1
|
Zhou J, Xiong KL, Wang HX, Sun WW, Ke H, Zhang SJ, Dong ZW, Fan L. BATF2/SINHCAF regulates the quantity and function of macrophages infected with Mycobacterium Tuberculosis via regulation of TTC23 through Wnt/β-catenin pathway. Int J Biol Macromol 2025; 288:138639. [PMID: 39672395 DOI: 10.1016/j.ijbiomac.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Elucidating the pathogenic mechanism of Tuberculosis (TB) can contribute to control TB. Basic leucine zipper transcription factor ATF-like 2 (BATF2) belonging to a large family of leucine zipper transcription factors (TFs) termed bZip proteins, had been verified to have important value in the diagnosis of TB. However, its role and mechanism in TB had not been elucidated. The study aimed to explore its function and molecular mechanism in macrophages infected with Mycobacterium tuberculosis (Mtb). The results indicated that BATF2 inhibited cell proliferation, promoted inflammatory response and impaired the antibacterial and antigen-presenting capacity in macrophages for T cells through regulating its downstream gene TTC23 by interacting with SINHCAF. Above roles and regulations were dependent on β-catenin functions in macrophages infected with Mtb. Clinical samples verified that the expressions of BATF2 and TTC23 were significantly higher in the blood of patients with pulmonary TB compared with health controls. Altogether, BATF2 interacted with SINHCAF to regulate the quantity and function of macrophages during Mtb infection by targeting TTC23 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Kun-Long Xiong
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hong-Xiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Sun
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hui Ke
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Shao-Jun Zhang
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Zheng-Wei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China.
| |
Collapse
|
2
|
Vlasiou MC. Vet informatics and the future of drug discovery in veterinary medicine. Front Vet Sci 2024; 11:1494242. [PMID: 39664897 PMCID: PMC11631842 DOI: 10.3389/fvets.2024.1494242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Manos C. Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, Cyprus
| |
Collapse
|
3
|
Ma B, Nie X, Liu L, Li M, Chen Q, Liu Y, Hou Y, Yang Y, Xu J. GSK2656157, a PERK Inhibitor, Alleviates Pyroptosis of Macrophages Induced by Mycobacterium Bacillus Calmette-Guerin Infection. Int J Mol Sci 2023; 24:16239. [PMID: 38003429 PMCID: PMC10671627 DOI: 10.3390/ijms242216239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Mtb infection can cause macrophage pyroptosis. PERK, as a signaling pathway protein on the endoplasmic reticulum, plays an important role in infectious diseases. It is not clear whether PERK is involved in the regulation of pyroptosis of macrophages during Mtb infection. In this study, Bacillus Calmette-Guerin (BCG) infection resulted in high expression of pro-caspase-1, caspase-1 p20, GSDMD-N, and p-PERK in the THP-1 macrophage, being downregulated with the pre-treatment of GSK2656157, a PERK inhibitor. In addition, GSK2656157 inhibited the secretion of IL-1β and IL-18, cell content release, and cell membrane rupture, as well as the decline in cell viability induced by BCG infection. Similarly, GSK2656157 treatment downregulated the expressions of pro-caspase-1, caspase-1 p20, caspase-11, IL-1β p17, IL-18 p22, GSDMD, GSDMD-N, and p-PERK, as well as reducing fibrous tissue hyperplasia, inflammatory infiltration, and the bacterial load in the lung tissue of C57BL/6J mice infected with BCG. In conclusion, the inhibition of PERK alleviated pyroptosis induced by BCG infection, which has an effect of resisting infection.
Collapse
Affiliation(s)
- Boli Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Xueyi Nie
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Lei Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Mengyuan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Qi Chen
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yueyang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yuxin Hou
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yi Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (B.M.); (X.N.); (L.L.); (M.L.); (Q.C.); (Y.L.); (Y.H.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
4
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
5
|
Virmani R, Pradhan P, Joshi J, Wang AL, Joshi HC, Sajid A, Singh A, Sharma V, Kundu B, Blankenberg D, Molle V, Singh Y, Arora G. Phosphorylation-mediated regulation of the Bacillus anthracis phosphoglycerate mutase by the Ser/Thr protein kinase PrkC. Biochem Biophys Res Commun 2023; 665:88-97. [PMID: 37149987 DOI: 10.1016/j.bbrc.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
Bacillus anthracis Ser/Thr protein kinase PrkC is necessary for phenotypic memory and spore germination, and the loss of PrkC-dependent phosphorylation events affect the spore development. During sporulation, Bacillus sp. can store 3-Phosphoglycerate (3-PGA) that will be required at the onset of germination when ATP will be necessary. The Phosphoglycerate mutase (Pgm) catalyzes the isomerization of 2-PGA and 3-PGA and is important for spore germination as a key metabolic enzyme that maintains 3-PGA pool at later events. Therefore, regulation of Pgm is important for an efficient spore germination process and metabolic switching. While the increased expression of Pgm in B. anthracis decreases spore germination efficiency, it remains unexplored if PrkC could directly influence Pgm activity. Here, we report the phosphorylation and regulation of Pgm by PrkC and its impact on Pgm stability and catalytic activity. Mass spectrometry revealed Pgm phosphorylation on seven threonine residues. In silico mutational analysis highlighted the role of Thr459 residue towards metal and substrate binding. Altogether, we demonstrated that PrkC-mediated Pgm phosphorylation negatively regulates its activity that is essential to maintain Pgm in its apo-like isoform before germination. This study advances the role of Pgm regulation that represents an important switch for B. anthracis resumption of metabolism and spore germination.
Collapse
Affiliation(s)
- Richa Virmani
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Avril Luyang Wang
- Department of Molecular Genetics and Microbiology, University of Toronto, Toronto, M5S1A8, Canada
| | | | - Andaleeb Sajid
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Anoop Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Vishal Sharma
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, UMR, 5235, Montpellier, France
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Wang GY, Lu B, Cui X, Li G, Zhang K, Zhang QS, Cui X, Qi GF, Liang QL, Luo XB, Xu HG, Xiao L, Wang L, Li L. An intelligent peptide recognizes and traps Mycobacterium tuberculosis to inhibit macrophage phagocytosis. J Mater Chem B 2022; 11:180-187. [PMID: 36484315 DOI: 10.1039/d2tb01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis is a major public health concern worldwide, and it is a serious threat to human health for a long period. Macrophage phagocytosis of Mycobacterium tuberculosis (M. tuberculosis) is a crucial process for granuloma formation, which shelters the bacteria and gives them an opportunity for re-activation and spread. Herein, we report an intelligent anti-microbial peptide that can recognize and trap the M. tuberculosis, inhibiting the macrophage phagocytosis process. The peptide (Bis-Pyrene-KLVFF-WHSGTPH, in abbreviation as BFH) first self-assembles into nanoparticles, and then forms nanofibers upon recognizing and binding M. tuberculosis. Subsequently, BFH traps M. tuberculosis by the in situ formed nanofibrous networks and the trapped M. tuberculosis are unable to invade host cells (macrophages). The intelligent anti-microbial peptide can significantly inhibit the phagocytosis of M. tuberculosis by macrophages, thereby providing a favorable theoretical basis for inhibiting the formation of tuberculosis granulomas.
Collapse
Affiliation(s)
- Gui-Yuan Wang
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Bin Lu
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Xu Cui
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Guang Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qing-Shi Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xin Cui
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Gao-Feng Qi
- Department of Graduate, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Qi-Lin Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiao-Bo Luo
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| | - Huan-Ge Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Xiao
- Institute of Respiratory and Critical Medicine, the Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Litao Li
- Department of Orthopedics, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng road, Beijing, 100091, China.
| |
Collapse
|
7
|
Ouyang Y, Huang J, Wang Y, Tang F, Hu Z, Zeng Z, Zhang S. Bioinformatic analysis of RNA-seq data from TCGA database reveals prognostic significance of immune-related genes in colon cancer. Medicine (Baltimore) 2022; 101:e29962. [PMID: 35945793 PMCID: PMC9351934 DOI: 10.1097/md.0000000000029962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tumor immune microenvironment is of crucial importance in cancer progression and anticancer immune responses. Thus, systematic exploration of the expression landscape and prognostic significance of immune-related genes (IRGs) to assist in the prognosis of colon cancer is valuable and significant. The transcriptomic data of 470 colon cancer patients were obtained from The Cancer Genome Atlas database and the differentially expressed genes were analyzed. After an intersection analysis, the hub IRGs were identified and a prognostic index was further developed using multivariable Cox analysis. In addition, the discriminatory ability and prognostic significance of the constructed model were validated and the characteristics of IRGs associated overall survival were analyzed to elucidate the underlying molecular mechanisms. A total of 465 differentially expressed IRGs and 130 survival-associated IRGs were screened. Then, 46 hub IRGs were identified by an intersection analysis. A regulatory network displayed that most of these genes were unfavorable for the prognosis of colon cancer and were regulated by transcription factors. After a least absolute shrinkage and selection operator regression analysis, 14 hub IRGs were ultimately chose to construct a prognostic index. The validation results illustrated that this model could act as an independent indicator to moderately separate colon cancer patients into low- and high-risk groups. This study ascertained the prognostic significance of IRGs in colon cancer and successfully constructed an IRG-based prognostic signature for clinical prediction. Our results provide promising insight for the exploration of diagnostic markers and immunotherapeutic targets in colon cancer.
Collapse
Affiliation(s)
- Yan Ouyang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiangtao Huang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of China, Guizhou Medical University, Guiyang, China
- *Correspondence: Zuquan Hu, Department of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China (e-mail: )
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
5G, Big Data, and AI for Smart City and Prevention of Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:189-214. [DOI: 10.1007/978-981-16-8969-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ionescu S, Nicolescu AC, Madge OL, Marincas M, Radu M, Simion L. Differential Diagnosis of Abdominal Tuberculosis in the Adult-Literature Review. Diagnostics (Basel) 2021; 11:2362. [PMID: 34943598 PMCID: PMC8700228 DOI: 10.3390/diagnostics11122362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) is a public health issue that affects mostly, but not exclusively, developing countries. Abdominal TB is difficult to detect at first, with the incidence ranging from 10% to 30% of individuals with lung TB. Symptoms are non-specific, examinations can be misleading, and biomarkers commonly linked with other diseases can also make appropriate diagnosis difficult. As a background for this literature review, the method used was to look into the main characteristics and features of abdominal tuberculosis that could help with differentiation on the PubMed, Science Direct, and Academic Oxford Journals databases. The results were grouped into three categories: A. general features (the five forms of abdominal tuberculosis: wet and dry peritonitis, lymphadenopathy, lesions at the level of the cavitary organs, lesions at the level of the solid organs), B. different intra-abdominal organs and patterns of involvement (oesophageal, gastro-duodenal, jejunal, ileal, colorectal, hepatosplenic, and pancreatic TB with calcified lymphadenopathy, also with description of extraperitoneal forms), and C. special challenges of the differential diagnosis in abdominal TB (such as diagnostic overlap, the disease in transplant candidates and transplant recipients, and zoonotic TB). The study concluded that, particularly in endemic countries, any disease manifesting with peritonitis, lymphadenopathy, or lesions at the level of the intestines or solid organs should have workups and protocols applied that can confirm/dismiss the suspicion of abdominal tuberculosis.
Collapse
Affiliation(s)
- Sinziana Ionescu
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Octavia Luciana Madge
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
| | - Marian Marincas
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Madalina Radu
- Pathology Department, Bucharest Oncology Institute, 022328 Bucharest, Romania;
| | - Laurentiu Simion
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania; (S.I.); (L.S.)
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Gupta KR, Arora G, Mattoo A, Sajid A. Stringent Response in Mycobacteria: From Biology to Therapeutic Potential. Pathogens 2021; 10:pathogens10111417. [PMID: 34832573 PMCID: PMC8622095 DOI: 10.3390/pathogens10111417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis is a human pathogen that can thrive inside the host immune cells for several years and cause tuberculosis. This is due to the propensity of M. tuberculosis to synthesize a sturdy cell wall, shift metabolism and growth, secrete virulence factors to manipulate host immunity, and exhibit stringent response. These attributes help M. tuberculosis to manage the host response, and successfully establish and maintain an infection even under nutrient-deprived stress conditions for years. In this review, we will discuss the importance of mycobacterial stringent response under different stress conditions. The stringent response is mediated through small signaling molecules called alarmones “(pp)pGpp”. The synthesis and degradation of these alarmones in mycobacteria are mediated by Rel protein, which is both (p)ppGpp synthetase and hydrolase. Rel is important for all central dogma processes—DNA replication, transcription, and translation—in addition to regulating virulence, drug resistance, and biofilm formation. Rel also plays an important role in the latent infection of M. tuberculosis. Here, we have discussed the literature on alarmones and Rel proteins in mycobacteria and highlight that (p)ppGpp-analogs and Rel inhibitors could be designed and used as antimycobacterial compounds against M. tuberculosis and non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Abid Mattoo
- Pharmaceutical Development, Ultragenyx Gene Therapy, Woburn, MA 01801, USA;
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
- Correspondence: or
| |
Collapse
|
11
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
12
|
Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens 2021; 10:1048. [PMID: 34451513 PMCID: PMC8399076 DOI: 10.3390/pathogens10081048,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As of August 6th, 2021, the World Health Organization has notified 200.8 million laboratory-confirmed infections and 4.26 million deaths from COVID-19, making it the worst pandemic since the 1918 flu. The main challenges in mitigating COVID-19 are effective vaccination, treatment, and agile containment strategies. In this review, we focus on the potential of Artificial Intelligence (AI) in COVID-19 surveillance, diagnosis, outcome prediction, drug discovery and vaccine development. With the help of big data, AI tries to mimic the cognitive capabilities of a human brain, such as problem-solving and learning abilities. Machine Learning (ML), a subset of AI, holds special promise for solving problems based on experiences gained from the curated data. Advances in AI methods have created an unprecedented opportunity for building agile surveillance systems using the deluge of real-time data generated within a short span of time. During the COVID-19 pandemic, many reports have discussed the utility of AI approaches in prioritization, delivery, surveillance, and supply chain of drugs, vaccines, and non-pharmaceutical interventions. This review will discuss the clinical utility of AI-based models and will also discuss limitations and challenges faced by AI systems, such as model generalizability, explainability, and trust as pillars for real-life deployment in healthcare.
Collapse
Affiliation(s)
- Gunjan Arora
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: or
| | - Jayadev Joshi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nitisha Shrivastava
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Richa Virmani
- Confo Therapeutics, Technologiepark 94, 9052 Ghent, Belgium;
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology, New Delhi 110020, India;
| |
Collapse
|
13
|
Shao M, Wu F, Zhang J, Dong J, Zhang H, Liu X, Liang S, Wu J, Zhang L, Zhang C, Zhang W. Screening of potential biomarkers for distinguishing between latent and active tuberculosis in children using bioinformatics analysis. Medicine (Baltimore) 2021; 100:e23207. [PMID: 33592820 PMCID: PMC7870233 DOI: 10.1097/md.0000000000023207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis (TB) is one of the leading causes of childhood morbidity and death globally. Lack of rapid, effective non-sputum diagnosis and prediction methods for TB in children are some of the challenges currently faced. In recent years, blood transcriptional profiling has provided a fresh perspective on the diagnosis and predicting the progression of tuberculosis. Meanwhile, combined with bioinformatics analysis can help to identify the differentially expressed genes (DEGs) and functional pathways involved in the different clinical stages of TB. Therefore, this study investigated potential diagnostic markers for use in distinguishing between latent tuberculosis infection (LTBI) and active TB using children's blood transcriptome data.From the Gene Expression Omnibus database, we downloaded two gene expression profile datasets (GSE39939 and GSE39940) of whole blood-derived RNA sequencing samples, reflecting transcriptional signatures between latent and active tuberculosis in children. GEO2R tool was used to screen for DEGs in LTBI and active TB in children. Database for Annotation, Visualization and Integrated Discovery tools were used to perform Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. STRING and Cytoscape analyzed the protein-protein interaction network and the top 15 hub genes respectively. Receiver operating characteristics curve was used to estimate the diagnostic value of the hub genes.A total of 265 DEGs were identified, including 79 upregulated and 186 downregulated DEGs. Further, 15 core genes were picked and enrichment analysis revealed that they were highly correlated with neutrophil activation and degranulation, neutrophil-mediated immunity and in defense response. Among them TLR2, FPR2, MMP9, MPO, CEACAM8, ELANE, FCGR1A, SELP, ARG1, GNG10, HP, LCN2, LTF, ADCY3 had significant discriminatory power between LTBI and active TB, with area under the curves of 0.84, 0.84, 0.84, 0.80, 0.87, 0.78, 0.88, 0.84, 0.86, 0.82, 0.85, 0.85, 0.79, and 0.88 respectively.Our research provided several genes with high potential to be candidate gene markers for developing non-sputum diagnostic tools for childhood Tuberculosis.
Collapse
Affiliation(s)
- Meng Shao
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Jie Zhang
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, XinJiang, PR China
| | - Jiangtao Dong
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, XinJiang, PR China
| | - Hui Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Xiaoling Liu
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Su Liang
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, XinJiang, PR China
| | - Jiangdong Wu
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Le Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Chunjun Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| | - Wanjiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/The Key Laboratory of Xinjiang Endemic and Ethnic Diseases
| |
Collapse
|
14
|
Quinn CM, Poplin V, Kasibante J, Yuquimpo K, Gakuru J, Cresswell FV, Bahr NC. Tuberculosis IRIS: Pathogenesis, Presentation, and Management across the Spectrum of Disease. Life (Basel) 2020; 10:E262. [PMID: 33138069 PMCID: PMC7693460 DOI: 10.3390/life10110262] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy (ART), while essential in combatting tuberculosis (TB) and HIV coinfection, is often complicated by the TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). Depending on the TB disease site and treatment status at ART initiation, this immune-mediated worsening of TB pathology can take the form of paradoxical TB-IRIS, unmasking TB-IRIS, or CNS TB-IRIS. Each form of TB-IRIS has unique implications for diagnosis and treatment. Recently published studies have emphasized the importance of neutrophils and T cell subtypes in TB-IRIS pathogenesis, alongside the recognized role of CD4 T cells and macrophages. Research has also refined our prognostic understanding, revealing how the disease can impact lung function. While corticosteroids remain the only trial-supported therapy for prevention and management of TB-IRIS, increasing interest has been given to biologic therapies directly targeting the immune pathology. TB-IRIS, especially its unmasking form, remains incompletely described and more data is needed to validate biomarkers for diagnosis. Management strategies remain suboptimal, especially in the highly morbid central nervous system (CNS) form of the disease, and further trials are necessary to refine treatment. In this review we will summarize the current understanding of the immunopathogenesis, the presentation of TB-IRIS and the evidence for management recommendations.
Collapse
Affiliation(s)
- Carson M. Quinn
- School of Medicine, University of California, San Francisco, CA 94143, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Victoria Poplin
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS 66045, USA; (V.P.); (N.C.B.)
| | - John Kasibante
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Kyle Yuquimpo
- Department of Medicine, University of Kansas, Kansas City, KS 66045, USA;
| | - Jane Gakuru
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
| | - Fiona V. Cresswell
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda; (J.K.); (J.G.); (F.V.C.)
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Medical Research Council, Uganda Virus Research Unit, London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Nathan C. Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS 66045, USA; (V.P.); (N.C.B.)
| |
Collapse
|
15
|
Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax. Pathogens 2020; 9:pathogens9110877. [PMID: 33114429 PMCID: PMC7693690 DOI: 10.3390/pathogens9110877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Bacillus anthracis spores that are re-aerosolized from surface deposits after initial contamination present significant health risks for personnel involved in decontamination. To model repeated exposure to low dose B. anthracis spores, three groups of seven rabbits were challenged with multiple low-doses of B. anthracis spores 5 days a week for 3 weeks. Mortality, body temperature, heart and respiration rates, hematology, C-reactive protein, bacteremia, and serum protective antigen were monitored for 21 days post-exposure after the last of multiple doses. All rabbits exposed to a mean daily dose of 2.91 × 102 colony forming units (CFU) survived and showed minimal physiological changes attributable to exposure. One of seven rabbits receiving a mean daily dose of 1.22 × 103 CFU died and four of seven receiving a mean daily dose of 1.17 × 104 CFU died. The LD50 was calculated to be 8.1 × 103 CFU of accumulated dose. Rabbits that succumbed to the higher dose exhibited bacteremia and increases above baseline in heart rate, respiration rate, and body temperature. Two rabbits in the mean daily dose group of 1.17 × 104 CFU exhibited clinical signs of inhalation anthrax yet survived. This study provides a description of lethality, pathophysiology, and pathology in a controlled multiple low-dose inhalation exposure study of B. anthracis in the rabbit model. The data suggest that the accumulated dose is important in survival outcome and that a subset of rabbits may show clinical signs of disease but fully recover without therapeutic intervention
Collapse
|
16
|
Savransky V, Ionin B, Reece J. Current Status and Trends in Prophylaxis and Management of Anthrax Disease. Pathogens 2020; 9:E370. [PMID: 32408493 PMCID: PMC7281134 DOI: 10.3390/pathogens9050370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.
Collapse
Affiliation(s)
- Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA; (B.I.); (J.R.)
| | | | | |
Collapse
|
17
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
18
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
19
|
Hu W, Yang S, Shimada Y, Münch M, Marín-Juez R, Meijer AH, Spaink HP. Infection and RNA-seq analysis of a zebrafish tlr2 mutant shows a broad function of this toll-like receptor in transcriptional and metabolic control and defense to Mycobacterium marinum infection. BMC Genomics 2019; 20:878. [PMID: 31747871 PMCID: PMC6869251 DOI: 10.1186/s12864-019-6265-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background The function of Toll-like receptor 2 (TLR2) in host defense against pathogens, especially Mycobacterium tuberculosis (Mtb) is poorly understood. To investigate the role of TLR2 during mycobacterial infection, we analyzed the response of tlr2 zebrafish mutant larvae to infection with Mycobacterium marinum (Mm), a close relative to Mtb, as a model for tuberculosis. We measured infection phenotypes and transcriptome responses using RNA deep sequencing in mutant and control larvae. Results tlr2 mutant embryos at 2 dpf do not show differences in numbers of macrophages and neutrophils compared to control embryos. However, we found substantial changes in gene expression in these mutants, particularly in metabolic pathways, when compared with the heterozygote tlr2+/− control. At 4 days after Mm infection, the total bacterial burden and the presence of extracellular bacteria were higher in tlr2−/− larvae than in tlr2+/−, or tlr2+/+ larvae, whereas granuloma numbers were reduced, showing a function of Tlr2 in zebrafish host defense. RNAseq analysis of infected tlr2−/− versus tlr2+/− shows that the number of up-regulated and down-regulated genes in response to infection was greatly diminished in tlr2 mutants by at least 2 fold and 10 fold, respectively. Analysis of the transcriptome data and qPCR validation shows that Mm infection of tlr2 mutants leads to decreased mRNA levels of genes involved in inflammation and immune responses, including il1b, tnfb, cxcl11aa/ac, fosl1a, and cebpb. Furthermore, RNAseq analyses revealed that the expression of genes for Maf family transcription factors, vitamin D receptors, and Dicps proteins is altered in tlr2 mutants with or without infection. In addition, the data indicate a function of Tlr2 in the control of induction of cytokines and chemokines, such as the CXCR3-CXCL11 signaling axis. Conclusion The transcriptome and infection burden analyses show a function of Tlr2 as a protective factor against mycobacteria. Transcriptome analysis revealed tlr2-specific pathways involved in Mm infection, which are related to responses to Mtb infection in human macrophages. Considering its dominant function in control of transcriptional processes that govern defense responses and metabolism, the TLR2 protein can be expected to be also of importance for other infectious diseases and interactions with the microbiome.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Shuxin Yang
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yasuhito Shimada
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Magnus Münch
- Mathematical Institute, Leiden University, Leiden, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rubén Marín-Juez
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
20
|
Liu Q, Li Z, Ji Y, Martinez L, Zia UH, Javaid A, Lu W, Wang J. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist 2019; 12:2311-2322. [PMID: 31440067 PMCID: PMC6666376 DOI: 10.2147/idr.s207809] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/06/2019] [Indexed: 01/26/2023] Open
Abstract
Objective Forecasting the seasonality and trend of pulmonary tuberculosis is important for the rational allocation of health resources; however, this foresting is often hampered by inappropriate prediction methods. In this study, we performed validation research by comparing the accuracy of the autoregressive integrated moving average (ARIMA) model and the back-propagation neural network (BPNN) model in a southeastern province of China. Methods We applied the data from 462,214 notified pulmonary tuberculosis cases registered from January 2005 to December 2015 in Jiangsu Province to modulate and construct the ARIMA and BPNN models. Cases registered in 2016 were used to assess the prediction accuracy of the models. The root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and mean error rate (MER) were used to evaluate the model fitting and forecasting effect. Results During 2005–2015, the annual pulmonary tuberculosis notification rate in Jiangsu Province was 56.35/100,000, ranging from 40.85/100,000 to 79.36/100,000. Through screening and comparison, the ARIMA (0, 1, 2) (0, 1, 1)12 and BPNN (3-9-1) were defined as the optimal fitting models. In the fitting dataset, the RMSE, MAPE, MAE and MER were 0.3901, 6.0498, 0.2740 and 0.0608, respectively, for the ARIMA (0, 1, 2) (0, 1, 1)12 model, 0.3236, 6.0113, 0.2508 and 0.0587, respectively, for the BPNN model. In the forecasting dataset, the RMSE, MAPE, MAE and MER were 0.1758, 4.6041, 0.1368 and 0.0444, respectively, for the ARIMA (0, 1, 2) (0, 1, 1)12 model, and 0.1382, 3.2172, 0.1018 and 0.0330, respectively, for the BPNN model. Conclusion Both the ARIMA and BPNN models can be used to predict the seasonality and trend of pulmonary tuberculosis in the Chinese population, but the BPNN model shows better performance. Applying statistical techniques by considering local characteristics may enable more accurate mathematical modeling.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Leonardo Martinez
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ui Haq Zia
- Faculty of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Arshad Javaid
- Faculty of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, People's Republic of China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Virmani R, Sajid A, Singhal A, Gaur M, Joshi J, Bothra A, Garg R, Misra R, Singh VP, Molle V, Goel AK, Singh A, Kalia VC, Lee JK, Hasija Y, Arora G, Singh Y. The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. J Biol Chem 2019; 294:8930-8941. [PMID: 30952697 DOI: 10.1074/jbc.ra118.005424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/18/2019] [Indexed: 01/05/2023] Open
Abstract
Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.
Collapse
Affiliation(s)
- Richa Virmani
- From the Department of Zoology, University of Delhi, Delhi 110007, India.,Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India.,Delhi Technological University, Delhi 110042, India
| | - Andaleeb Sajid
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Anshika Singhal
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Mohita Gaur
- From the Department of Zoology, University of Delhi, Delhi 110007, India
| | - Jayadev Joshi
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Ankur Bothra
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Garg
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Misra
- From the Department of Zoology, University of Delhi, Delhi 110007, India.,Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Vijay Pal Singh
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Virginie Molle
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), CNRS, University of Montpellier, Montpellier 34000, France
| | - Ajay K Goel
- Defence Research and Development Establishment, Gwalior 474002, India
| | - Archana Singh
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea, and
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea, and
| | - Yasha Hasija
- Delhi Technological University, Delhi 110042, India
| | - Gunjan Arora
- From the Department of Zoology, University of Delhi, Delhi 110007, India, .,Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20851
| | - Yogendra Singh
- From the Department of Zoology, University of Delhi, Delhi 110007, India, .,Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi 110007, India
| |
Collapse
|
22
|
Deng M, Lv XD, Fang ZX, Xie XS, Chen WY. The blood transcriptional signature for active and latent tuberculosis. Infect Drug Resist 2019; 12:321-328. [PMID: 30787624 PMCID: PMC6363485 DOI: 10.2147/idr.s184640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Although the incidence of tuberculosis (TB) has dropped substantially, it still is a serious threat to human health. And in recent years, the emergence of resistant bacilli and inadequate disease control and prevention has led to a significant rise in the global TB epidemic. It is known that the cause of TB is Mycobacterium tuberculosis infection. But it is not clear why some infected patients are active while others are latent. METHODS We analyzed the blood gene expression profiles of 69 latent TB patients and 54 active pulmonary TB patients from GEO (Transcript Expression Omnibus) database. RESULTS By applying minimal redundancy maximal relevance and incremental feature selection, we identified 24 signature genes which can predict the TB activation. The support vector machine predictor based on these 24 genes had a sensitivity of 0.907, specificity of 0.913, and accuracy of 0.911, respectively. Although they need to be validated in a large independent dataset, the biological analysis of these 24 genes showed great promise. CONCLUSION We found that cytokine production was a key process during TB activation and genes like CYBB, TSPO, CD36, and STAT1 worth further investigation.
Collapse
Affiliation(s)
- Min Deng
- Department of Infectious Diseases, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China,
| | - Xiao-Dong Lv
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhi-Xian Fang
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xin-Sheng Xie
- Department of Infectious Diseases, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China,
| | - Wen-Yu Chen
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
23
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Denisenko E, Guler R, Mhlanga M, Suzuki H, Brombacher F, Schmeier S. Transcriptionally induced enhancers in the macrophage immune response to Mycobacterium tuberculosis infection. BMC Genomics 2019; 20:71. [PMID: 30669987 PMCID: PMC6341744 DOI: 10.1186/s12864-019-5450-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tuberculosis is a life-threatening infectious disease caused by Mycobacterium tuberculosis (M.tb). M.tb subverts host immune responses to build a favourable niche and survive inside of host macrophages. Macrophages can control or eliminate the infection, if acquire appropriate functional phenotypes. Transcriptional regulation is a key process that governs the activation and maintenance of these phenotypes. Among the factors orchestrating transcriptional regulation during M.tb infection, transcriptional enhancers still remain unexplored. Results We analysed transcribed enhancers in M.tb-infected mouse bone marrow-derived macrophages. We established a link between known M.tb-responsive transcription factors and transcriptional activation of enhancers and their target genes. Our data suggest that enhancers might drive macrophage response via transcriptional activation of key immune genes, such as Tnf, Tnfrsf1b, Irg1, Hilpda, Ccl3, and Ccl4. We report enhancers acquiring transcription de novo upon infection. Finally, we link highly transcriptionally induced enhancers to activation of genes with previously unappreciated roles in M.tb infection, such as Fbxl3, Tapt1, Edn1, and Hivep1. Conclusions Our findings suggest the importance of macrophage host transcriptional enhancers during M.tb infection. Our study extends current knowledge of the regulation of macrophage responses to M.tb infection and provides a basis for future functional studies on enhancer-gene interactions in this process. Electronic supplementary material The online version of this article (10.1186/s12864-019-5450-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Denisenko
- Massey University, Institute of Natural and Mathematical Sciences, Albany, Auckland, New Zealand
| | - Reto Guler
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Musa Mhlanga
- Gene Expression and Biophysics Group, CSIR Synthetic Biology ERA, Pretoria, South Africa.,Division of Chemical Systems and Synthetic Biology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Sebastian Schmeier
- Massey University, Institute of Natural and Mathematical Sciences, Albany, Auckland, New Zealand.
| |
Collapse
|
25
|
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20:E340. [PMID: 30650615 PMCID: PMC6359177 DOI: 10.3390/ijms20020340] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Epidemiological data from the Center of Disease Control (CDC) and the World Health Organization (WHO) statistics in 2017 show that 10.0 million people around the world became sick with tuberculosis. Mycobacterium tuberculosis (MTB) is an intracellular parasite that mainly attacks macrophages and inhibits their apoptosis. It can become a long-term infection in humans, causing a series of pathological changes and clinical manifestations. In this review, we summarize innate immunity including the inhibition of antioxidants, the maturation and acidification of phagolysosomes and especially the apoptosis and autophagy of macrophages. Besides, we also elaborate on the adaptive immune response and the formation of granulomas. A thorough understanding of these escape mechanisms is of major importance for the prevention, diagnosis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Weijie Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Fengjuan Wu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yiyuan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yurong Fu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
26
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
27
|
Bielecka MK, Elkington P. Advanced cellular systems to study tuberculosis treatment. Curr Opin Pharmacol 2018; 42:16-21. [PMID: 29990957 DOI: 10.1016/j.coph.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and drug resistant strains are progressively emerging. Whilst the successful development of new agents for multi-drug resistant Mtb represents a major step forward, this progress must be balanced against recent disappointments in treatment-shortening trials. Consequently, there is a pressing need to strengthen the pipeline of drugs to treat tuberculosis (TB) and develop innovative therapeutic regimes. Approaches that bridge diverse disciplines are likely to be required to provide systems that address the limitations of current experimental models. Mtb is an obligate human pathogen that has undergone extensive co-evolution, resulting in a complex interplay between the host and pathogen. This chronic interaction involves multiple micro-environments, which may underlie some of the challenges in developing new drugs. The authors propose that advanced cell culture models of TB are likely to be an important addition to the experimental armamentarium in developing new approaches to TB, and here we review recent progress in this area and discuss the principal challenges.
Collapse
Affiliation(s)
- Magdalena K Bielecka
- NIHR Biomedical Research Centre, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK.
| | - Paul Elkington
- NIHR Biomedical Research Centre, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|