1
|
Steulet A, Obura B, Waitt C, Laker E, Nicol MR, Cresswell FV. Clinical pharmacology considerations and drug-drug interactions with long-acting cabotegravir and rilpivirine relevant to sub-Saharan Africa. Br J Clin Pharmacol 2024; 90:2079-2091. [PMID: 38923554 DOI: 10.1111/bcp.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
Long-acting injectable (LAI) cabotegravir and rilpivirine for HIV treatment and LAI cabotegravir for pre-exposure HIV prophylaxis are being rolled out in a multitude of countries worldwide. Due to the prolonged exposure, it can be challenging to undertake 'traditional' pharmacokinetic studies and current guidance is derived from their oral equivalents or physiologically based pharmacokinetic studies. This review aims to consider pharmacokinetic characteristics of cabotegravir and rilpivirine and describe anticipated drug-drug interactions (DDIs) with frequent concomitant medications in African settings. Relevant co-medications were identified from the WHO 2021 List of Essential Medicines. All original human and physiologically based pharmacokinetic studies published in English on PubMed, discussing DDIs with LAI cabotegravir and rilpivirine prior to April 2023, were reviewed. The Liverpool HIV interaction database was also reviewed (https://www.hiv-druginteractions.org/checker). LAI cabotegravir and rilpivirine have half-lives of 6-12 and 13-28 weeks, respectively. Cabotegravir is primarily metabolized by UDP-glucuronyltransferase (UGT)-1A1 and rilpivirine by cytochrome P450 (CYP)-3A4. LAI cabotegravir and rilpivirine themselves exhibit low risk of perpetrating interactions with co-medications as they do not induce or inhibit the major drug metabolizing enzymes. However, they are victims of DDIs relating to the induction of their metabolizing enzymes by concomitantly administered medication. Noteworthy contraindicated co-medications include rifamycins, carbamazepine, phenytoin, flucloxacillin and griseofulvin, which induce CYP3A4 and/or UGT1A1, causing clinically significant reduced concentrations of rilpivirine and/or cabotegravir. In addition to virologic failure, subtherapeutic concentrations resulting from DDIs can lead to emergent drug resistance. Clinicians should be aware of potential DDIs and counsel people receiving LAI cabotegravir/rilpivirine appropriately to minimize risk.
Collapse
Affiliation(s)
- Adrian Steulet
- Department of Internal Medicine, Nyon Hospital (GHOL), Nyon, Switzerland
| | - Bonniface Obura
- Antimicrobial Pharmacodynamics and Therapeutics Group, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Department of Pharmacology and Therapeutics, Lira University, Lira, Uganda
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Eva Laker
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Fiona V Cresswell
- MRC/UVRI-LSHTM Uganda Research Unit, Entebbe, Uganda
- Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
2
|
Tang J, Weng R, Fang T, Zhang K, Yan X, Jin X, Xie L, Zhao D. Clinical outcomes of liver transplantation in human immunodeficiency virus/hepatitis B virus coinfected patients in China. BMC Infect Dis 2024; 24:383. [PMID: 38589801 PMCID: PMC11003048 DOI: 10.1186/s12879-024-09284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Highly active antiretroviral therapy (HAART) has been able to improve the immune system function and survival of human immunodeficiency virus (HIV) patients. However, Patients coinfected with HIV and hepatitis B virus (HBV) are more likely to develop end-stage liver disease (ESLD) than those infected with HBV alone. Consequently, liver transplantation is often required for these patients. This study evaluates the outcomes of orthotopic liver transplantation (OLT) of HIV-HBV coinfected patients in China. METHODS We conducted a retrospective analysis on all HIV-HBV coinfected patients that underwent OLT from April 1, 2019 to December 31, 2021 and their outcomes were compared to all HBV monoinfected patients undergoing OLT during the same period. Patient outcomes were determined, including cumulative survival, viral load, CD4 T-cell count and postoperative complications. RESULTS The median follow-up of HIV recipients was 36 months after OLT (interquartile range 12-39 months). Almost all patients had stable CD4 T-cell count (> 200 copies/ul), undetectable HBV DNA levels, and undetectable HIV RNA load during follow-up. The 1-, 2-, and 3-year posttransplant survival rates were 85.7% for the HIV group (unchanged from 1 to 3 years) versus 82.2%, 81.2%, and 78.8% for the non-HIV group. Cumulative survival among HIV-HBV coinfected recipients was not significantly different from the HBV monoinfected recipients (log-rank test P = 0.692). The percentage of deaths attributed to infection was comparable between the HIV and non-HIV groups (14.3% vs. 9.32%, P = 0.665). Post OLT, there was no significant difference in acute rejection, cytomegalovirus infection, bacteremia, pulmonary infection, acute kidney injury, de novo tumor and vascular and biliary complications. CONCLUSIONS Liver transplantation in patients with HIV-HBV coinfection yields excellent outcomes in terms of intermediate- or long-term survival rate and low incidence of postoperative complications in China. These findings suggest that OLT is safe and feasible for HIV-HBV coinfected patients with ESLD. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2300067631), registered 11 January 2023.
Collapse
Affiliation(s)
- Jianxin Tang
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Ruihui Weng
- Department of Neurology, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern, University of Science and Technology, 518000, Shenzhen, China
| | - Taishi Fang
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Kangjun Zhang
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Xu Yan
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Xin Jin
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Linjie Xie
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China
| | - Dong Zhao
- Department of Liver Surgery & Organ Transplantation Center, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Longgang District, Bulan Road 29#, 518000, Shenzhen, China.
| |
Collapse
|
3
|
Teixeira EMGF, Kalume DE, Ferreira PF, Alves TA, Fontão APGA, Sampaio ALF, de Oliveira DR, Morgado-Díaz JA, Silva-López RE. A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth. Protein J 2024; 43:333-350. [PMID: 38347326 DOI: 10.1007/s10930-023-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 05/01/2024]
Abstract
A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.
Collapse
Affiliation(s)
- Erika Maria Gomes Ferreira Teixeira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dario Eluam Kalume
- Interdisciplinary Laboratory of Medical Research, IOC-Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Patrícia Fernandes Ferreira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Thayane Aparecida Alves
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Ana Paula G A Fontão
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - André Luís Franco Sampaio
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - Raquel Elisa Silva-López
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil.
| |
Collapse
|
4
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
5
|
Su C, Ma Y, Liang H, Huang A, Deng W, Zhou J, Liu H. ART and Serum albumin are influencing factors of the 5-year survival rate of people living with HIV undergoing maintenance hemodialysis caused by HIV: A cohort study. Medicine (Baltimore) 2023; 102:e35494. [PMID: 37800798 PMCID: PMC10553035 DOI: 10.1097/md.0000000000035494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is one of the most prominent public health problems worldwide. The 5-year survival rate of people living with HIV undergoing maintenance hemodialysis (MHD) and the factors related to the survival rate have not been widely studied. This study calculated the 5-year survival rate of people living with HIV who were undergoing MHD and determined the risk factors that may affect the 5-year survival rate. All enrolled participants were followed up for more than 5 years from the first round of MHD. The survival rate of them was calculated, the Cox proportional hazards model was used for multivariate analysis, the Kaplan-Meier method was used to draw the survival curve, and the log-rank test was used to compare the survival time of different groups. A total of 121 participants were included in the study. Statistical analysis showed that the overall 5-year survival rate was 19.0%. The 6-, 12-, 24-, and 36-month survival rates were 71.90%, 56.20%, 41.32%, and 30.58%, respectively. Infection was the leading cause of death, accounting for 55.37%. The Cox proportional hazards model revealed that antiretroviral therapy (ART) and the serum albumin level after dialysis were independent protective factors for patient survival. The log-rank test showed that there was a significant difference in survival time between the ART and non-ART groups.
Collapse
Affiliation(s)
- Chunxiong Su
- Department of Blood Purification, the Fourth People’s Hospital of Nanning, Guangxi (Guangxi AIDS Clinical Treatment Center), Nanning, China
| | - Yuting Ma
- Department of Traditional Chinese Medicine, the Fourth People’s Hospital of Nanning, Guangxi (Guangxi AIDS Clinical Treatment Center), Nanning, China
| | - Huiping Liang
- Department of Medicine, GuangXi Medical College, Nanning, China
| | - Aixian Huang
- Department of Blood Purification, the Fourth People’s Hospital of Nanning, Guangxi (Guangxi AIDS Clinical Treatment Center), Nanning, China
| | - Wenhai Deng
- Department of Blood Purification, the Fourth People’s Hospital of Nanning, Guangxi (Guangxi AIDS Clinical Treatment Center), Nanning, China
| | - Jia Zhou
- Department of Blood Purification, the Fourth People’s Hospital of Nanning, Guangxi (Guangxi AIDS Clinical Treatment Center), Nanning, China
| | - Huaying Liu
- Department of Medicine, GuangXi Medical College, Nanning, China
| |
Collapse
|
6
|
Xu S, Sun L, Liu X, Zhan P. Opportunities and challenges in new HIV therapeutic discovery: what is the next step? Expert Opin Drug Discov 2023; 18:1195-1199. [PMID: 37561085 DOI: 10.1080/17460441.2023.2246872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Toussi SS, Hammond JL, Gerstenberger BS, Anderson AS. Therapeutics for COVID-19. Nat Microbiol 2023; 8:771-786. [PMID: 37142688 DOI: 10.1038/s41564-023-01356-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Vaccines and monoclonal antibody treatments to prevent severe coronavirus disease 2019 (COVID-19) illness were available within a year of the pandemic being declared but there remained an urgent need for therapeutics to treat patients who were not vaccinated, were immunocompromised or whose vaccine immunity had waned. Initial results for investigational therapies were mixed. AT-527, a repurposed nucleoside inhibitor for hepatitis C virus, enabled viral load reduction in a hospitalized cohort but did not reduce viral load in outpatients. The nucleoside inhibitor molnupiravir prevented death but failed to prevent hospitalization. Nirmatrelvir, an inhibitor of the main protease (Mpro), co-dosed with the pharmacokinetic booster ritonavir, reduced hospitalization and death. Nirmatrelvir-ritonavir and molnupiravir received an Emergency Use Authorization in the United States at the end of 2021. Immunomodulatory drugs such as baricitinib, tocilizumab and corticosteroid, which target host-driven COVID-19 symptoms, are also in use. We highlight the development of COVID-19 therapies and the challenges that remain for anticoronavirals.
Collapse
|
8
|
Ji C. Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24097938. [PMID: 37175645 PMCID: PMC10178330 DOI: 10.3390/ijms24097938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, GI/Liver Division, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Hu S, Chen J, Cao JX, Zhang SS, Gu SX, Chen FE. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg Chem 2023; 136:106549. [PMID: 37119785 DOI: 10.1016/j.bioorg.2023.106549] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.
Collapse
Affiliation(s)
- Sha Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jin-Xu Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fen-Er Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Liu M, Li W, Qiao W, Liang L, Wang Z. Knowledge domain and emerging trends in HIV-MTB co-infection from 2017 to 2022: A scientometric analysis based on VOSviewer and CiteSpace. Front Public Health 2023; 11:1044426. [PMID: 36817921 PMCID: PMC9929147 DOI: 10.3389/fpubh.2023.1044426] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (MTB) in human immunodeficiency virus (HIV)-infected individuals is one of the leading causes of death. Also, research on HIV and MTB (HIV-MTB) co-infection was found to have a downward trend. In this work, we performed the knowledge domain analysis and visualized the current research progress and emerging trends in HIV-MTB co-infection between 2017 and 2022 by using VOSviewer and CiteSpace. The relevant literatures in this article were collected in the Web of Science (WoS) database. VOSviewer and CiteSpace bibliometric software were applied to perform the analysis and visualization of scientific productivity and frontier. Among all the countries, USA was dominant in the field, followed by South Africa, and England. Among all the institutions, the University of Cape Town (South Africa) had more extensive collaborations with other research institutions. The Int J Tuberc Lung Dis was regarded as the foremost productive journal. Survival and mortality analysis, pathogenesis, epidemiological studies, diagnostic methods, prognosis improvement of quality of life, clinical studies and multiple infections (especially co-infection with COVID-19) resulted in the knowledge bases for HIV-MTB co-infection. The clinical research on HIV-MTB co-infection has gradually shifted from randomized controlled trials to open-label trials, while the cognition of HIV-TB has gradually shifted from cytokines to genetic polymorphisms. This scientometric study used quantitative and qualitative methods to conduct a comprehensive review of research on HIV-MTB co-infection published over the past 5 years, providing some useful references to further the study of HIV-MTB co-infection.
Collapse
Affiliation(s)
- Miaona Liu
- Department of Pharmacy, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Wei Li
- Department of Pharmacy, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Wenmei Qiao
- Department of Pharmacy, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Limian Liang
- Department of Pharmacy, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Zhaoqin Wang
- National Center for Infectious Disease Research, The Third People's Hospital of Shenzhen, Shenzhen, China,*Correspondence: Zhaoqin Wang ✉
| |
Collapse
|
11
|
Kumar N, Acharya V. Machine intelligence-guided selection of optimized inhibitor for human immunodeficiency virus (HIV) from natural products. Comput Biol Med 2023; 153:106525. [PMID: 36603433 DOI: 10.1016/j.compbiomed.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) connects to the cluster of differentiation (CD4) and any of the entry co-receptors (CCR5 and CXCR4); followed by unloading the viral genome, reverse transcriptase, and integrase enzymes within the host cell. The co-receptors facilitate the entry of virus and vital enzymes, leading to replication and pre-maturation of viral particles within the host. The protease enzyme transforms the immature viral vesicles into the mature virion. The pivotal role of co-receptors and enzymes in homeostasis and growth makes the crucial target for anti-HIV drug discovery, and the availability of X-ray crystal structures is an asset. Here, we used the machine intelligence-driven framework (A-HIOT) to identify and optimize target-based potential hit molecules for five significant protein targets from the ZINC15 database (natural products dataset). Following validation with dynamic motion behavior analysis and molecular dynamics simulation, the optimized hits were evaluated using in silico ADMET filtration. Furthermore, three molecules were screened, optimized, and validated: ZINC00005328058 for CCR5 and protease, ZINC000254014855 for CXCR4 and integrase, and ZINC000000538471 for reverse transcriptase. In clinical trials, the ZINC000254014855 and ZINC000254014855 were passed in primary screens for vif-HIV-1, and we reported the specific receptor as well as interactions. As a result, the validated molecules may be investigated further in experimental studies targeting specific receptors in order to design and synergize an anti-HIV regimen.
Collapse
Affiliation(s)
- Neeraj Kumar
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
12
|
HIV and Drug-Resistant Subtypes. Microorganisms 2023; 11:microorganisms11010221. [PMID: 36677513 PMCID: PMC9861097 DOI: 10.3390/microorganisms11010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a human viral infectious disease caused by the positive-sense single-stranded (ss) RNA Human Immunodeficiency Virus (HIV) (Retroviridae family, Ortervirales order). HIV-1 can be distinguished into various worldwide spread groups and subtypes. HIV-2 also causes human immunodeficiency, which develops slowly and tends to be less aggressive. HIV-2 only partially homologates to HIV-1 despite the similar derivation. Antiretroviral therapy (ART) is the treatment approved to control HIV infection, based on multiple antiretroviral drugs that belong to different classes: (i) NNRTIs, (ii) NRTIs, (iii) PIs, (iv) INSTIs, and (v) entry inhibitors. These drugs, acting on different stages of the HIV life cycle, decrease the patient's total burden of HIV, maintain the function of the immune system, and prevent opportunistic infections. The appearance of several strains resistant to these drugs, however, represents a problem today that needs to be addressed as best as we can. New outbreaks of strains show a widespread geographic distribution and a highly variable mortality rate, even affecting treated patients significantly. Therefore, novel treatment approaches should be explored. The present review discusses updated information on HIV-1- and HIV-2-resistant strains, including details on different mutations responsible for drug resistance.
Collapse
|
13
|
Yildirim A, Tekpinar M. Building Quantitative Bridges between Dynamics and Sequences of SARS-CoV-2 Main Protease and a Diverse Set of Thirty-Two Proteins. J Chem Inf Model 2023; 63:9-19. [PMID: 36513349 DOI: 10.1021/acs.jcim.2c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteases are major drug targets for many viral diseases. However, mutations can render several antiprotease drugs inefficient rapidly even though these mutations may not alter protein structures significantly. Understanding relations between quickly mutating residues, protease structures, and the dynamics of the proteases is crucial for designing potent drugs. Due to this reason, we studied relations between the evolutionary information on residues in the amino acid sequences and protein dynamics for SARS-CoV-2 main protease. More precisely, we analyzed three dynamical quantities (Schlitter entropy, root-mean-square fluctuations, and dynamical flexibility index) and their relation to the amino acid conservation extracted from multiple sequence alignments of the main protease. We showed that a quantifiable similarity can be built between a sequence-based quantity called Jensen-Shannon conservation and those three dynamical quantities. We validated this similarity for a diverse set of 32 different proteins, other than the SARS-CoV-2 main protease. We believe that establishing these kinds of quantitative bridges will have larger implications for all viral proteases as well as all proteins.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Biology, Siirt University, 56100Siirt, Turkey
| | - Mustafa Tekpinar
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Sorbonne University, 75005Paris, France
| |
Collapse
|
14
|
van Vliet VJE, Huynh N, Palà J, Patel A, Singer A, Slater C, Chung J, van Huizen M, Teyra J, Miersch S, Luu GK, Ye W, Sharma N, Ganaie SS, Russell R, Chen C, Maynard M, Amarasinghe GK, Mark BL, Kikkert M, Sidhu SS. Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathog 2022; 18:e1011065. [PMID: 36548304 PMCID: PMC9822107 DOI: 10.1371/journal.ppat.1011065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.
Collapse
Affiliation(s)
- Vera J. E. van Vliet
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Nhan Huynh
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Judith Palà
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alex Singer
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Cole Slater
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacky Chung
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mariska van Huizen
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Joan Teyra
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Shane Miersch
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gia-Khanh Luu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Wei Ye
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Safder S. Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Raquel Russell
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chao Chen
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mindy Maynard
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Sachdev S. Sidhu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Li JC, Nie G, Dai HF. A Case of Spontaneous Mediastinal and Subcutaneous Emphysema in a Patient with HIV-Infected Pneumonia. Curr HIV Res 2022; 20:479-484. [PMID: 36043739 DOI: 10.2174/1570162x20666220829143802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Acquired immunodeficiency syndrome is a chronic infectious disease with high mortality and is caused by the Human Immunodeficiency Virus (HIV). Pneumonia caused by HIV is common, but it rarely causes spontaneous mediastinal and subcutaneous emphysema. CASE PRESENTATION A 21-year-old man with severe pneumonia was hospitalized owing to dyspnea that had been persisting for 1 day; blood test results confirmed HIV infection. Initial chest Computed Tomography (CT) did not reveal mediastinal or subcutaneous emphysema. However, after 21 days of treatment, the patient experienced discomfort in the neck region and experienced the feeling of snowflakes on applying pressure. Chest CT showed mediastinal and subcutaneous emphysema, located in the bilateral cervical roots, anterior upper chest wall, left axillary chest wall, mediastinum, and other parts. Metagenomic Next Generation Sequencing (mNGS) of the sputum and blood samples suggested multiple pathogenic infections. Antiinfection treatment was initiated, and changes in the patient's condition were monitored. The patient's subcutaneous emphysema improved during the follow-up. CONCLUSION In HIV-infected patients with sudden mediastinal and subcutaneous emphysema, mNGS can be used to determine the etiological agent during symptomatic treatment. Targeted antipathogen therapy is helpful in improving the condition of patients with subcutaneous emphysema.
Collapse
Affiliation(s)
- Jun-Chen Li
- Department of Internal Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Gang Nie
- Department of Internal Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Hai-Feng Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
16
|
Deng C, Yan H, Wang J, Liu BS, Liu K, Shi YM. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. Current scenario on non-nucleoside reverse transcriptase inhibitors (2018-present). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Bai R, Li Z, Lv S, Hua W, Dai L, Wu H. Exploring the biological function of immune cell-related genes in human immunodeficiency virus (HIV)-1 infection based on weighted gene co-expression network analysis (WGCNA). BMC Med Genomics 2022; 15:200. [PMID: 36123690 PMCID: PMC9484082 DOI: 10.1186/s12920-022-01357-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background Acquired immunodeficiency syndrome (AIDS) is a chronic infectious disease characterized by consistent immune dysfunction. The objective of this study is to determine whether immune cell-related genes can be used as biomarkers for the occurrence of AIDS and potential molecular mechanisms. Methods A weighted gene co-expression network analysis was performed using the GSE6740 dataset from the Gene Expression Synthesis Database to identify the Hub gene, which contained microarray data from HIV-1 positive (HIV-1+) and HIV-1 negative (HIV-1−) individuals. The HIV-1+-related differentially expressed genes were then identified using the limma package. Subsequently, the characteristic immune cell-related genes were identified as diagnostic biomarkers for HIV-1+ using the random forest model (RF), support vector machine model, and generalized linear model. Results MEdarkgreen exhibited the strongest correlation with HIV clinical features of any of these modules. As the best model for diagnosing HIV-1±, RF was used to select four critical immune cell-related genes, namely, ARRB1, DPEP2, LTBP3, and RGCC, and a nomogram model was created to predict the occurrence of HIV-1 infection based on four key immune cell-related genes. Diagnostic genes were shown to be engaged in immune-related pathways, suggesting that immunological molecules, immune cells, and immune pathways all have a role in HIV-1 infection. The CTD database was explored for prospective medications or molecular compounds that might be utilized to treat HIV-1+ patients. = Moreover, in HIV-1+ individuals, the ceRNA network revealed that ARRB1, DPEP2, LTBP3, and RGCC could be regulated by lncRNAs through the corresponding miRNAs. Ultimately, RT-PCR results from clinical blood samples demonstrated that the four diagnostic genes were significantly downregulated in HIV-1+ patients. Conclusion We screened four immune cell-related genes, ARRB1, DPEP2, LTBP3, and RGCC, which may be considered as the diagnostic markers for HIV-1/AIDS. Our findings reveal that immune related genes and pathways involved in HIV-1 pathogenesis were regulated on both genetic and epigenetic levels by constructing a ceRNA network associated with lncRNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01357-y.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research On Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. J Virol 2022; 96:e0090722. [PMID: 36000844 PMCID: PMC9472640 DOI: 10.1128/jvi.00907-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Collapse
|
20
|
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front Mol Biosci 2022; 9:875208. [PMID: 35620479 PMCID: PMC9127998 DOI: 10.3389/fmolb.2022.875208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is a Human Papilloma virus-related disease, which is on the rise in a number of countries, globally. Two essential oncogenes, E6 and E7, drive cell transformation and cancer development. These two oncoproteins target two of the most important tumour suppressors, p53 and pRB, for degradation through the ubiquitin ligase pathway, thus, blocking apoptosis activation and deregulation of cell cycle. This pathway can be exploited for anticancer therapeutic interventions, and Human Immunodeficiency Virus Protease Inhibitors (HIV-PIs) have attracted a lot of attention for this anticancer drug development. HIV-PIs have proven effective in treating HPV-positive cervical cancers and shown to restore impaired or deregulated p53 in HPV-associated cervical cancers by inhibiting the 26S proteasome. This review will evaluate the role players, such as HPV oncoproteins involved cervical cancer development and how they are targeted in HIV protease inhibitors-induced p53 restoration in cervical cancer. This review also covers the therapeutic potential of HIV protease inhibitors and molecular mechanisms behind the HIV protease inhibitors-induced p53-dependent anticancer activities against cervical cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
- *Correspondence: Zukile Mbita,
| |
Collapse
|
21
|
Jin YH, Jeon S, Lee J, Kim S, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2. Pharmaceutics 2022; 14:pharmaceutics14020376. [PMID: 35214108 PMCID: PMC8879496 DOI: 10.3390/pharmaceutics14020376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rhizome of Dryopteris crassirhizoma Nakai. (Dryopteridaceae) has been used in traditional medicine in East Asia and has recently been reported to have anticancer, anti-inflammation, and antibacterial activity as well as antiviral activity. Natural phloroglucinols from D. crassirhizoma, dryocrassin ABBA and filixic acid ABA were reported to inhibit influenza virus infection with an inhibitory activity on neuraminidase. In this study, we found that dryocrassin ABBA and filixic acid ABA have an inhibitory activity against the main protease of SARS-CoV-2. Therefore, dryocrassin ABBA and filixic acid ABA exhibited inhibitory activity against SARS-CoV-2 infection in Vero cells dose-dependently using the immunofluorescence-based antiviral assays. Moreover, these compounds inhibited SARS-CoV and MERS-CoV infection, suggesting their broad-spectrum anticoronaviral activity. In addition, a 5-day repeated-dose toxicity study of dryocrassin ABBA and filixic acid ABA suggested that an approximately lethal dose of these compounds in mice was >10 mg/kg. Pharmacokinetic studies of dryocrassin ABBA showed good microsomal stability, low hERG inhibition, and low CYP450 inhibition. In vivo pharmacokinetic properties of dryocrassin ABBA showed a long half-life (5.5–12.6 h) and high plasma exposure (AUC 19.3–65 μg·h/mL). Therefore, dryocrassin ABBA has therapeutic potential against emerging coronavirus infections, including COVID-19.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +82-42-868-9675 (S.K.)
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea; (S.J.); (J.L.); (S.K.)
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (M.S.J.); (C.M.P.); (J.H.S.); (H.R.K.)
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: (Y.-H.J.); (S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +82-42-868-9675 (S.K.)
| |
Collapse
|
22
|
Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010116. [PMID: 35054509 PMCID: PMC8779838 DOI: 10.3390/life12010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/22/2023]
Abstract
Understanding non-covalent biomolecular recognition, which includes drug-protein bound states and their binding/unbinding processes, is of fundamental importance in chemistry, biology, and medicine. Fully revealing the factors that govern the binding/unbinding processes can further assist in designing drugs with desired binding kinetics. HIV protease (HIVp) plays an integral role in the HIV life cycle, so it is a prime target for drug therapy. HIVp has flexible flaps, and the binding pocket can be accessible by a ligand via various pathways. Comparing ligand association and dissociation pathways can help elucidate the ligand-protein interactions such as key residues directly involved in the interaction or specific protein conformations that determine the binding of a ligand under certain pathway(s). Here, we investigated the ligand unbinding process for a slow binder, ritonavir, and a fast binder, xk263, by using unbiased all-atom accelerated molecular dynamics (aMD) simulation with a re-seeding approach and an explicit solvent model. Using ritonavir-HIVp and xk263-HIVp ligand-protein systems as cases, we sampled multiple unbinding pathways for each ligand and observed that the two ligands preferred the same unbinding route. However, ritonavir required a greater HIVp motion to dissociate as compared with xk263, which can leave the binding pocket with little conformational change of HIVp. We also observed that ritonavir unbinding pathways involved residues which are associated with drug resistance and are distal from catalytic site. Analyzing HIVp conformations sampled during both ligand-protein binding and unbinding processes revealed significantly more overlapping HIVp conformations for ritonavir-HIVp rather than xk263-HIVp. However, many HIVp conformations are unique in xk263-HIVp unbinding processes. The findings are consistent with previous findings that xk263 prefers an induced-fit model for binding and unbinding, whereas ritonavir favors a conformation selection model. This study deepens our understanding of the dynamic process of ligand unbinding and provides insights into ligand-protein recognition mechanisms and drug discovery.
Collapse
|
23
|
Wang R, Zheng Q. Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14407-14418. [PMID: 34851643 DOI: 10.1021/acs.langmuir.1c02348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is considered to be the main targets of anti-AIDS drug design because of its role in the proteolytic processing of viral polyproteins. However, the emergence of drug-resistant HIV has become a major problem in the therapy of HIV-1-infected patients. Focused on the complexes of wild type (WT) PR and two mutant PRs (V32I/L33F/I54M/V82I and V32I/L33F/I54M/I84 V) with inhibitors Darunavir (DRV) and KNI-1657 (KNI), respectively, we have conducted research on the conformational dynamics and the resistance mechanism caused by residue mutations through multiple molecular dynamics (MD) simulations combined with an energy (MM-PBSA and solvated interaction energy (SIE)) prediction. The results indicate that mutated residues of PR alter the distance between flap regions and catalytic sites, the volume of the inner catalytic site, and the curling degree of the flap tips, thereby affecting DRV and KNI inhibitor binding to PR. These mutated residues reduced the binding affinity of the two mutant PRs to DRV, resulting in drug resistance, whereas the two mutant PRs increase the binding affinity with KNI, indicating they enhance the sensitivity to KNI. Compared with the WT PR, the changes in van der Waals interaction and electrostatic interaction in the two variant PRs play a vital part in the binding of PR with DRV and KNI. These results may supply valuable guidance for the design of anti-AIDS drugs targeting PR.
Collapse
|
24
|
Chen Q, Wu C, Zhu J, Li E, Xu Z. Therapeutic potential of indole derivatives as anti-HIV agents: A mini-review. Curr Top Med Chem 2021; 22:993-1008. [PMID: 34636313 DOI: 10.2174/1568026621666211012111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), is one of the leading causes of human deaths. The advent of different anti-HIV drugs over different disease progress has made AIDS/HIV from a deadly infection to chronic and manageable disease. However, the development of multidrug-resistant viruses, together with the severe side effects of anti-HIV agents, compromised their efficacy and limited the treatment options. Indoles, the most common frameworks in the bioactive molecules, represent attractive scaffolds for the design and development of novel drugs. Indole derivatives are potential inhibitors of HIV enzymes such as reverse transcriptase, integrase and protease, and some indole-based agents like Delavirdine have already been applied in clinics or under clinical evaluations for the treatment of AIDS/HIV, revealing that indole moiety is a useful template for the development of anti-HIV agents. This review focuses on the recent advancement of indole derivatives including indole alkaloids, hybrids, and dimers with anti-HIV potential, covering articles published between 2010 and 2020. The chemical structures, structure-activity relationship and mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Qingtai Chen
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta. Canada
| | - Jinjin Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Zhi Xu
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| |
Collapse
|
25
|
Yu Y, Shen L, Li Y, Zhao J, Liu H. The Epidemiological Analysis of HIV/AIDS Patients: Sexually Transmitted Diseases Department VS. Other Departments in A General Hospital of Shanghai, China. Curr HIV Res 2021; 20:63-73. [PMID: 34503416 DOI: 10.2174/1570162x19666210908095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hospital is an important place for HIV/AIDS screening, and a general hospital is composed of multiple departments. Different departments have different levels of understanding of HIV/AIDS, especially the sexually transmitted diseases (STD) department is the main place for HIV/AIDS screening. OBJECTIVE The study aims to validate the common knowledge that the STD department is an important place for HIV/AIDS screening by comparing the epidemiological characteristics of HIV/AIDS patients in the STD department and other departments in Tongji Hospital, which can provide a theoretical basis for the precise and differentiated control of HIV/AIDS. METHODS A total of 283,525 HIV screening cases were analyzed from January 1st 2006 to December 31st 2018 in the STD department and other departments. The epidemiological data of 226 HIV/AIDS cases were retrospectively analyzed. RESULTS Firstly, the incidence of HIV/AIDS in the population served by Tongji Hospital was higher than that in Shanghai and China. Secondly, the positive rate of HIV screening test in the STD department was ten times higher than that of other departments. Thirdly, the social-demographic characteristics of HIV/AIDS patients in the STD department were different from those in other departments. Fourthly, there were differences in age, education, marital status and number of sex partners between men who have sex with men (MSM) and men who have sex with women (MSW). Fifthly, there was no difference except age in social-demographic characteristics of MSM between the STD department and other departments. Sixthly, compared with other departments, the majority of HIV/AIDS patients in the STD department were MSM. Seventhly, syphilis and HIV co-infection were not statistically significant in HIV/AIDS patients between the STD department and other departments. CONCLUSION Firstly, the significantly higher positive rate of an HIV screening test in the STD department emphasizes its importance as a place for screening HIV/AIDS patients. Secondly, HIV/AIDS patients diagnosed in the general hospital were mainly transmitted by sexual contact, and MSM accounted for the most part of these patients. More attention should be paid to screen outpatients, especially in the STD department and young men.
Collapse
Affiliation(s)
- Yue Yu
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai. China
| | - Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai. China
| | - Yufei Li
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai. China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai. China
| | - Heping Liu
- Department of Disease Control & Prevention, Tongji Hospital, School of Medicine, Tongji University, Shanghai. China
| |
Collapse
|
26
|
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2021; 10:pathogens10070804. [PMID: 34202872 PMCID: PMC8308830 DOI: 10.3390/pathogens10070804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.
Collapse
|
27
|
Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors. Int J Mol Sci 2021; 22:ijms22116070. [PMID: 34199858 PMCID: PMC8200130 DOI: 10.3390/ijms22116070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions.
Collapse
|
28
|
Porto WF. Virtual screening of peptides with high affinity for SARS-CoV-2 main protease. Comput Biol Med 2021; 133:104363. [PMID: 33862305 PMCID: PMC8018786 DOI: 10.1016/j.compbiomed.2021.104363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 2,000,000 deaths worldwide. Currently, vaccine development and drug repurposing have been the main strategies to find a COVID-19 treatment. However, the development of new drugs could be the solution if the main strategies fail. Here, a virtual screening of pentapeptides was applied in order to identify peptides with high affinity to SARS-CoV-2 main protease (Mpro). Over 70,000 peptides were screened employing a genetic algorithm that uses a docking score as the fitness function. The algorithm was coupled with a RESTful API to persist data and avoid redundancy. The docking exhaustiveness was adapted to the number of peptides in each virtual screening step, where the higher the number of peptides, the lower the docking exhaustiveness. Two potential peptides were selected (HHYWH and HYWWT), which have higher affinity to Mpro than to human proteases. Albeit preliminary, the data presented here provide some basis for the rational design of peptide-based drugs to treat COVID-19.
Collapse
|
29
|
Velozo CT, Cabral LM, Pinto EC, de Sousa VP. Lopinavir/Ritonavir: A Review of Analytical Methodologies for the Drug Substances, Pharmaceutical Formulations and Biological Matrices. Crit Rev Anal Chem 2021; 52:1846-1862. [PMID: 34024199 DOI: 10.1080/10408347.2021.1920364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.
Collapse
Affiliation(s)
- Carolina Trajano Velozo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Patel PK, Bhatt HG. Improved 3D-QSAR Prediction by Multiple Conformational Alignments and Molecular Docking Studies to Design and Discover HIV-I Protease Inhibitors. Curr HIV Res 2021; 19:154-171. [PMID: 33213349 DOI: 10.2174/1570162x18666201119143457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inhibition of HIV-I protease enzyme is a strategic step for providing better treatment in retrovirus infections, which avoids resistance and possesses less toxicity. OBJECTIVES In the course of our research to discover new and potent protease inhibitors, 3D-QSAR (CoMFA and CoMSIA) models were generated using 3 different alignment techniques, including multifit alignment, docking based and Distill based alignment for 63 compounds. Novel molecules were designed from the output of this study. METHODS A total of 3 alignment methods were used to generate CoMFA and CoMSIA models. A Distill based alignment method was considered a better method according to different validation parameters. A 3D-QSAR model was generated and contour maps were discussed. The biological activity of designed molecules was predicted using the generated QSAR model to validate QSAR. The newly designed molecules were docked to predict binding affinity. RESULTS In CoMFA, leave one out cross-validated coefficient (q2), conventional coefficient (r2) and predicted correlation coefficient (r2Predicted) values were found to be 0.721, 0.991 and 0.780, respectively. The best obtained CoMSIA model also showed significant cross-validated coefficient (q2), conventional coefficient (r2) and predicted correlation coefficient (r2Predicted) values of 0.714, 0.987 and 0.721, respectively. Steric and electrostatic contour maps generated from CoMFA and hydrophobic and hydrogen bond donor and hydrogen bond acceptor contour maps from CoMSIA models were used to design new and bioactive protease inhibitors by incorporating bioisosterism and knowledge-based structure-activity relationship. CONCLUSION The results from both these approaches, ligand-based drug design and structure-based drug design, are adequate and promising to discover protease inhibitors.
Collapse
Affiliation(s)
- Paresh K Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | - Hardik G Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| |
Collapse
|
31
|
Bhowmik D, Sharma RD, Prakash A, Kumar D. "Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL pro and PL pro.". J Mol Struct 2021; 1233:130094. [PMID: 33612858 PMCID: PMC7884051 DOI: 10.1016/j.molstruc.2021.130094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
The sudden increase in the COVID-19 epidemic affected by novel coronavirus 2019 has jeopardized public health worldwide. Hence the necessities of a drug or therapeutic agent that heal SARS-CoV-2 infections are essential requirements. The viral genome encodes a large Polyprotein, further processed by the main protease/ 3C-like protease (3CLpro) and papain-like proteases (PLpro) into 16 nonstructural proteins to form a viral replication complex. These essential functions of 3CLpro and PLpro in virus duplication make these proteases a promising target for discovering potential therapeutic candidates and possible treatment for SARS-CoV-2 infection. This study aimed to screen a unique set of protease inhibitors library against 3CLpro and PLpro of the SARS-CoV-2. A molecular docking study was performed using PyRx to reveal the binding affinity of the selected ligands and molecular dynamic simulations were executed to assess the three-dimensional stability of protein-ligand complexes. The pharmacodynamics parameters of the inhibitors were predicted using admetSAR. The top two ligands (Nafamostat and VR23) based on docking scores were selected for further studies. Selected ligands showed excellent pharmacokinetic properties with proper absorption, bioavailability and minimal toxicity. Due to the emerging and efficiency of remdesivir and dexamethasone in healing COVID-19 patients, ADMET properties of the selected ligands were thus compared with it. MD Simulation studies up to 100 ns revealed the ligands' stability at the target proteins' binding site residues. Therefore, Nafamostat and VR23 may provide potential treatment options against SARS-CoV-2 infections by potentially inhibiting virus duplication though more research is warranted.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon-122413, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
32
|
Chen X, Chen R, Xu Y, Xia C. PLCγ1 inhibition combined with inhibition of apoptosis and necroptosis increases cartilage matrix synthesis in IL-1β-treated rat chondrocytes. FEBS Open Bio 2021; 11:435-445. [PMID: 33326693 PMCID: PMC7876495 DOI: 10.1002/2211-5463.13064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related, chronic degenerative disease. With the increasing median age of the population, this disease has become an important public health problem. New, disease-modifying therapies are needed. A potential novel molecular target is phospholipase Cγ1 (PLCγ1), a critical enzyme with important functions including calcium signaling regulation and cell proliferation. In rat chondrocytes treated with IL-1β (20 ng·mL-1 for 36 h), inhibition of PLCγ1 with U73122 (2 μm for 12 h) increased levels and expression of the cartilage matrix components Collagen2 and Aggrecan. This beneficial effect of PLCγ1 inhibition was counteracted by increased chondrocyte apoptosis and necroptosis, increased cell death, and increase levels of ROS, all potentially negative for OA. Combined treatment of IL-1β + U73122-treated chondrocytes with inhibitors of apoptosis (Z-VAD, 10 μm) and necroptosis (Nec-1, 30 μm) enhanced the increases in levels and expression of Collagen2 and Aggrecan, and prevented the increases in cell death and ROS levels. These results suggest that PLCγ1 inhibition may be a viable approach for an OA therapy, if combined with targeted inhibition of chondrocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
| | - Ri Chen
- School of MedicineXiamen UniversityChina
| | - Yang Xu
- Zhongshan HospitalXiamen UniversityChina
| | - Chun Xia
- Zhongshan HospitalXiamen UniversityChina
| |
Collapse
|
33
|
Benko Z, Zhang J, Zhao RY. Development of A Fission Yeast Cell-Based Platform for High Throughput Screening of HIV-1 Protease Inhibitors. Curr HIV Res 2021; 17:429-440. [PMID: 31782368 DOI: 10.2174/1570162x17666191128102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND HIV-1 protease inhibitor (PI) is one of the most potent classes of drugs in combinational antiretroviral therapies (cART). When a PI is used in combination with other anti- HIV drugs, cART can often suppress HIV-1 below detection thus prolonging the patient's lives. However, the challenge often faced by patients is the emergence of HIV-1 drug resistance. Thus, PIs with high genetic-barrier to drug-resistance are needed. OBJECTIVE The objective of this study was to develop a novel and simple fission yeast (Schizosaccharomyces pombe) cell-based system that is suitable for high throughput screening (HTS) of small molecules against HIV-1 protease (PR). METHODS A fission yeast RE294-GFP strain that stably expresses HIV-1 PR and green fluorescence protein (GFP) under the control of an inducible nmt1 promoter was used. Production of HIV-1 PR induces cellular growth arrest, which was used as the primary endpoint for the search of PIs and was quantified by an absorbance-based method. Levels of GFP production were used as a counter-screen control to eliminate potential transcriptional nmt1 inhibitors. RESULTS Both the absorbance-based HIV-1 PR assay and the GFP-based fluorescence assay were miniaturized and optimized for HTS. A pilot study was performed using a small drug library mixed with known PI drugs and nmt1 inhibitors. With empirically adjusted and clearly defined double-selection criteria, we were able to correctly identify the PIs and to exclude all hidden nmt1 inhibitors. CONCLUSION We have successfully developed and validated a fission yeast cell-based HTS platform for the future screening and testing of HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- Zsigmond Benko
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Jiantao Zhang
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Richard Y Zhao
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Department of Microbiology- Immunology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Human Virology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Global Health, University of Maryland Medical School, Baltimore, MD 21201, United States
| |
Collapse
|
34
|
Zanni R, Galvez-Llompart M, Galvez J. Computational analysis of macrolides as SARS-CoV-2 main protease inhibitors: a pattern recognition study based on molecular topology and validated by molecular docking. NEW J CHEM 2021. [DOI: 10.1039/d0nj05983h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrolides share the same chemo-mathematical pattern as SARS-CoV-2 protease inhibitors.
Collapse
Affiliation(s)
- Riccardo Zanni
- Molecular Topology and Drug Design Unit
- Department of Physical Chemistry
- University of Valencia
- Valencia
- Spain
| | - Maria Galvez-Llompart
- Instituto de Tecnología Química
- UPV-CSIC
- Universidad Politécnica de Valencia
- Valencia
- Spain
| | - Jorge Galvez
- Molecular Topology and Drug Design Unit
- Department of Physical Chemistry
- University of Valencia
- Valencia
- Spain
| |
Collapse
|
35
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
36
|
Abstract
This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents.
Collapse
|
37
|
Arantes I, Ribeiro-Alves M, S. D. de Azevedo S, Delatorre E, Bello G. Few amino acid signatures distinguish HIV-1 subtype B pandemic and non-pandemic strains. PLoS One 2020; 15:e0238995. [PMID: 32960906 PMCID: PMC7508567 DOI: 10.1371/journal.pone.0238995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/27/2020] [Indexed: 11/26/2022] Open
Abstract
The Human Immunodeficiency Virus Type I (HIV-1) subtype B comprises approximately 10% of all HIV infections in the world. The HIV-1 subtype B epidemic comprehends a pandemic variant (named BPANDEMIC) disseminated worldwide and non-pandemic variants (named BCAR) that are mostly restricted to the Caribbean. The goal of this work was the identification of amino acid signatures (AAs) characteristic to the BCAR and BPANDEMIC variants. To this end, we analyzed HIV-1 subtype B full-length (n = 486) and partial (n = 814) genomic sequences from the Americas classified within the BCAR and BPANDEMIC clades and reconstructed the sequences of their most recent common ancestors (MRCA). Analysis of contemporary HIV-1 sequences revealed 13 AAs between BCAR and BPANDEMIC variants (four on Gag, three on Pol, three on Rev, and one in Vif, Vpu, and Tat) of which only two (one on Gag and one on Pol) were traced to the MRCA. All AAs correspond to polymorphic sites located outside essential functional proteins domains, except the AAs in Tat. The absence of stringent AAs inherited from their ancestors between modern BCAR and BPANDEMIC variants support that ecological factors, rather than viral determinants, were the main driving force behind the successful spread of the BPANDEMIC strain.
Collapse
Affiliation(s)
- Ighor Arantes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em DST-AIDS, Rio de Janeiro, Brazil
| | - Suwellen S. D. de Azevedo
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, Brazil
| | - Edson Delatorre
- Universidade Federal do Espírito Santo, Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Alegre, Brazil
| | - Gonzalo Bello
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de AIDS & Imunologia Molecular, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
38
|
Baldassarre A, Paolini A, Bruno SP, Felli C, Tozzi AE, Masotti A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2. Epigenomics 2020; 12:1349-1361. [PMID: 32875809 PMCID: PMC7466951 DOI: 10.2217/epi-2020-0162] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After the increasing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all over the world, researchers and clinicians are struggling to find a vaccine or innovative therapeutic strategies to treat this viral infection. The severe acute respiratory syndrome coronavirus infection that occurred in 2002, Middle East respiratory syndrome (MERS) and other more common infectious diseases such as hepatitis C virus, led to the discovery of many RNA-based drugs. Among them, siRNAs and antisense locked nucleic acids have been demonstrated to have effective antiviral effects both in animal models and humans. Owing to the high genomic homology of SARS-CoV-2 and severe acute respiratory syndrome coronavirus (80–82%) the use of these molecules could be employed successfully also to target this emerging coronavirus. Trying to translate this approach to treat COVID-19, we analyzed the common structural features of viral 5’UTR regions that can be targeted by noncoding RNAs and we also identified miRNAs binding sites suitable for designing RNA-based drugs to be employed successfully against SARS-CoV-2.
Collapse
Affiliation(s)
- Antonella Baldassarre
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Alessandro Paolini
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Stefania Paola Bruno
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Cristina Felli
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Alberto Eugenio Tozzi
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Andrea Masotti
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| |
Collapse
|
39
|
Goker Bagca B, Biray Avci C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev 2020; 54:51-62. [PMID: 32636055 PMCID: PMC7305753 DOI: 10.1016/j.cytogfr.2020.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/11/2023]
Abstract
Ruxolitinib is the first approved JAK1 and JAK2 inhibitor, and is known to interfere with the JAK / STAT signaling pathway, one of the critical cellular signaling pathways involved in the inflammatory response. This review presents an overview of SARS-CoV-2 and the COVID-19 pandemic, and then focuses on the potential efficacy of ruxolitinib in this infection. The potential targets of ruxolitinib were determined by using genetic alterations that have been reported in COVID-19 patients. The potential effectiveness of ruxolitinib is suggested by evaluating the interactions of these potential targets with ruxolitinib or JAK/STAT pathway.
Collapse
Affiliation(s)
- Bakiye Goker Bagca
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| |
Collapse
|
40
|
Nascimento ALCS, Fernandes RP, Quijia C, Araujo VHS, Pereira J, Garcia JS, Trevisan MG, Chorilli M. Pharmacokinetic Parameters of HIV-1 Protease Inhibitors. ChemMedChem 2020; 15:1018-1029. [PMID: 32390304 DOI: 10.1002/cmdc.202000101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Indexed: 12/15/2022]
Abstract
Since the beginning of the HIV epidemic, research has been carried out to control the virus. Understanding the mechanisms of replication has given access to the various classes of drugs that over time have transformed AIDS into a manageable chronic disease. The class of protease inhibitors (PIs) gained notice in anti-retroviral therapy, once it was found that peptidomimetic molecules act by blocking the active catalytic center of the aspartic protease, which is directly related to HIV maturation. However, mutations in enzymatic internal residues are the biggest issue for these drugs, because a small change in biochemical interaction can generate resistance. Low plasma concentrations of PIs favor viral natural selection; high concentrations can inhibit even partially resistant enzymes. Food-drug/drug-drug interactions can decrease the bioavailability of PIs and are related to many side effects. Therefore, this review summarizes the pharmacokinetic properties of current PIs, the changes when pharmacological boosters are used and also lists the major mutations to help understanding of how long the continuous treatment can ensure a low viral load in patients.
Collapse
Affiliation(s)
- André L C S Nascimento
- LACFar, Institute of Chemistry, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Richard P Fernandes
- Araraquara Institute of Chemistry, São Paulo State University (UNESP), CP 355, 14801-970, Araraquara, SP, Brazil
| | - Christian Quijia
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, São Paulo, Brazil
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, São Paulo, Brazil
| | - Juliana Pereira
- LACFar, Institute of Chemistry, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Jerusa S Garcia
- LACFar, Institute of Chemistry, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Marcello G Trevisan
- LACFar, Institute of Chemistry, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, São Paulo, Brazil
| |
Collapse
|
41
|
Saha M, Bhattacharya S. Recent Developments in the Medicinal Chemistry for New Small-Molecule Therapeutics to Treat HIV-AIDS. Curr Top Med Chem 2019; 19:1569-1570. [PMID: 31612809 DOI: 10.2174/156802661918191009110427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mrinmoy Saha
- Chemistry Research and Development Abzena 360 George Patterson Boulevard Bristol, PA 19007, United States
| | - Shreya Bhattacharya
- Department of Dermatology Perelman School of Medicine University of Pennsylvania 421 Curie Boulevard Philadelphia, PA 19104, United States
| |
Collapse
|
42
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|