1
|
Busatto S, Song T, Kim HJ, Hallinan C, Lombardo MN, Stemmer‐Rachamimov AO, Lee K, Moses MA. Breast Cancer-Derived Extracellular Vesicles Modulate the Cytoplasmic and Cytoskeletal Dynamics of Blood-Brain Barrier Endothelial Cells. J Extracell Vesicles 2025; 14:e70038. [PMID: 39868462 PMCID: PMC11770372 DOI: 10.1002/jev2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively. Using machine learning and quantitative global proteomic, we identified novel Br-EV-induced changes in BECs morphology, motility, and proteome that correlate with decreased BEC cytoplasm and cytoskeletal organization and dynamics. These results define early steps leading to breast-to-brain metastasis and identify molecules that could serve as targets for therapeutic strategies for brain metastasis.
Collapse
Affiliation(s)
- Sara Busatto
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tzu‐Hsi Song
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyung Joon Kim
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Caleb Hallinan
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
| | - Michael N. Lombardo
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Kwonmoo Lee
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Marsha A. Moses
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Almanza DLV, Koletar MM, Lai AY, Lam WW, Joo L, Hill ME, Stanisz GJ, McLaurin J, Stefanovic B. High caloric intake improves neuronal metabolism and functional hyperemia in a rat model of early AD pathology. Theranostics 2024; 14:7405-7423. [PMID: 39659583 PMCID: PMC11626934 DOI: 10.7150/thno.98793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction: While obesity has been linked to both increased and decreased rate of cognitive decline in Alzheimer's Disease (AD) patients, there is no consensus on the interaction between obesity and AD. Methods: The TgF344-AD rat model was used to investigate the effects of high carbohydrate, high fat (HCHF) diet on brain glucose metabolism and hemodynamics in the presence or absence of AD transgenes, in presymptomatic (6-month-old) vs. symptomatic (12-month-old) stages of AD progression using non-invasive neuroimaging. Results: In presymptomatic AD, HCHF exerted detrimental effects, attenuating both hippocampal glucose uptake and resting perfusion in both non-transgenic and TgAD cohorts, when compared to CHOW-fed cohorts. In contrast, HCHF consumption was beneficial in established AD, resolving the AD-progression associated attenuation in hippocampal glucose uptake and functional hyperemia. Discussion: Whereas HCHF was harmful to the presymptomatic AD brain, it ameliorated deficits in hippocampal metabolism and neurovascular coupling in symptomatic TgAD rats.
Collapse
Affiliation(s)
- Dustin Loren V. Almanza
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Aaron Y. Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Wilfred W. Lam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lewis Joo
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Mary E. Hill
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Greg J. Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Bojana Stefanovic
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Limone F, Couto A, Wang JY, Zhang Y, McCourt B, Huang C, Minkin A, Jani M, McNeer S, Keaney J, Gillet G, Gonzalez RL, Goodman WA, Kadiu I, Eggan K, Burberry A. Myeloid and lymphoid expression of C9orf72 regulates IL-17A signaling in mice. Sci Transl Med 2024; 16:eadg7895. [PMID: 38295187 PMCID: PMC11247723 DOI: 10.1126/scitranslmed.adg7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A mutation in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Patients with ALS or FTD often develop autoimmunity and inflammation that precedes or coincides with the onset of neurological symptoms, but the underlying mechanisms are poorly understood. Here, we knocked out murine C9orf72 in seven hematopoietic progenitor compartments by conditional mutagenesis and found that myeloid lineage C9orf72 prevents splenomegaly, loss of tolerance, and premature mortality. Furthermore, we demonstrated that C9orf72 plays a role in lymphoid cells to prevent interleukin-17A (IL-17A) production and neutrophilia. Mass cytometry identified early and sustained elevation of the costimulatory molecule CD80 expressed on C9orf72-deficient mouse macrophages, monocytes, and microglia. Enrichment of CD80 was similarly observed in human spinal cord microglia from patients with C9ORF72-mediated ALS compared with non-ALS controls. Single-cell RNA sequencing of murine spinal cord, brain cortex, and spleen demonstrated coordinated induction of gene modules related to antigen processing and presentation and antiviral immunity in C9orf72-deficient endothelial cells, microglia, and macrophages. Mechanistically, C9ORF72 repressed the trafficking of CD80 to the cell surface in response to Toll-like receptor agonists, interferon-γ, and IL-17A. Deletion of Il17a in C9orf72-deficient mice prevented CD80 enrichment in the spinal cord, reduced neutrophilia, and reduced gut T helper type 17 cells. Last, systemic delivery of an IL-17A neutralizing antibody augmented motor performance and suppressed neuroinflammation in C9orf72-deficient mice. Altogether, we show that C9orf72 orchestrates myeloid costimulatory potency and provide support for IL-17A as a therapeutic target for neuroinflammation associated with ALS or FTD.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Leiden University Medical Center, LUMC, 2333 ZA Leiden, The Netherlands
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Jin-Yuan Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cerianne Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Adina Minkin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marghi Jani
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sarah McNeer
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Keaney
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Gaëlle Gillet
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Rodrigo Lopez Gonzalez
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irena Kadiu
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
4
|
Benzoni C, Moscatelli M, Farina L, Magri S, Ciano C, Scaioli V, Alverà S, Cammarata G, Bianchi-Marzoli S, Castellani M, Zito FM, Marotta G, Piacentini S, Villacara A, Mantegazza R, Gellera C, Durães J, Gouveia A, Matos A, do Carmo Macário M, Pareyson D, Taroni F, Di Bella D, Salsano E. Adult-onset leukodystrophy with vanishing white matter: a case series of 19 patients. J Neurol 2023; 270:4219-4234. [PMID: 37171481 DOI: 10.1007/s00415-023-11762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Leukodystrophy with vanishing white matter (LVWM) is an autosomal recessive disease with typical pediatric-onset caused by mutations in one of the five EIF2B genes. Adult-onset (AO) cases are rare. METHODS In this observational study, we reviewed clinical and laboratory information of the patients with AO-LVWM assessed at two referral centers in Italy and Portugal from Jan-2007 to Dec-2019. RESULTS We identified 18 patients (13 females) with AO-LVWM caused by EIF2B5 or EIF2B3 mutations. Age of neurological onset ranged from 16 to 60 years, with follow-ups occurring from 2 to 37 years. Crucial symptoms were cognitive and motor decline. In three patients, stroke-like events were the first manifestation; in another, bladder dysfunction remained the main complaint across decades. Brain MRI showed white matter (WM) rarefaction in all cases, except two. Diffusion-weighted imaging documented focal hyperintensity in the acute stage of stroke-like events. 1H-spectroscopy primarily showed N-acetyl-aspartate reduction; 18fluorodeoxyglucose-PET revealed predominant frontoparietal hypometabolism; evoked potential studies demonstrated normal-to-reduced amplitudes; neuro-ophthalmological assessment showed neuroretinal thinning, and b-wave reduction on full-field electroretinogram. Interestingly, we found an additional patient with LVWM-compatible phenotype and monoallelic variants in two distinct eIF2B genes, EIF2B1 and EIF2B2. CONCLUSIONS AO-LVWM presents varying clinical manifestations at onset, including stroke-like events. WM rarefaction is the most consistent diagnostic clue even in the latest onset cases. Spectroscopy and electrophysiological features are compatible with axon, rather than myelin, damage. Cerebral glucose metabolic abnormalities and retinal alterations can be present. LVWM might also be caused by a digenic inheritance affecting the eIF2B complex.
Collapse
Affiliation(s)
- Chiara Benzoni
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Farina
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Vidmer Scaioli
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Alverà
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, Istituto Auxologico Italiano IRCCS Capitanio Hospital, Milan, Italy
| | - Stefania Bianchi-Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, Istituto Auxologico Italiano IRCCS Capitanio Hospital, Milan, Italy
| | - Massimo Castellani
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Margherita Zito
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sylvie Piacentini
- Unit of Neuropsychology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Renato Mantegazza
- Unit of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - João Durães
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Gouveia
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anabela Matos
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
5
|
Kanal HD, Levison SW. Neuroprotective Effects of Delayed TGF-β1 Receptor Antagonist Administration on Perinatal Hypoxic-Ischemic Brain Injury. Dev Neurosci 2023; 46:188-200. [PMID: 37348472 DOI: 10.1159/000531650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Hypoxic-ischemic (HI) brain injury in neonatal encephalopathy triggers a wave of neuroinflammatory events attributed to causing the progressive degeneration and functional deficits seen weeks after the primary damage. The cellular processes mediating this prolonged neurodegeneration in HI injury are not sufficiently understood. Consequently, current therapies are not fully protective. In a recent study, we found significant improvements in neurologic outcomes when a small molecule antagonist for activin-like kinase 5 (ALK5), a transforming growth factor beta (TGF-β) receptor was used as a therapeutic in a rat model of moderate term HI. Here, we have extended those studies to a mouse preterm pup model of HI. For these studies, postnatal day 7 CD1 mice of both sexes were exposed to 35-40 min of HI. Beginning 3 days later, SB505124, the ALK5 receptor antagonist, was administered systemically through intraperitoneal injections performed every 12 h for 5 days. When evaluated 23 days later, SB505124-treated mice had ∼2.5-fold more hippocampal area and ∼2-fold more thalamic tissue. Approximately 90% of the ipsilateral hemisphere (ILH) was preserved in the SB505124-treated HI mice compared to the vehicle-treated HI mice, where the ILH was ∼60% of its normal size. SB505124 also preserved the subcortical white matter. SB505124 treatment preserved levels of aquaporin-4 and n-cadherin, key proteins associated with blood-brain barrier function. Importantly, SB505124 administration improved sensorimotor function as assessed by a battery of behavioral tests. Altogether, these data lend additional support to the conclusion that SB505124 is a candidate neuroprotective molecule that could be an effective treatment for HI-related encephalopathy in moderately injured preterm infants.
Collapse
Affiliation(s)
- Hur Dolunay Kanal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
6
|
Nakadate K, Sono C, Mita H, Itakura Y, Kawakami K. Severe Acute Liver Dysfunction Induces Delayed Hepatocyte Swelling and Cytoplasmic Vacuolization, and Delayed Cortical Neuronal Cell Death. Int J Mol Sci 2023; 24:ijms24087351. [PMID: 37108515 PMCID: PMC10139143 DOI: 10.3390/ijms24087351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Liver dysfunction is the main cause of hepatic encephalopathy. However, histopathological changes in the brain associated with hepatic encephalopathy remain unclear. Therefore, we investigated pathological changes in the liver and brain using an acute hepatic encephalopathy mouse model. After administering ammonium acetate, a transient increase in the blood ammonia level was observed, which returned to normal levels after 24 h. Consciousness and motor levels also returned to normal. It was revealed that hepatocyte swelling, and cytoplasmic vacuolization progressed over time in the liver tissue. Blood biochemistry also suggested hepatocyte dysfunction. In the brain, histopathological changes, such as perivascular astrocyte swelling, were observed 3 h after ammonium acetate administration. Abnormalities in neuronal organelles, especially mitochondria and rough endoplasmic reticulum, were also observed. Additionally, neuronal cell death was observed 24 h post-ammonia treatment when blood ammonia levels had returned to normal. Activation of reactive microglia and increased expression of inducible nitric oxide synthase (iNOS) were also observed seven days after a transient increase in blood ammonia. These results suggest that delayed neuronal atrophy could be iNOS-mediated cell death due to activation of reactive microglia. The findings also suggest that severe acute hepatic encephalopathy causes continued delayed brain cytotoxicity even after consciousness recovery.
Collapse
Affiliation(s)
- Kazuhiko Nakadate
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan
| | - Chiaki Sono
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan
| | - Homura Mita
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan
| | - Yuki Itakura
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan
| | - Kiyoharu Kawakami
- Department of Basic Science, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose 204-8588, Tokyo, Japan
| |
Collapse
|
7
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Thomas S, Sadanandan J, Blackburn SL, McBride DW, Dienel A, Hong S, Zeineddine HA, Thankamani PK. Glyoxal Fixation Is Optimal for Immunostaining of Brain Vessels, Pericytes and Blood-Brain Barrier Proteins. Int J Mol Sci 2022; 23:7776. [PMID: 35887131 PMCID: PMC9317650 DOI: 10.3390/ijms23147776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Brain vascular staining is very important for understanding cerebrovascular pathologies. 4% paraformaldehyde is considered the gold standard fixation technique for immunohistochemistry and it revolutionized the examination of proteins in fixed tissues. However, this fixation technique produces inconsistent immunohistochemical staining results due to antigen masking. Here, we test a new fixation protocol using 3% glyoxal and demonstrate that this method improves the staining of the brain vasculature, pericytes, and tight junction proteins compared to 4% paraformaldehyde. Use of this new fixation technique will provide more detailed information about vascular protein expressions, their distributions, and colocalizations with other proteins at the molecular level in the brain vasculature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peeyush Kumar Thankamani
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX 77030, USA; (S.T.); (J.S.); (S.L.B.); (D.W.M.); (A.D.); (S.H.); (H.A.Z.)
| |
Collapse
|
9
|
Severe Acute Hepatic Dysfunction Induced by Ammonium Acetate Treatment Results in Choroid Plexus Swelling and Ventricle Enlargement in the Brain. Int J Mol Sci 2022; 23:ijms23042010. [PMID: 35216129 PMCID: PMC8879736 DOI: 10.3390/ijms23042010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic encephalopathy is a major cause of liver failure. However, the pathophysiological role of ventricle enlargement in brain edema remains unclear. Here, we used an acute hepatic encephalopathy mouse model to examine the sequential pathological changes in the brain associated with this condition. We collected tissue samples from experimental animals treated with ammonium acetate at 3 and 24 h post-injection. Despite the normalization of the animal’s ammonia levels, samples taken at 24 h after injection exhibited distinct enlargement of lateral ventricles. The choroid plexus samples obtained at 3 h post-ammonium acetate treatment indicated enlargement; however, this swelling was reduced at the later timepoint. The aquaporin-1 proteins that regulate the choroid plexus were localized both in the apical membrane and the cytoplasm of the epithelia in the control; however, they translocated to the apical membranes of the epithelia in response to ammonia treatment. Therefore, severe acute hepatic encephalopathy induced by ammonium acetate administration caused enlargement of the ventricles, through swelling of the choroid plexus and aquaporin-1 transport and aggregation within the apical membranes.
Collapse
|
10
|
Microarray profiling predicts early neurological and immune phenotypic traits in advance of CNS disease during disease progression in Trypanosoma. b. brucei infected CD1 mouse brains. PLoS Negl Trop Dis 2021; 15:e0009892. [PMID: 34762691 PMCID: PMC8584711 DOI: 10.1371/journal.pntd.0009892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. We hypothesised that recent findings of neurological features and parasite brain infiltration occurring at much earlier stages in HAT than previously thought could be explained by early activation of host genetic programmes controlling CNS disease. Accordingly, a transcriptomal analysis was performed on brain tissue at 0, 7, 14, 21 and 28dpi from the HAT CD1/GVR35 mouse model. Up to 21dpi, most parasites are restricted to the blood and lymphatic system. Thereafter the trypanosomes enter the brain initiating the encephalitic stage. Analysis of ten different time point Comparison pairings, revealed a dynamic transcriptome comprising four message populations. All 7dpi Comparisons had by far more differentially expressed genes compared to all others. Prior to invasion of the parenchyma, by 7dpi, ~2,000 genes were up-regulated, denoted [7dpi↑] in contrast to a down regulated population [7dpi↓] also numbering ~2,000. However, by 14dpi both patterns had returned to around the pre-infected levels. The third, [28dpi↑] featured over three hundred transcripts which had increased modestly up to14dpi, thereafter were significantly up-regulated and peaked at 28dpi. The fourth, a minor population, [7dpi↑-28dpi↑], had similar elevated levels at 7dpi and 28dpi. KEGG and GO enrichment analysis predicted a diverse phenotype by 7dpi with changes to innate and adaptive immunity, a Type I interferon response, neurotransmission, synaptic plasticity, pleiotropic signalling, circadian activity and vascular permeability without disruption of the blood brain barrier. This key observation is consistent with recent rodent model neuroinvasion studies and clinical reports of Stage 1 HAT patients exhibiting CNS symptoms. Together, these findings challenge the strict Stage1/Stage2 phenotypic demarcation in HAT and show that that significant neurological, and immune changes can be detected prior to the onset of CNS disease.
Collapse
|
11
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
12
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Kawoos U, Abutarboush R, Gu M, Chen Y, Statz JK, Goodrich SY, Ahlers ST. Blast-induced temporal alterations in blood-brain barrier properties in a rodent model. Sci Rep 2021; 11:5906. [PMID: 33723300 PMCID: PMC7971015 DOI: 10.1038/s41598-021-84730-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
The consequences of blast-induced traumatic brain injury (bTBI) on the blood–brain barrier (BBB) and components of the neurovascular unit are an area of active research. In this study we assessed the time course of BBB integrity in anesthetized rats exposed to a single blast overpressure of 130 kPa (18.9 PSI). BBB permeability was measured in vivo via intravital microscopy by imaging extravasation of fluorescently labeled tracers (40 kDa and 70 kDa molecular weight) through the pial microvasculature into brain parenchyma at 2–3 h, 1, 3, 14, or 28 days after the blast exposure. BBB structural changes were assessed by immunostaining and molecular assays. At 2–3 h and 1 day after blast exposure, significant increases in the extravasation of the 40 kDa but not the 70 kDa tracers were observed, along with differential reductions in the expression of tight junction proteins (occludin, claudin-5, zona occluden-1) and increase in the levels of the astrocytic water channel protein, AQP-4, and matrix metalloprotease, MMP-9. Nearly all of these measures were normalized by day 3 and maintained up to 28 days post exposure. These data demonstrate that blast-induced changes in BBB permeability are closely coupled to structural and functional components of the BBB.
Collapse
Affiliation(s)
- Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA.
| | - Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| |
Collapse
|
14
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
15
|
Zhang H, Wang Y, Lian L, Zhang C, He Z. Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/miR-146a-3p/AQP4 Pathway. Front Neurosci 2020; 14:576389. [PMID: 33192260 PMCID: PMC7658812 DOI: 10.3389/fnins.2020.576389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major type of cerebrovascular disease with poor prognosis. Recent studies have shown that Glycyl-l-histidyl-l-lysine (GHK) is a kind of natural human tripeptide which could inhibit inflammation and against neurodegenerative diseases, but neither its role nor the mechanisms in ICH have yet been explicit. Currently, we investigated the possible strategies of GHK on ICH injury. Neurological deficit scores, brain water content, Nissl staining, and aquaporin 4 (AQP4) immunohistochemistry were detected in different groups of rats. The expression of microRNAs (miRNAs) was examined by real-time PCR. Inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA). Cell viability and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). Matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitors of metalloproteinase-1 (TIMP1), AQP4 expression were detected/assessed using western blot. We observed that 5 and 10 μg/g of GHK improved neurological recovery by significantly reducing brain water content, improving neurological deficits, and promoting neuron survival. Besides, GHK alleviated inflammatory reaction and downregulated AQP4 expression. Furthermore, the effects of GHK on astrocyte were associated with the upregulation of miRNA-146a-3p, which partially regulated the expression of AQP4. Our results demonstrated that the phosphatidylinositol 3-kinase (PI3K)/AKT pathway participated in the GHK-induced upregulation of miR-146a-3p and miR-146a-3p/AQP4 interaction plays a role in the injury following ICH. These findings suggested that GHK could provide a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Heyu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.,Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| | - Ling Lian
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhiyi He
- Department of Neurology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Blood-brain barrier integrity in the pathogenesis of Alzheimer's disease. Front Neuroendocrinol 2020; 59:100857. [PMID: 32781194 DOI: 10.1016/j.yfrne.2020.100857] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) tightly controls the molecular exchange between the brain parenchyma and blood. Accumulated evidence from transgenic animal Alzheimer's disease (AD) models and human AD patients have demonstrated that BBB dysfunction is a major player in AD pathology. In this review, we discuss the role of the BBB in maintaining brain integrity and how this is mediated by crosstalk between BBB-associated cells within the neurovascular unit (NVU). We then discuss the role of the NVU, in particular its endothelial cell, pericyte, and glial cell constituents, in AD pathogenesis. The effect of substances released by the neuroendocrine system in modulating BBB function and AD pathogenesis is also discussed. We perform a systematic review of currently available AD treatments specifically targeting pericytes and BBB glial cells. In summary, this review provides a comprehensive overview of BBB dysfunction in AD and a new perspective on the development of therapeutics for AD.
Collapse
|
17
|
Tran TT, Wei K, Cole S, Mena E, Csete M, King KS. Brain MR Spectroscopy Markers of Encephalopathy Due to Nonalcoholic Steatohepatitis. J Neuroimaging 2020; 30:697-703. [PMID: 32705733 DOI: 10.1111/jon.12728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In hepatic encephalopathy (HE), osmotic stressors promoting brain edema result in a compensatory drop in the astrocyte metabolite myo-inositol (mI). Identifying differences between nonalcoholic steatohepatitis (NASH) with and without HE and healthy controls using proton magnetic resonance spectroscopy (MRS) and evaluating hypoalbuminemia and hyperammonemia as osmotic stressors that predict the reduction of mI allow further understanding of mechanisms that promote brain edema in HE. The aim of this study was to assess brain edema in HE using characteristic MRS markers and serum albumin. METHODS We evaluated between group differences among 19 NASH cirrhosis without HE (Crhs-HE) (age = 63 ± 8.7), 9 NASH cirrhosis with HE (Crhs+HE) (age = 63 ± 9.2), and 16 controls (age = 57.8 ± 11.7) using 1 H MRS. Glutamine (Gln/tCr) and serum albumin were evaluated as predictors of myo-inositol (mI/tCr) using linear regression. Statistical significance was set at P < .05 with adjustment for multiple comparisons. RESULTS Brain mI/tCr was decreased, and Gln/tCr increased in Crhs+HE compared to Crhs-HE and controls in both brain regions (P < .001 for all). Evaluated together as joint predictors, serum albumin but not Gln/tCr significantly predicted mI/tCr in GM (P = .02 and P = .2, respectively) and PWM (P = .01 and P = .1, respectively). CONCLUSION Low mI/tCr and increased Gln/tCr were characteristics of Crhs+HE. Low serum albumin was the strongest predictor of brain osmotic stress indicated by reduced mI/tCr, with no residual independent association seen for brain Gln/tCr concentration. This suggests that hypoalbuminemia in chronic liver disease may promote brain edema in HE.
Collapse
Affiliation(s)
| | - Ke Wei
- HMRI Imaging Center, Pasadena, CA
| | | | - Edward Mena
- California Liver Research Institute, Pasadena, CA
| | | | | |
Collapse
|
18
|
Blanchard JW, Bula M, Davila-Velderrain J, Akay LA, Zhu L, Frank A, Victor MB, Bonner JM, Mathys H, Lin YT, Ko T, Bennett DA, Cam HP, Kellis M, Tsai LH. Reconstruction of the human blood-brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat Med 2020; 26:952-963. [PMID: 32514169 PMCID: PMC7704032 DOI: 10.1038/s41591-020-0886-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
In Alzheimer's disease, amyloid deposits along the brain vasculature lead to a condition known as cerebral amyloid angiopathy (CAA), which impairs blood-brain barrier (BBB) function and accelerates cognitive degeneration. Apolipoprotein (APOE4) is the strongest risk factor for CAA, yet the mechanisms underlying this genetic susceptibility are unknown. Here we developed an induced pluripotent stem cell-based three-dimensional model that recapitulates anatomical and physiological properties of the human BBB in vitro. Similarly to CAA, our in vitro BBB displayed significantly more amyloid accumulation in APOE4 compared to APOE3. Combinatorial experiments revealed that dysregulation of calcineurin-nuclear factor of activated T cells (NFAT) signaling and APOE in pericyte-like mural cells induces APOE4-associated CAA pathology. In the human brain, APOE and NFAT are selectively dysregulated in pericytes of APOE4 carriers, and inhibition of calcineurin-NFAT signaling reduces APOE4-associated CAA pathology in vitro and in vivo. Our study reveals the role of pericytes in APOE4-mediated CAA and highlights calcineurin-NFAT signaling as a therapeutic target in CAA and Alzheimer's disease.
Collapse
Affiliation(s)
- Joel W Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jose Davila-Velderrain
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Leyla Anne Akay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lena Zhu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Frank
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Maeve Bonner
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yuan-Ta Lin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hugh P Cam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
19
|
Liu X, Ding H, Li X, Deng Y, Liu X, Wang K, Wen M, Chen S, Jiang W, Zeng H. Hypercapnia Exacerbates the Blood-Brain Barrier Disruption Via Promoting HIF-1a Nuclear Translocation in the Astrocytes of the Hippocampus: Implication in Further Cognitive Impairment in Hypoxemic Adult Rats. Neurochem Res 2020; 45:1674-1689. [PMID: 32328929 PMCID: PMC7224048 DOI: 10.1007/s11064-020-03038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Hypercapnia in combination with hypoxemia is usually present in severe respiratory disease in the intensive care unit (ICU) and can lead to more severe cognitive dysfunction. Increasing evidence has indicated that the compromised blood–brain barrier (BBB) in the hippocampus in hypoxemia conditions can result in cognitive dysfunction. However, the role and underlying mechanism of hypercapnia in the BBB disruption remains poorly known. A rat model of hypercapnia was first established in this study by intubation and mechanical ventilation with a small-animal ventilator. After this, the cognitive function of the experimental rats was assessed by the Morris water maze test. The BBB permeability was evaluated by the Evans Blue (EB) test and brain water content (BWC). Western blot analysis was carried out to detect the protein expressions of total and nuclear hypoxia-inducible factor-1α (HIF-1α), matrixmetalloproteinase-9 (MMP-9) and Aquaporins-4 (AQP-4) in the hippocampus tissue. Double immunofluorescence further verified the protein expression of different biomarkers was localized in the astrocytes of the hippocampus. Hypercapnia alone did not disrupt the BBB, but it could further enhance the BBB permeability in hypoxemia. Concomitantly, up-regulation of nuclear HIF-1α, AQP-4, MMP-9 protein expression along with increased degradation of the occludin and claudin-5 proteins was found in the hypercapnia rat model, while the total HIF-1α remained unchanged. Interestingly, these changes were independent of the acidosis induced by hypercapnia. Of note, after premedication of 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α nuclear translocation), the disrupted BBB could be restored resulting in improvement of the cognitive impairment. Meanwhile, accumulation of nuclear HIF-1α, protein expression of AQP-4 and MMP-9 and protein degradation of the occludin and claudin-5 were decreased. Thus, our study demonstrated that hypercapnia can further disrupt the BBB through promoting HIF-1α nuclear translocation and up-regulation of AQP-4 and MMP-9 in hypoxemia. It is therefore suggested that the cascade of hypercapnia-induced nuclear HIF-1α protein translocation in hypoxia-activated astrocytes may be a potential target for ameliorating cognitive impairment.
Collapse
Affiliation(s)
- Xinqiang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xusheng Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaoyu Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Kangrong Wang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Shenglong Chen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wenqiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongke Zeng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China. .,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Fisher D, Mentor S. Are claudin-5 tight-junction proteins in the blood-brain barrier porous? Neural Regen Res 2020; 15:1838-1839. [PMID: 32246625 PMCID: PMC7513970 DOI: 10.4103/1673-5374.280308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- David Fisher
- Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town, South Africa; School of Health Professions, University of Missouri, Columbia, MO, USA
| | - Shireen Mentor
- Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town, South Africa
| |
Collapse
|
21
|
Uzunalli G, Dieterly AM, Kemet CM, Weng HY, Soepriatna AH, Goergen CJ, Shinde AB, Wendt MK, Lyle LT. Dynamic transition of the blood-brain barrier in the development of non-small cell lung cancer brain metastases. Oncotarget 2019; 10:6334-6348. [PMID: 31695842 PMCID: PMC6824867 DOI: 10.18632/oncotarget.27274] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Invasion of the brain by non-small cell lung cancer (NSCLC) results in a shift of the blood-brain barrier (BBB) to the insufficiently characterized blood-tumor barrier (BTB). Effective drug delivery through the BTB is one of the greatest therapeutic obstacles in treating brain metastases. Using an experimental model, we defined key changes within the BTB and the BBB in the brain around the tumor (BAT) region over time. Brain-seeking NSCLC cells were delivered into the circulation of athymic-nude mice via intracardiac injection and developing brain metastases were evaluated over six-weeks. Components of the BBB and BTB were analyzed using immunofluorescence microscopy and compared using a mixed model of regression. Our results demonstrate a dynamic time-dependent BTB phenotype. Capillaries of the BAT and BTB were dilated with increased CD31 expression compared to controls. Expression of collagen IV, a pan-basement membrane component, was significantly decreased in the BTB compared to the BBB. There was also a significant increase in the desmin-positive pericyte subpopulation in the BTB compared to the BBB. The most striking changes were identified in astrocyte water channels with a 12.18-fold (p < 0.001) decrease in aquaporin-4 in the BTB; the BAT was unchanged. Analysis of NSCLC brain metastases from patient samples similarly demonstrated dilated capillaries and loss of both collagen IV and aquaporin-4. These data provide a comprehensive analysis of the BTB in NSCLC brain metastasis. Astrocytic endfeet, pericytes, and the basement membrane are potential therapeutic targets to improve efficacy of chemotherapeutic delivery into NSCLC brain metastases.
Collapse
Affiliation(s)
- Gozde Uzunalli
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Alexandra M Dieterly
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chinyere M Kemet
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Hsin-Yi Weng
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Aparna B Shinde
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Michael K Wendt
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Center for Comparative Translational Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Bhowmick S, D'Mello V, Caruso D, Wallerstein A, Abdul-Muneer P. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury. Exp Neurol 2019; 317:260-270. [DOI: 10.1016/j.expneurol.2019.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/17/2023]
|
23
|
Pericytic Laminin Maintains Blood-Brain Barrier Integrity in an Age-Dependent Manner. Transl Stroke Res 2019; 11:228-242. [PMID: 31292838 DOI: 10.1007/s12975-019-00709-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 02/05/2023]
Abstract
Brain pericytes synthesize and deposit laminin at the blood-brain barrier (BBB). The function of pericyte-derived laminin in BBB maintenance remains largely unknown. In a previous study, we generated pericytic laminin conditional knockout (PKO) mice, which developed BBB breakdown and hydrocephalus in a mixed genetic background. However, since hydrocephalus itself can compromise BBB integrity, it remains unclear whether BBB disruption in these mutants is due to loss of pericytic laminin or secondary to hydrocephalus. Here, we report that, in C57Bl6 dominant background, the PKO mice fail to show hydrocephalus, have a normal lifespan, and develop BBB breakdown in an age-dependent manner. Further mechanistic studies demonstrate that abnormal paracellular transport, enhanced transcytosis, decreased pericyte coverage, and diminished AQP4 level are responsible for BBB disruption in PKO mice. These results suggest that pericyte-derived laminin plays an indispensable and age-dependent role in the maintenance of BBB integrity under homeostatic conditions.
Collapse
|
24
|
Liu YL, Yuan F, Yang DX, Xu ZM, Jing Y, Yang GY, Geng Z, Xia WL, Tian HL. Adjudin Attenuates Cerebral Edema and Improves Neurological Function in Mice with Experimental Traumatic Brain Injury. J Neurotrauma 2018; 35:2850-2860. [PMID: 29860924 DOI: 10.1089/neu.2017.5397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ying-liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dian-xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi-ming Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guo-yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Geng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-liang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Glioblastoma niches: from the concept to the phenotypical reality. Neurol Sci 2018; 39:1161-1168. [PMID: 29736738 DOI: 10.1007/s10072-018-3408-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022]
Abstract
Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.
Collapse
|
26
|
Tang-Schomer M, Wu W, Kaplan D, Bookland M. In vitro 3D regeneration-like growth of human patient brain tissue. J Tissue Eng Regen Med 2018; 12:1247-1260. [DOI: 10.1002/term.2657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/15/2017] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Affiliation(s)
- M.D. Tang-Schomer
- Department of Pediatrics; UConn Health; Farmington CT USA
- The Jackson Laboratory for Genomic Medicine; Farmington CT USA
| | - W.B. Wu
- Department of Statistics; University of Chicago; Chicago IL USA
| | - D.L. Kaplan
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - M.J. Bookland
- Connecticut Children's Medical Center; Hartford CT USA
| |
Collapse
|
27
|
Wu YF, Sytwu HK, Lung FW. Human Aquaporin 4 Gene Polymorphisms and Haplotypes Are Associated With Serum S100B Level and Negative Symptoms of Schizophrenia in a Southern Chinese Han Population. Front Psychiatry 2018; 9:657. [PMID: 30618856 PMCID: PMC6297372 DOI: 10.3389/fpsyt.2018.00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Aquaporin 4 (AQP4) polymorphism may influence the required dosage of antipsychotic drugs. However, the roles of AQP4 polymorphisms in the blood-brain barrier (BBB) and different neuroprotective effects need further exploration. This study aims to investigate whether the gene polymorphisms and haplotype of AQP4 are associated with serum S100 calcium-binding protein B (S100B) level and clinical symptoms in patients with schizophrenia (SCZ). Methods: We recruited 190 patients with SCZ. They provided demographic data, completed relevant questionnaires, and submitted samples to test for four AQP4 tag single nucleotide polymorphisms (SNPs) and eight haplotypes. The rating scales of Positive and Negative Syndrome Scale (PANSS), Personal and Social Performance (PSP), the Global Assessment of Functioning (GAF), Clinical Global Impression (CGI) were assessed and serum S100B level were measured repeatedly during antipsychotic treatment at weeks 0 (baseline), 3, 6, and 9. Using generalized estimating equation (GEE) analyses, log-transformed S100B (logS100B) level was tested for associations with haplotype and other dependent variables. Results: Discretization via the median split procedure showed that logS100B level >1.78 or ≤ 1.78 had the best discriminant validity to stratify the patients into two groups. After 9 weeks of treatment, the serum S100B level was decreased. The TAA haplotype of AQP4 SNPs was associated with increased serum S100B level (p = 0.006). The PANSS negative subscale (PANSS-N) (p = 0.001) and Clinical Global Impression-Improvement (CGI-I) (p = 0.003) scores had a positive association with S100B level. Conclusion: Patients with the TAA haplotype of the AQP4 polymorphism are likely to have increased serum S100B level, negative symptoms and poor control of neuroinflammation. A logS100B level >1.78 may be sufficiently specific to predict a higher severity of negative symptoms. Further study including healthy controls and patients with first and recurrent episodes under selective AQP4 modulators will be necessary to explore the profound effects on the treatment of patients with SCZ and may positively influence their overall outcome.
Collapse
Affiliation(s)
- Yung-Fu Wu
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Health Research Institutes, Zhunan, Taiwan
| | - For-Wey Lung
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.,Calo Psychiatric Center, Pingtung, Taiwan
| |
Collapse
|
28
|
Nakano T, Nishigami C, Irie K, Shigemori Y, Sano K, Yamashita Y, Myose T, Tominaga K, Matsuo K, Nakamura Y, Ishikura H, Kamimura H, Egawa T, Mishima K. Goreisan Prevents Brain Edema after Cerebral Ischemic Stroke by Inhibiting Aquaporin 4 Upregulation in Mice. J Stroke Cerebrovasc Dis 2017; 27:758-763. [PMID: 29153303 DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Aquaporin 4 (AQP4) is a water-selective transport protein expressed in astrocytes throughout the central nervous system. AQP4 level increases after cerebral ischemia and results in ischemic brain edema. Brain edema markedly influences mortality and motor function by elevating intracranial pressure that leads to secondary brain damage. Therefore, AQP4 is an important target to improve brain edema after cerebral ischemia. The Japanese herbal Kampo medicine, goreisan, is known to inhibit AQP4 activity. Here, we investigated whether goreisan prevents induction of brain edema by cerebral ischemia via AQP4 using 4-hour middle cerebral artery occlusion (4h MCAO) mice. METHODS Goreisan was orally administered at a dose of 500 mg/kg twice a day for 5 days before MCAO. AQP4 expression and motor coordination were measured by Western blotting and rotarod test, respectively. RESULTS Brain water content of 4h MCAO mice was significantly increased at 24 hours after MCAO. Treatment with goreisan significantly decreased both brain water content and AQP4 expression in the ischemic brain at 24 hours after MCAO. In addition, treatment with goreisan alleviated motor coordination deficits at 24 hours after MCAO. CONCLUSIONS The results of this study suggested that goreisan may be a useful new therapeutic option for ischemic brain edema.
Collapse
Affiliation(s)
- Takafumi Nakano
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan; Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan
| | - Chisa Nishigami
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Keiichi Irie
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan.
| | - Yutaka Shigemori
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kazunori Sano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Yuta Yamashita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Takayuki Myose
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Koji Tominaga
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Koichi Matsuo
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hidetoshi Kamimura
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan; Department of Pharmacy, Fukuoka University Hospital, Fukuoka, Japan
| | - Takashi Egawa
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Jyonan, Fukuoka, Japan
| |
Collapse
|
29
|
IMM-H004, A New Coumarin Derivative, Improved Focal Cerebral Ischemia via Blood–Brain Barrier Protection in Rats. J Stroke Cerebrovasc Dis 2017; 26:2065-2073. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023] Open
|
30
|
Overexpression of MicroRNA-145 Ameliorates Astrocyte Injury by Targeting Aquaporin 4 in Cerebral Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9530951. [PMID: 29057271 PMCID: PMC5615955 DOI: 10.1155/2017/9530951] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/03/2017] [Accepted: 06/18/2017] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke, which affects the global population, is a major disease with high incidence, mortality, and disability. Accumulating evidence has indicated that abnormal microRNA (miRNA) expression plays essential roles in the pathologies of ischemic stroke. Yet, the underlying regulatory mechanism of miRNAs in cerebral ischemic stroke remains unclear. We investigated the role of miR-145 in cerebral ischemic stroke and its potential mechanism in a model using primary cultured astrocytes. We detected the expression levels of miR-145 and its target gene AQP4 and assessed the role of miR-145 in cell death and apoptosis caused by oxygen-glucose deprivation (OGD). Bioinformatics analysis was used to explore the targets of miR-145. miR-145 expression levels were significantly decreased in primary astrocytes subjected to OGD. miR-145 overexpression promoted astrocyte health and inhibited OGD-induced apoptosis. AQP4 was a direct target of miR-145, and miR-145 suppressed AQP4 expression. Moreover, AQP4 enhanced astrocyte injury in ischemic stroke, and AQP4 knockdown diminished the miR-145-mediated protective effect on ischemic injury. Taken together, our results show that miR-145 plays an important role in protecting astrocytes from ischemic injury by downregulating AQP4 expression. These findings may highlight a novel therapeutic target in cerebral ischemic stroke.
Collapse
|
31
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
32
|
Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-46505-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731292. [PMID: 26579539 PMCID: PMC4633536 DOI: 10.1155/2015/731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
Collapse
|
34
|
LI WEINA, TAN CHANGHONG, LIU YI, LIU XI, WANG XIN, GUI YUEJIANG, QIN LU, DENG FEN, YU ZHEN, HU CHANGLIN, CHEN LIFEN. Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol Med Rep 2015; 12:7756-62. [DOI: 10.3892/mmr.2015.4366] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/14/2015] [Indexed: 11/06/2022] Open
|
35
|
Wu J, Chen J, Guo H, Peng F. Effects of high-pressure oxygen therapy on brain tissue water content and AQP4 expression in rabbits with cerebral hemorrhage. Cell Biochem Biophys 2015; 70:1579-84. [PMID: 25064222 DOI: 10.1007/s12013-014-0098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate the effects of different atmosphere absolutes (ATA) of high-pressure oxygen (HPO) on brain tissue water content and Aquaporin-4 (AQP4) expression in rabbits with cerebral hemorrhage. 180 New Zealand white rabbits were selected and randomly divided into normal group (n = 30), control group (n = 30) and cerebral hemorrhage group (n = 120), and cerebral hemorrhage group was divided into group A, B, C and D with 30 rabbits in each group. The groups received 1.0, 1.8, 2.0 and 2.2 ATA of HPO treatments, respectively. Ten rabbits in each group were killed at first, third and fifth day to detect the brain tissue water content and change of AQP4 expression. In cerebral hemorrhage group, brain tissue water content and AQP4 expression after model establishment were first increased, then decreased and reached the maximum on third day (p < 0.05). Brain tissue water content and AQP4 expression in control group and cerebral hemorrhage group were significantly higher than normal group at different time points (p < 0.05). In contrast, brain tissue water content and AQP4 expression in group C were significantly lower than in group A, group B, group D and control group (p < 0.05). In control group, AQP4-positive cells significantly increased after model establishment, which reached maximum on third day, and positive cells in group C were significantly less than in group A, group B and group D. We also found that AQP4 expression were positively correlated with brain tissue water content (r = 0.719, p < 0.05) demonstrated by significantly increased AQP4 expression along with increased brain tissue water content. In conclusion, HPO can decrease AQP4 expression in brain tissue of rabbits with cerebral hemorrhage to suppress the progression of brain edema and promote repairing of injured tissue. 2.0 ATA HPO exerts best effects, which provides an experimental basis for ATA selection of HPO in treating cerebral hemorrhage.
Collapse
Affiliation(s)
- Jing Wu
- Department of Emergency Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China,
| | | | | | | |
Collapse
|
36
|
Multiple intracranial metastatic tumor case report and aquaporin water channel-related research. Cell Biochem Biophys 2014; 71:1015-21. [PMID: 25342397 DOI: 10.1007/s12013-014-0303-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This case report deals with multiple intracranial metastatic tumors and studies of expression and regulation characteristics of aquaporins (AQPs) of cerebellar metastatic tumor and brain tissue surrounding tumor. In this work, we try to understand the role of abnormal expression of AQPs in formation and elimination of brain edema and provide new ideas for the treatment of brain edema induced by tumor. The work involves resection of intracranial occupying lesions to get cerebellar metastatic tumor organization. Total RNA was extracted, RT-PCR was done, and immunohistochemical staining was done to study the expression and regulation characteristics of AQPs. We found that AQP4 had a high expression in the peritumoral brain tissue and no expression in the center of brain metastasis tumor organization. Around the tumor tissue, the AQP4 staining was junior in the more distant region from tumor and it added significantly in close to the tumor tissue region. It demonstrated that the AQP4 expression was upregulated, obviously with the distance drawing near gradually to tumor tissue. In addition, stained AQP1 was not observed on cerebellar metastatic tumor and peritumoral brain microvascular endothelial cells. The phenomenon that AQP4 had an increased expression in the surrounding region of cerebellar metastatic tumor and, moreover, increased significantly in the region next to the cerebellar metastatic tumor tightly is probably related to the formation of peritumoral brain edema and plays an important role in cytotoxic brain edema mechanism. AQP1 was not expressed on cerebellar metastatic tumor and peritumoral brain tissue microvascular endothelial cells, and this may be an important factor that the peritumoral interstitial brain edema is removed ineffectively to cause 'small tumor, big edema.'
Collapse
|
37
|
Wang WW, Xie CL, Zhou LL, Wang GS. The function of aquaporin4 in ischemic brain edema. Clin Neurol Neurosurg 2014; 127:5-9. [PMID: 25306413 DOI: 10.1016/j.clineuro.2014.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 02/01/2023]
Abstract
Cerebral ischemia injury is a primary cause of human death and long-term disability. We know that the cerebral edema induced by ischemia injury has a fatal effect on humans, which is the main cause of death for cerebral ischemia because it produces elevated intracranial pressure that leads to secondary brain damage, such as further impaired vascular perfusion and herniation of brain. Therefore, reducing the severity of brain edema has become the main therapeutic strategy for the treatment of CI. However, current treatment options for brain edema are limited and problematic. Therefore, finding novel strategies for overcoming this problem is crucial. Numerous studies demonstrated that cerebral edema may be attenuated via the regulation of AQP4 expression, thus initiating a novel therapeutic strategy against this possibly fatal condition. This review focuses on the role of AQP4 in ischemic brain edema, and its prospect as a therapeutic target.
Collapse
Affiliation(s)
- Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng-long Xie
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Li-Li Zhou
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Guo-Sheng Wang
- Department of Oncology, The First Affiliated Hospital Beilun Branch of Zhejiang University, College of Medicine, Ningbo 315806, China.
| |
Collapse
|
38
|
AQP1 expression in human gingiva and its correlation with periodontal and peri-implant tissue alterations. Acta Histochem 2014; 116:898-904. [PMID: 24698289 DOI: 10.1016/j.acthis.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
Abstract
Aquaporins (AQPs) are a family of hydrophobic integral membrane proteins that function as transmembrane channels and play an important role in tissue homeostasis. Aquaporin-1 (AQP1), in particular, has been reported to be involved in several biological processes including inflammation, angiogenesis, wound healing and others. Periodontitis and peri-implantitis can be defined as inflammatory processes that affect the tissues surrounding a tooth or an osseointegrated implant, respectively. To date, there are limited data about the involvement of AQPs in these diseases. The aim of this study was to evaluate the possible link between the histomorphological alterations and the expression of AQP1 in healthy, pathological and healed periodontal and peri-implant gingival tissues. The results obtained showed that changes in organization of collagen fibers were observed in periodontitis and peri-implantitis, together with an increase in the percentage of area occupied by inflammatory cell infiltration and an increase of AQP1 immunostaining, which was located in the endothelial cells of the vessels within the lamina propria. Moreover, in healed periodontal and peri-implant mucosa a restoration of histomorphological alterations was observed together with a concomitant decrease of AQP1 immunostaining. These data suggested a possible link between the degree of inflammatory state and the presence of AQP1, where the latter could be involved in the chain of inflammatory reactions triggered at periodontal and peri-implant levels.
Collapse
|
39
|
Smith AA, Huang YT, Eliot M, Houseman EA, Marsit CJ, Wiencke JK, Kelsey KT. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression. Epigenetics 2014; 9:873-83. [PMID: 24670968 DOI: 10.4161/epi.28571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.
Collapse
Affiliation(s)
- Ashley A Smith
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA
| | - Yen-Tsung Huang
- Department of Epidemiology; Brown University; Providence, RI USA
| | - Melissa Eliot
- Department of Epidemiology; Brown University; Providence, RI USA
| | - E Andres Houseman
- Department of Public Health; Oregon State University; Corvallis, OR USA
| | - Carmen J Marsit
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Community and Family Medicine and Section of Biostatistics and Epidemiology; Geisel School of Medicine at Dartmouth; Dartmouth, NH USA
| | - John K Wiencke
- Department of Neurological Surgery; University of California at San Francisco; San Francisco, CA USA
| | - Karl T Kelsey
- Department of Pathology and Laboratory Medicine; Brown University; Providence, RI USA; Department of Epidemiology; Brown University; Providence, RI USA
| |
Collapse
|
40
|
He Z, Wang X, Wu Y, Jia J, Hu Y, Yang X, Li J, Fan M, Zhang L, Guo J, Leung MCP. Treadmill pre-training ameliorates brain edema in ischemic stroke via down-regulation of aquaporin-4: an MRI study in rats. PLoS One 2014; 9:e84602. [PMID: 24416250 PMCID: PMC3886991 DOI: 10.1371/journal.pone.0084602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/15/2013] [Indexed: 01/23/2023] Open
Abstract
Objective Treadmill pre-training can ameliorate blood brain barrier (BBB) dysfunction in ischemia-reperfusion injury, however, its role in ischemic brain edema remains unclear. This study assessed the neuroprotective effects induced by treadmill pre-training, particularly on brain edema in transient middle cerebral artery occluded model. Methods Transient middle cerebral artery occlusion to induce stroke was performed on rats after 2 weeks of treadmill pre-training. Magnetic resonance imaging (MRI) was used to evaluate the dynamic impairment of cerebral edema after ischemia-reperfusion injury. In addition, measurements of wet and dry brain weight, Evans Blue assay and Garcia scores were performed to investigate the cerebral water content, BBB permeability and neurologic deficit, respectively. Moreover, during ischemia-reperfusion injury, the expression of Aquaporin 4 (AQP4) was detected using immunofluorescence and Western bloting analyses. Results Treadmill pre-training improved the relative apparent diffusion coefficient (rADC) loss in the ipsilateral cortex and striatum at 1 hour and 2.5 hours after cerebral ischemia. In the treadmill pre-training group, T2W1 values of the ipsilateral cortex and striatum increased less at 7.5 hours, 1 day, and 2 days after stroke while the brain water content decreased at 2 days after ischemia. Regarding the BBB permeability, the semi-quantitative amount of contrast agent leakage of treadmill pre-training group significantly decreased. Less Evans Blue exudation was also observed in treadmill pre-training group at 2 days after stroke. In addition, treadmill pre-training mitigated the Garcia score deficits at 2 days after stroke. Immunofluorescence staining and Western blotting results showed a significant decrease in the expression of AQP4 after treadmill ischemia following pre-training. Conclusions Treadmill pre-training may reduce cerebral edema and BBB dysfunction during cerebral ischemia/reperfusion injury via the down-regulation of AQP4.
Collapse
Affiliation(s)
- Zhijie He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolou Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail: (JJ); (JG)
| | - Yongshan Hu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojiao Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinchun Guo
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (JJ); (JG)
| | - Mason C. P. Leung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
41
|
Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T. Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging 2012; 23:219-23. [PMID: 22817997 DOI: 10.1111/j.1552-6569.2012.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Aquaporin 4 (AQP-4) is the most abundant aquaporin isoform in the brain. Alterations in its expression and distribution have been correlated with the progression of several clinical disorders; however, the specific roles of AQP-4 in those disorders are not well understood. Visualizing AQP-4 in vivo is expected to provide fresh insights into its roles in disease pathology, as well as aiding the clinical assessment of those disorders. METHODS We developed a 11C-labeled analogue of the AQP-4 ligand TGN-020 (2-nicotinamido-1,3,4-thiadiazole) suitable for in vivo positron emission tomography (PET) imaging. RESULTS In the present study, we report the first PET images of AQP-4 in the human brain. The results unequivocally demonstrated a specific distribution pattern for AQP-4 within the brain, namely, the subpial and perivascular endfeet of astrocytes. The choroid plexus, where both AQP-4 and AQP-1 are expressed, also showed substantial uptake of the ligand. CONCLUSIONS Based on these initial results, we believe [11C]TGN-020 PET will be valuable in determining the role of AQP-4 in disease progression, and for the clinical assessment of water homeostasis under various settings.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata
| | | | | | | | | | | |
Collapse
|
42
|
Li W, Hu B, Li GL, Zhao XQ, Xin BZ, Lin JX, Shen Y, Liang XH, Liu GF, Gao HQ, Liao XL, Liang ZG, Wang YJ. Heterozygote genotypes at rs2222823 and rs2811712 SNP loci are associated with cerebral small vessel disease in Han Chinese population. CNS Neurosci Ther 2012; 18:558-65. [PMID: 22621687 DOI: 10.1111/j.1755-5949.2012.00322.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS With developments of etiology of cerebral small vessel disease (CSVD) and genome-wide association study (GWAS) of stroke, the genetic studies of CSVD are focused on genes related to blood-brain barrier (BBB) and aging. The project aims to investigate the association between CSVD and susceptibility loci and candidate genes. METHODS All study subjects admitted Beijing Tiantan Hospital from June 2009 to September 2010 including 197 cerebral small vessel disease patients(S), 198 large artery atherosclerosis control individuals (vascular stenotic rate ≥50% diameter reduction) (L), 200 hypertensive intracerebral hemorrhage control individuals (H) and 197 stroke-free control individuals (C). 15 SNPs in 4 genes (MYLK, AQP4, NINJ2, and INK4/ARF) were genotyped using Multiplex Snapshot assay. Each SNP was first examined between the groups S and C in different genetic models (codominant, dominant, recessive, overdominant, and log-additive). Permutation correction was used to adjust for multiple testing. The significant SNP loci were further analyzed in comparing S with L and H, respectively. Subgroup analysis was also performed for each risk-factor category. RESULTS Among the 15 SNPs, rs2222823 and rs2811712 were found to be significantly associated with CSVD after multiple-testing adjustment. The heterozygote (A/T) of rs2222823 of MYLK has an odds ratio of 0.52 (95% CI =[0.35, 0.79], P= 0.002, adjusted P= 0.031) when compared with homozygotes. The heterozygote (C/T) of rs2811712 of INK4/ARF has an odds ratio of 1.75 (95% CI =[1.13-2.71], P= 0.004, adjusted P= 0.050). The SNP rs2222823 was significant (P= 0.035) in comparing S with H. In comparing S versus L, it is significant for the subgroups of patients without diabetes (P= 0.012) and drinking (P= 0.018). rs2811712 was significant in comparing S with L for the subgroups of patients with hyperlipidemia (P= 0.029) and drinking (P= 0.04). CONCLUSION The heterozygotes (T/A) at the rs2222823 SNP locus of MYLK gene decreases the risk of having cerebral small vessel disease, while the heterozygotes (C/T) at the rs2811712 SNP locus of INK4/ARF gene increases the risk, suggesting that the MYLK and INK4/ARF are the associated genes of cerebral small vessel disease in Han Chinese population.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell M, Povlishock J, Saunders N, Sharp F, Stanimirovic D, Watts R, Drewes L. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12:169-82. [PMID: 21331083 PMCID: PMC3335275 DOI: 10.1038/nrn2995] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Edward A. Neuwelt
- Oregon Health & Science University, Portland, Oregon
- Portland Veterans Affairs Medical Center, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | - Frank Sharp
- University of California at Davis, Davis, California
| | | | - Ryan Watts
- Genentech, Inc., South San Francisco, California
| | | |
Collapse
|