 of the 530 DEGs were survival-related genes (p < 0.05). Of the 286 genes initially identified, nine prognosis-related genes (CSF2RB, ITK, FLT3, CD79A, CCR4, CCR6, DOK2, AMPD1, and IGJ) were validated from three separate LUAD cohorts. In addition, functional analysis of DEGs also showed that various immunoregulatory molecular pathways, including regulation of immune response and the chemokine signaling pathways, were involved. Five genes (CCR6, ITK, CCR4, DOK2, and AMPD1) were identified as independent prognostic indicators of LUAD in specific data sets. The relationship between the expression levels of these genes and immune genes was assessed. We found that CCR6 mRNA and protein expression levels of LUAD were greater than in normal tissues. We evaluated the infiltration of immune cells and stromal cells in groups with high and low levels of expression of CCR6 in the TCGA LUAD cohort. In summary, we found a series of prognosis-related genes that were associated with the LUAD tumor microenvironment.
Collapse
Affiliation(s)
- Zhan-Yu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengli Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei-Wei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Qiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sheng-Hua Lin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Nadeem A, Al-Harbi NO, Ahmad SF, Al-Harbi MM, Alhamed AS, Alfardan AS, Assiri MA, Ibrahim KE, Albassam H. Blockade of interleukin-2-inducible T-cell kinase signaling attenuates acute lung injury in mice through adjustment of pulmonary Th17/Treg immune responses and reduction of oxidative stress. Int Immunopharmacol 2020; 83:106369. [PMID: 32163900 DOI: 10.1016/j.intimp.2020.106369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is linked with considerable morbidity and mortality. ALI can be caused by various agents, one of them being sepsis. ALI is characterized by injury to vascular endothelium and alveolar epithelium that results in edema, pulmonary immune cells infiltration and hypoxemia. Neutrophils and T cells particularly play a huge role in amplification of pulmonary inflammation through release of multiple inflammatory mediators. Recent reports suggest a strong involvement of Th17 cells and oxidative stress in initiation/amplification of pulmonary inflammation during ALI. Interleukin-2-inducible T-cell kinase (ITK) plays a key role in Th17 cell development through control of several transcription factors. Therefore, our study explored the role of ITK on airway inflammation (total/neutrophilic cell counts, myeloperoxidase activity, E-cadherin expression, histopathological analyses) and effect of its inhibition on various inflammatory/anti-inflammatory pathways during ALI [phosphorylated-ITK (p-ITK), NFATc1, IL-17A, STAT3, Foxp3, IL-10, iNOS, nitrotyrosine, lipid peroxides). ALI was associated with increased total/neutrophilic cell counts and myeloperoxidase activity, and decreased E-cadherin expression in airway epithelial cells (AECs) which was concurrent with upregulation of p-ITK, NFATc1, IL-17A, STAT3 in CD4+ T cells and iNOS/nitrotyrosine in AECs. Treatment with ITK inhibitor reversed ALI-induced changes in airway inflammation and Th17 cells/oxidative stress. Treatment with ITK inhibitor further expanded Treg cells in mice with ALI. In short, our study proposes that ITK signaling plays a significant role in sepsis-induced ALI through upregulation of Th17 cells and oxidative stress. Further, findings provide evidence that ITK blockade could be a potential treatment strategy to attenuate airway inflammation associated with ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, Lin N, Wang X, Tu M, Xie Y, Liu W, Ying Z, Zhang C, Pan Z, Wang X, Ding N, Song Y, Zhu J. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int 2019; 19:32. [PMID: 30814910 PMCID: PMC6376795 DOI: 10.1186/s12935-019-0754-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/08/2019] [Indexed: 01/14/2023] Open
Abstract
Background Angioimmunoblastic T cell lymphoma (AITL) is a distinct subtype of peripheral T cell lymphoma and associated with poor outcomes. The activation status of T cell receptor (TCR) signaling has recently become a focus of attention in terms of the therapeutic targets. However, the molecular pathogenesis mechanisms and novel therapeutic targets are largely unknown. Methods Antibodies specific to phosphorylated ZAP70, ITK and PLCγ1 were used to identify the activation status of intracellular proteins involved in TCR signaling in AITL patients. Malignant T cell lymphoma cells were transduced with a lentiviral construct containing ITK shRNA for cellular and functional assays. The antitumor effects of the selective ITK inhibitor BMS-509744 were determined in vitro and in vivo. Results Immunohistochemistry staining showed that more than half of the AITL patients (n = 38) exhibited continuously activated intracellular TCR signaling pathway. Patients positive for phosphorylated ITK showed a lower rate of complete response (20% vs. 75%, P = 0.004) and a shorter progression-free survival (5.17 months vs. 25.1 months, P = 0.022) than patients negative for phosphorylated ITK. Genetic and pharmacological cellular ITK inhibition significantly compromised the proliferation, invasion and migration of malignant T cells. The selective ITK inhibitor BMS-509744 also induced the pro-apoptotic effects and G2/M phase cell cycle arrest in vitro and in vivo. Finally, inhibition of ITK synergistically enhanced the antitumor effect of vincristine and doxorubicin on malignant T cell lymphoma cell lines. Conclusions Our findings suggest that ITK may be a novel candidate therapeutic target for the treatment of patients with ITK-expressing malignant T-cell lymphomas. Electronic supplementary material The online version of this article (10.1186/s12935-019-0754-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalu Liu
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Xiaogan Wang
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Lijuan Deng
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Lingyan Ping
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Yunfei Shi
- 2Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Wen Zheng
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Ningjing Lin
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Xiaopei Wang
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Meifeng Tu
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Yan Xie
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Weiping Liu
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Zhitao Ying
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Chen Zhang
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Zhengying Pan
- 3Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Lishui Road, Xili, Nanshan District, Shenzhen, 518055 People's Republic of China
| | - Xi Wang
- 4Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xisitoutiao Road, Fengtai District, Beijing, 100069 People's Republic of China
| | - Ning Ding
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Yuqin Song
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| | - Jun Zhu
- 1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142 People's Republic of China
| |
Collapse
|
22
|
Sallam AM, Zare Y, Shook G, Collins M, Kirkpatrick BW. A positional candidate gene association analysis of susceptibility to paratuberculosis on bovine chromosome 7. INFECTION GENETICS AND EVOLUTION 2018; 65:163-169. [DOI: 10.1016/j.meegid.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
23
|
Hantani Y, Iio K, Hantani R, Umetani K, Sato T, Young T, Connell K, Kintz S, Salafsky J. Identification of inactive conformation-selective interleukin-2-inducible T-cell kinase (ITK) inhibitors based on second-harmonic generation. FEBS Open Bio 2018; 8:1412-1423. [PMID: 30186743 PMCID: PMC6120236 DOI: 10.1002/2211-5463.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022] Open
Abstract
Many clinically approved protein kinase inhibitors stabilize an inactive conformation of their kinase target. Such inhibitors are generally highly selective compared to active conformation inhibitors, and consequently, general methods to identify inhibitors that stabilize an inactive conformation are much sought after. Here, we have applied a high‐throughput, second‐harmonic generation (SHG)‐based conformational approach to identify small molecule stabilizers of the inactive conformation of interleukin‐2‐inducible T‐cell kinase (ITK). A single‐site cysteine mutant of the ITK kinase domain was created, labeled with an SHG‐active dye, and tethered to a supported lipid bilayer membrane. Fourteen tool compounds, including stabilizers of the inactive and active conformations as well as nonbinders, were first examined for their effect on the conformation of the labeled ITK protein in the SHG assay. As a result, inactive conformation inhibitors were clearly distinguished from active conformation inhibitors by the intensity of SHG signal. Utilizing the SHG assay developed with the tool compounds described above, we identified the mechanism of action of 22 highly selective, inactive conformation inhibitors within a group of 105 small molecule inhibitors previously identified in a high‐throughput biochemical screen. We describe here the first use of SHG for identifying and classifying inhibitors that stabilize an inactive vs. an active conformation of a protein kinase, without the need to determine costructures by X‐ray crystallography. Our results suggest broad applicability to other proteins, particularly with single‐site labels reporting on specific protein movements associated with selectivity.
Collapse
Affiliation(s)
- Yoshiji Hantani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Kiyosei Iio
- Chemistry Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Rie Hantani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Kayo Umetani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Toshihiro Sato
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | | | | | - Sam Kintz
- Biodesy, Inc. South San Francisco CA USA
| | | |
Collapse
|
24
|
Bryan MC, Rajapaksa NS. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J Med Chem 2018; 61:9030-9058. [DOI: 10.1021/acs.jmedchem.8b00667] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Naomi S. Rajapaksa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
Berglöf A, Hamasy A, Meinke S, Palma M, Krstic A, Månsson R, Kimby E, Österborg A, Smith CIE. Targets for Ibrutinib Beyond B Cell Malignancies. Scand J Immunol 2015; 82:208-17. [PMID: 26111359 PMCID: PMC5347933 DOI: 10.1111/sji.12333] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
Ibrutinib (Imbruvica™) is an irreversible, potent inhibitor of Bruton's tyrosine kinase (BTK). Over the last few years, ibrutinib has developed from a promising drug candidate to being approved by FDA for the treatment of three B cell malignancies, a truly remarkable feat. Few, if any medicines are monospecific and ibrutinib is no exception; already during ibrutinib's initial characterization, it was found that it could bind also to other kinases. In this review, we discuss the implications of such interactions, which go beyond the selective effect on BTK in B cell malignancies. In certain cases, the outcome of ibrutinib treatment likely results from the combined inhibition of BTK and other kinases, causing additive or synergistic, effects. Conversely, there are also examples when the clinical outcome seems unrelated to inhibition of BTK. Thus, more specifically, adverse effects such as enhanced bleeding or arrhythmias could potentially be explained by different interactions. We also predict that during long‐term treatment bone homoeostasis might be affected due to the inhibition of osteoclasts. Moreover, the binding of ibrutinib to molecular targets other than BTK or effects on cells other than B cell‐derived malignancies could be beneficial and result in new indications for clinical applications.
Collapse
Affiliation(s)
- A Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Meinke
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, and Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Palma
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Kimby
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Österborg
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - C I E Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Huang W, Morales JL, Gazivoda VP, August A. Nonreceptor tyrosine kinases ITK and BTK negatively regulate mast cell proinflammatory responses to lipopolysaccharide. J Allergy Clin Immunol 2015; 137:1197-1205. [PMID: 26581914 DOI: 10.1016/j.jaci.2015.08.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 08/28/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cells are indispensable for LPS-induced septic hypothermia, in which TNF-α plays an essential role to initiate septic responses. ITK and BTK regulate mast cell responses to allergens, but their roles in mast cell responses in LPS-induced sepsis are unclear. OBJECTIVE We sought to investigate the roles of ITK and BTK in mast cell responses during LPS-induced septic inflammation. METHODS Mice (genetically modified or bone marrow-derived mast cell-reconstituted Sash) were given LPS to induce septic hypothermia in the presence or absence of indicated inhibitors. Flow cytometry was used to determine LPS-induced cell influx and TNF-α production in peritoneal cells. Microarray was used for genomewide gene expression analysis on bone marrow-derived mast cells. Quantitative PCR and multiplex were used to determine transcribed and secreted proinflammatory cytokines. Microscopy and Western blotting were used to determine activation of signal transduction pathways. RESULTS The absence of ITK and BTK leads to exacerbation of LPS-induced septic hypothermia and neutrophil influx. Itk(-/-)Btk(-/-) mast cells exhibit hyperactive preformed and LPS-induced TNF-α production, and lead to more severe LPS-induced septic hypothermia when reconstituted into mast cell-deficient Sash mice. LPS-induced nuclear factor kappa B, Akt, and p38 activation is enhanced in Itk(-/-)Btk(-/-) mast cells, and blockage of phosphatidylinositol-4,5-bisphosphate 3-kinase, Akt, or p38 downstream mitogen-activated protein kinase interacting serine/threonine kinase 1 activation significantly suppresses TNF-α hyperproduction and attenuates septic hypothermia. CONCLUSIONS ITK and BTK regulate thermal homeostasis during septic response through mast cell function in mice. They share regulatory function downstream of Toll-like receptor 4/LPS in mast cells, through regulating the activation of canonical nuclear factor kappa B, phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt, and p38 signaling pathways.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - J Luis Morales
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - Victor P Gazivoda
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY.
| |
Collapse
|
27
|
Cho HS, Shin HM, Haberstock-Debic H, Xing Y, Owens TD, Funk JO, Hill RJ, Bradshaw JM, Berg LJ. A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression. THE JOURNAL OF IMMUNOLOGY 2015; 195:4822-31. [PMID: 26466958 DOI: 10.4049/jimmunol.1501828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
In T cells, the Tec kinases IL-2-inducible T cell kinase (ITK) and resting lymphocyte kinase (RLK) are activated by TCR stimulation and are required for optimal downstream signaling. Studies of CD4(+) T cells from Itk(-/-) and Itk(-/-)Rlk(-/-) mice have indicated differential roles of ITK and RLK in Th1, Th2, and Th17 differentiation and cytokine production. However, these findings are confounded by the complex T cell developmental defects in these mice. In this study, we examine the consequences of ITK and RLK inhibition using a highly selective and potent small molecule covalent inhibitor PRN694. In vitro Th polarization experiments indicate that PRN694 is a potent inhibitor of Th1 and Th17 differentiation and cytokine production. Using a T cell adoptive transfer model of colitis, we find that in vivo administration of PRN694 markedly reduces disease progression, T cell infiltration into the intestinal lamina propria, and IFN-γ production by colitogenic CD4(+) T cells. Consistent with these findings, Th1 and Th17 cells differentiated in the presence of PRN694 show reduced P-selectin binding and impaired migration to CXCL11 and CCL20, respectively. Taken together, these data indicate that ITK plus RLK inhibition may have therapeutic potential in Th1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hyoung-Soo Cho
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Hyun Mu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | | | - Yan Xing
- Principia Biopharma, South San Francisco, CA 94080
| | | | | | | | | | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
28
|
Abstract
Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS.
Collapse
|
29
|
Zhong Y, Dong S, Strattan E, Ren L, Butchar JP, Thornton K, Mishra A, Porcu P, Bradshaw JM, Bisconte A, Owens TD, Verner E, Brameld KA, Funk JO, Hill RJ, Johnson AJ, Dubovsky JA. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. J Biol Chem 2015; 290:5960-78. [PMID: 25593320 DOI: 10.1074/jbc.m114.614891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.
Collapse
Affiliation(s)
- Yiming Zhong
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Shuai Dong
- the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, and
| | - Ethan Strattan
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Li Ren
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jonathan P Butchar
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Kelsey Thornton
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Anjali Mishra
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Pierluigi Porcu
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | | | | | | | - Erik Verner
- Principia Biopharma, South San Francisco, California 94080
| | - Ken A Brameld
- Principia Biopharma, South San Francisco, California 94080
| | | | - Ronald J Hill
- Principia Biopharma, South San Francisco, California 94080
| | - Amy J Johnson
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jason A Dubovsky
- From the Division of Hematology, College of Medicine, Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
30
|
Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem J 2014; 460:211-22. [PMID: 24593284 DOI: 10.1042/bj20131139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.
Collapse
|
31
|
Petrillo MG, Fettucciari K, Montuschi P, Ronchetti S, Cari L, Migliorati G, Mazzon E, Bereshchenko O, Bruscoli S, Nocentini G, Riccardi C. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacol Toxicol 2014; 15:35. [PMID: 24993777 PMCID: PMC4105561 DOI: 10.1186/2050-6511-15-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. METHODS Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student's t-test was employed for statistical evaluation. RESULTS We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk and Lck genes. To investigate the function associated with Itk up-regulation, dexamethasone-induced apoptosis of thymocytes from Itk-deficient mice was evaluated. Our results demonstrated that Itk deficiency causes increased sensitivity to dexamethasone but not to other pro-apoptotic stimuli. CONCLUSIONS Modulation of Itk, Txk, and Lck in thymocytes and mature lymphocytes is another mechanism by which glucocorticoids modulate T-cell activation and differentiation. Itk up-regulation plays a protective role in dexamethasone-treated thymocytes.
Collapse
Affiliation(s)
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Luigi Cari
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | | | - Giuseppe Nocentini
- Department of Medicine, University of Perugia, Perugia, Italy
- Department of Medicine, Section of Pharmacology, Severi Square 1, University of Perugia, I-06132 San Sisto, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
32
|
Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett 2012; 331:18-23. [PMID: 23268335 PMCID: PMC7126488 DOI: 10.1016/j.canlet.2012.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
In recent years, Karyopherin α 2 (KPNA2) has emerged as a potential biomarker in multiple cancer forms. The aberrant high levels observed in cancer tissue have been associated with adverse patient characteristics, prompting the idea that KPNA2 plays a role in carcinogenesis. This notion is supported by studies in cancer cells, where KPNA2 deregulation has been demonstrated to affect malignant transformation. By virtue of its role in nucleocytoplasmic transport, KPNA2 is implicated in the translocation of several cancer-associated proteins. We provide an overview of the clinical studies that have established the biomarker potential of KPNA2 and describe its functional role with an emphasis on established associations with cancer.
Collapse
Affiliation(s)
- Anders Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
33
|
Meganathan C, Sakkiah S, Lee Y, Narayanan JV, Lee KW. Discovery of potent inhibitors for interleukin-2-inducible T-cell kinase: structure-based virtual screening and molecular dynamics simulation approaches. J Mol Model 2012; 19:715-26. [DOI: 10.1007/s00894-012-1536-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/12/2012] [Indexed: 01/11/2023]
|
34
|
August A, Ragin MJ. Regulation of T-cell responses and disease by tec kinase Itk. Int Rev Immunol 2012; 31:155-65. [PMID: 22449075 DOI: 10.3109/08830185.2012.668981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Itk is a member of the Tec family tyrosine kinases involved in T-cell receptor signaling. The authors review the background and most recent findings of the role of Itk T-cell activation and development of αβ T cells. They also discuss the role of Itk in development of nonconventional T cells, including CD8(+) innate memory phenotype T cells, different γδ T-cell populations, and invariant NKT cells. They close by reviewing the regulation of T helper differentiation and cytokine secretion, the immune response to infectious disease, and diseases such as allergic asthma and atopic dermatitis by Itk.
Collapse
Affiliation(s)
- Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
35
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Qi Q, Huang W, Bai Y, Balmus G, Weiss RS, August A. A unique role for ITK in survival of invariant NKT cells associated with the p53-dependent pathway in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:3611-9. [PMID: 22403441 DOI: 10.4049/jimmunol.1102475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells play important roles in the immune response. ITK and TXK/RLK are Tec family kinases that are expressed in iNKT cells; the expression level of ITK is ∼7-fold higher than that of TXK. Itk(-/-) mice have reduced iNKT cell frequency and numbers, with defects in development and cytokine secretion that are exacerbated in Itk/Txk double-knockout mice. In contrast, there is no iNKT cell defect in Txk(-/-) mice. To determine whether ITK and TXK play distinct roles in iNKT cell development and function, we examined mice that overexpress TXK in T cells at levels similar to Itk. Overexpression of TXK rescues the maturation and cytokine secretion of Itk(-/-) iNKT cells, as well as altered expression of transcription factors T-bet, eomesodermin, and PLZF. In contrast, the increased apoptosis observed in Itk(-/-) splenic iNKT cells is not affected by TXK overexpression, likely due to the lack of effect on the elevated expression of p53 regulated proapoptotic pathways Fas, Bax, and Bad in those cells. Supporting this idea, p53(-/-) and Bax(-/-) mice have increased splenic iNKT cells. Our results suggest that TXK plays an overlapping role with ITK in iNKT cell development and function but that ITK also has a unique function in the survival of iNKT cells, likely via a p53-dependent pathway.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16801, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (T H) cell Development, T H2 Differentiation and Allergic Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; Suppl 12:11. [PMID: 24116341 PMCID: PMC3792371 DOI: 10.4172/2155-9899.s12-011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| | - Mark S. Wilson
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| |
Collapse
|
38
|
Navratilova I, Macdonald G, Robinson C, Hughes S, Mathias J, Phillips C, Cook A. Biosensor-Based Approach to the Identification of Protein Kinase Ligands with Dual-Site Modes of Action. ACTA ACUST UNITED AC 2011; 17:183-93. [DOI: 10.1177/1087057111422746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The authors have used a surface plasmon resonance (SPR)–based biosensor approach to identify and characterize compounds with a unique binding mode to protein kinases. Biacore was used to characterize hits from an enzymatic high-throughput screen of the Tec family tyrosine kinase, IL2-inducible T cell kinase (ITK). Complex binding kinetics was observed for some compounds, which led to identification of compounds that bound simultaneously at both the adenosine triphosphate (ATP) binding site and a second, allosteric site on ITK. The presence of the second binding site was confirmed by X-ray crystallography. The second site is located in the N-terminal lobe of the protein kinase catalytic domain, adjacent to but distinct from the ATP site. To enable rapid optimization of binding properties, a competition-based Biacore assay has been developed to successfully identify second site noncompetitive binders that have been confirmed by X-ray crystallographic studies. The authors have found that SPR technology is a key method for rapid identification of compounds with dual-site modes of action.
Collapse
Affiliation(s)
- Iva Navratilova
- Structural Biology and Biophysics, Pfizer Global Research and Development, Sandwich, Kent, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Graeme Macdonald
- Structural Biology and Biophysics, Pfizer Global Research and Development, Sandwich, Kent, UK
| | - Colin Robinson
- Structural Biology and Biophysics, Pfizer Global Research and Development, Sandwich, Kent, UK
| | - Samantha Hughes
- Lead Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent, UK
| | - John Mathias
- Lead Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent, UK
| | - Chris Phillips
- Structural Biology and Biophysics, Pfizer Global Research and Development, Sandwich, Kent, UK
| | - Andrew Cook
- Lead Discovery Chemistry, Pfizer Global Research and Development, Sandwich, Kent, UK
| |
Collapse
|
39
|
Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CIE. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J 2011; 278:2001-10. [PMID: 21518255 DOI: 10.1111/j.1742-4658.2011.08134.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TEC family is ancient and constitutes the second largest family of cytoplasmic tyrosine kinases. In 1993, loss-of-function mutations in the BTK gene were reported as the cause of X-linked agammaglobulinemia. Of all the existing 90 tyrosine kinases in humans, Bruton's tyrosine kinase (BTK) is the kinase for which most mutations have been identified. These experiments of nature collectively provide a form of mutation scanning with direct implications for the several hundred endogenous signaling proteins carrying domains also found in BTK. In 2009, an inactivating mutation in the ITK gene was shown to cause susceptibility to lethal Epstein-Barr virus infection. Both kinases represent interesting targets for inhibition: in the case of BTK, as an immunosuppressant, whereas there is evidence that the inhibition of inducible T-cell kinase (ITK) could influence the infectivity of HIV and also have anti-inflammatory activity. Since 2006, several patients carrying a fusion protein, originating from a translocation joining genes encoding the kinases ITK and spleen tyrosine kinase (SYK), have been shown to develop T-cell lymphoma. We review these disease processes and also describe the role of the N-terminal pleckstrin homology-Tec homology (PH-TH) domain doublet of BTK and ITK in the downstream intracellular signaling of such fusion proteins.
Collapse
Affiliation(s)
- Alamdar Hussain
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Ellmeier W, Abramova A, Schebesta A. Tec family kinases: regulation of FcεRI-mediated mast-cell activation. FEBS J 2011; 278:1990-2000. [PMID: 21362140 DOI: 10.1111/j.1742-4658.2011.08073.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
41
|
Qi Q, Kannan AK, August A. Tec family kinases: Itk signaling and the development of NKT αβ and γδ T cells. FEBS J 2011; 278:1970-9. [PMID: 21362141 DOI: 10.1111/j.1742-4658.2011.08074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Tec family tyrosine kinase interleukin-2 inducible T-cell kinase (Itk) is predominantly expressed in T cells and has been shown to be critical for the development, function and differentiation of conventional αβ T cells. However, less is known about its role in nonconventional T cells such as NKT and γδ T cells. In this minireview, we discuss evidence for a role for Itk in the development of invariant NKT αβ cells, as well as a smaller population NKT-like γδ T cells. We discuss how these cells take what could be the same signaling pathway regulated by Itk, and interpret it to give different outcomes with regards to development and function.
Collapse
Affiliation(s)
- Qian Qi
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
42
|
Gomez-Rodriguez J, Kraus ZJ, Schwartzberg PL. Tec family kinases Itk and Rlk / Txk in T lymphocytes: cross-regulation of cytokine production and T-cell fates. FEBS J 2011; 278:1980-9. [PMID: 21362139 DOI: 10.1111/j.1742-4658.2011.08072.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing thymocytes and T cells express the Tec kinases Itk, Rlk/Txk and Tec, which are critical modulators of T-cell receptor signaling, required for full activation of phospholipase Cγ, and downstream Ca(2+) and ERK-mediated signaling pathways. Over the last 10 years, data have implicated the Tec family kinases Itk and Rlk/Txk as important regulators of cytokine production by CD4(+) effector T-cell populations. Emerging data now suggest that the Tec family kinases not only influence cytokine-producing T-cell populations in the periphery, but also regulate the development of distinct innate-type cytokine-producing T-cell populations in the thymus. Together, these results suggest that the Tec family kinases play critical roles in helping shape immune responses via their effects on the differentiation and function of distinct cytokine-producing, effector T-cell populations.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Charrier JD, Miller A, Kay DP, Brenchley G, Twin HC, Collier PN, Ramaya S, Keily SB, Durrant SJ, Knegtel RMA, Tanner AJ, Brown K, Curnock AP, Jimenez JM. Discovery and structure-activity relationship of 3-aminopyrid-2-ones as potent and selective interleukin-2 inducible T-cell kinase (Itk) inhibitors. J Med Chem 2011; 54:2341-50. [PMID: 21391610 DOI: 10.1021/jm101499u] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Interleukin-2 inducible T-cell kinase (Itk) plays a role in T-cell functions, and its inhibition potentially represents an attractive intervention point to treat autoimmune and allergic diseases. Herein we describe the discovery of a series of potent and selective novel inhibitors of Itk. These inhibitors were identified by structure-based design, starting from a fragment generated de novo, the 3-aminopyrid-2-one motif. Functionalization of the 3-amino group enabled rapid enhancement of the inhibitory activity against Itk, while introduction of a substituted heteroaromatic ring in position 5 of the pyridone fragment was key to achieving optimal selectivity over related kinases. A careful analysis of the hydration patterns in the kinase active site was necessary to fully explain the observed selectivity profile. The best molecule prepared in this optimization campaign, 7v, inhibits Itk with a K(i) of 7 nM and has a good selectivity profile across kinases.
Collapse
Affiliation(s)
- Jean-Damien Charrier
- Department of Chemistry, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Crystal Structures of IL-2-inducible T cell Kinase Complexed with Inhibitors: Insights into Rational Drug Design and Activity Regulation. Chem Biol Drug Des 2010; 76:154-63. [DOI: 10.1111/j.1747-0285.2010.00993.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|