1
|
Poyatos L, Pérez-Mañá C, Hladun O, Núñez-Montero M, de la Rosa G, Martín S, Barriocanal AM, Carabias L, Kelmendi B, Taoussi O, Busardò FP, Fonseca F, Torrens M, Pichini S, Farré M, Papaseit E. Pharmacological effects of methylone and MDMA in humans. Front Pharmacol 2023; 14:1122861. [PMID: 36873994 PMCID: PMC9981643 DOI: 10.3389/fphar.2023.1122861] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Methylone is one of the most common synthetic cathinones popularized as a substitute for 3,4-methylenedioxymethamphetamine (MDMA, midomafetamine) owing to its similar effects among users. Both psychostimulants exhibit similar chemistry (i.e., methylone is a β-keto analog of MDMA) and mechanisms of action. Currently, the pharmacology of methylone remains scarcely explored in humans. Herein, we aimed to evaluate the acute pharmacological effects of methylone and its abuse potential in humans when compared with that of MDMA following oral administration under controlled conditions. Seventeen participants of both sexes (14 males, 3 females) with a previous history of psychostimulant use completed a randomized, double-blind, placebo-controlled, crossover clinical trial. Participants received a single oral dose of 200 mg of methylone, 100 mg of MDMA, and a placebo. The variables included physiological effects (blood pressure, heart rate, oral temperature, pupil diameter), subjective effects using visual analog scales (VAS), the short form of the Addiction Research Center Inventory (ARCI), the Evaluation of Subjective Effects of Substances with Abuse Potential questionnaire (VESSPA-SSE), and the Sensitivity to Drug Reinforcement Questionnaire (SDRQ), and psychomotor performance (Maddox wing, psychomotor vigilance task). We observed that methylone could significantly increase blood pressure and heart rate and induce pleasurable effects, such as stimulation, euphoria, wellbeing, enhanced empathy, and altered perception. Methylone exhibited an effect profile similar to MDMA, with a faster overall onset and earlier disappearance of subjective effects. These results suggest that abuse potential of methylone is comparable to that of MDMA in humans. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05488171; Identifier: NCT05488171.
Collapse
Affiliation(s)
- Lourdes Poyatos
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Clara Pérez-Mañá
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
- *Correspondence: Clara Pérez-Mañá, ; Magí Farré,
| | - Olga Hladun
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Melani Núñez-Montero
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Georgina de la Rosa
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Soraya Martín
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
| | - Ana Maria Barriocanal
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
| | - Lydia Carabias
- Department of Pharmacy, Hospital Universitari Germans Trias i Pujol (HUGTiP), Badalona, Spain
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Omayema Taoussi
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Francina Fonseca
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
- Addiction Program, Institut de Neuropsiquiatria i Adiccions (INAD), Barcelona, Spain
| | - Marta Torrens
- Addiction Program, Institut de Neuropsiquiatria i Adiccions (INAD), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
- *Correspondence: Clara Pérez-Mañá, ; Magí Farré,
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| |
Collapse
|
2
|
Poyatos L, Papaseit E, Olesti E, Pérez-Mañá C, Ventura M, Carbón X, Grifell M, Fonseca F, Torrens M, de la Torre R, Farré M. A Comparison of Acute Pharmacological Effects of Methylone and MDMA Administration in Humans and Oral Fluid Concentrations as Biomarkers of Exposure. BIOLOGY 2021; 10:biology10080788. [PMID: 34440023 PMCID: PMC8389614 DOI: 10.3390/biology10080788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Methylone is a synthetic cathinone that is usually used as a substitute for conventional psychostimulants, such as MDMA. Chemically, methylone is considered the β-keto analogue of MDMA, with which it presumably shares similar pharmacological effects. To date, the available data about the human pharmacology of methylone in humans are very scarce and are mainly derived from user experiences, published in internet forums or intoxication reports. Thus, an observational–naturalistic study was conducted to evaluate the acute pharmacological effects and determine biomarkers of exposure in oral fluid of methylone after oral self-administration in comparison to MDMA. Methylone induced the prototypical psychostimulant and empathogenic effects commonly associated with MDMA, although they were of lower intensity. Oral fluid concentrations of methylone can be considered a suitable biomarker of acute exposure, and oral fluid has been proven to be a useful biological matrix of detection. Abstract Considered the β-keto analogue of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), 3,4-Methylenedioxymethcathinone (methylone) is a synthetic cathinone. Over the years, methylone has been used as a substitute for conventional psychostimulants, such as MDMA. To date, little is known about the human pharmacology of methylone; the only available information has been provided by surveys or published intoxication reports. In the present observational–naturalistic study, we evaluate the acute subjective and physiological effects of methylone after oral self-administration in comparison to MDMA in healthy poly-drug users. Fourteen participants (10 males, 4 females) selected their single oral doses of methylone from 100 to 300 mg (n = 8, mean dose 187.5 mg) or MDMA from 75 to 100 mg (n = 6, mean dose 87.5 mg) based on their experience. Study variables were assessed at 0, 1, 2, and 4 h (h) and included vital signs (non-invasive blood pressure, heart rate, cutaneous temperature) and subjective effects using visual analogue scales (VAS), the 49-item Addiction Research Centre Inventory (ARCI) short form, and the Evaluation of the Subjective Effects of Substances with Abuse Potential (VESSPA-SSE) questionnaire. Additionally, oral fluid concentrations of methylone and MDMA were determined. Acute pharmacological effects produced by methylone followed the prototypical psychostimulant and empathogenic profile associated with MDMA, although they were less intense. Methylone concentrations in oral fluid can be considered a useful biomarker to detect acute exposure in oral fluid. Oral fluid concentrations of MDMA and methylone peaked at 2 h and concentrations of MDMA were in the range of those previously described in controlled studies. Our results demonstrate that the potential abuse liability of methylone is similar to that of MDMA in recreational subjects.
Collapse
Affiliation(s)
- Lourdes Poyatos
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
- Correspondence:
| | - Eulalia Olesti
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (E.O.); (R.d.l.T.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), 08003 Barcelona, Spain
| | - Clara Pérez-Mañá
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Mireia Ventura
- Energy Control, Associació Benestar i Desenvolupament, 08041 Barcelona, Spain; (M.V.); (X.C.); (M.G.)
| | - Xoán Carbón
- Energy Control, Associació Benestar i Desenvolupament, 08041 Barcelona, Spain; (M.V.); (X.C.); (M.G.)
| | - Marc Grifell
- Energy Control, Associació Benestar i Desenvolupament, 08041 Barcelona, Spain; (M.V.); (X.C.); (M.G.)
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain; (F.F.); (M.T.)
- Institut de Neuropsiquiatria i Adiccions (INAD), Parc de Salut Mar, 08003 Barcelona, Spain
| | - Francina Fonseca
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain; (F.F.); (M.T.)
- Institut de Neuropsiquiatria i Adiccions (INAD), Parc de Salut Mar, 08003 Barcelona, Spain
| | - Marta Torrens
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain; (F.F.); (M.T.)
- Institut de Neuropsiquiatria i Adiccions (INAD), Parc de Salut Mar, 08003 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (E.O.); (R.d.l.T.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), 08003 Barcelona, Spain
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| |
Collapse
|
3
|
Docherty JR, Alsufyani HA. Pharmacology of Drugs Used as Stimulants. J Clin Pharmacol 2021; 61 Suppl 2:S53-S69. [PMID: 34396557 DOI: 10.1002/jcph.1918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
Psychostimulant, cardiovascular, and temperature actions of stimulants involve adrenergic (norepinephrine), dopaminergic (dopamine), and serotonergic (serotonin) pathways. Stimulants such as amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), or mephedrone can act on the neuronal membrane monoamine transporters NET, DAT, and SERT and/or the vesicular monoamine transporter 2 to inhibit reuptake of neurotransmitter or cause release by reverse transport. Stimulants may have additional effects involving pre- and postsynaptic/junctional receptors for norepinephrine, dopamine, and serotonin and other receptors. As a result, stimulants may have a wide range of possible actions. Agents with cocaine or MDMA-like actions can induce serious and potentially fatal adverse events via thermodysregulatory, cardiovascular, or other mechanisms. MDMA-like stimulants may cause hyperthermia that can be life threathening. Recreational users of stimulants should be aware of the dangers of hyperthermia in a rave/club environment.
Collapse
Affiliation(s)
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Rudin D, Liechti ME, Luethi D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp Neurol 2021; 343:113778. [PMID: 34090893 DOI: 10.1016/j.expneurol.2021.113778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Applied Physics, TU Wien, Vienna, Austria.
| |
Collapse
|
5
|
Assessment of aversive effects of methylone in male and female Sprague-Dawley rats: Conditioned taste avoidance, body temperature and activity/stereotypies. Neurotoxicol Teratol 2021; 86:106977. [PMID: 33831534 PMCID: PMC9924097 DOI: 10.1016/j.ntt.2021.106977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Methylone's rewarding effects have been well characterized; however, little is known about its aversive effects and how such effects may be impacted by sex. In this context, the present study investigated the aversive effects of methylone (vehicle, 5.6, 10 or 18 mg/kg, IP) in 35 male and 31 female Sprague-Dawley rats assessed by conditioned taste avoidance and changes in body temperature and activity/stereotypies. Methylone induced significant taste avoidance, changes in temperature and increased activity and stereotypies in both males and females. Similar to work with other synthetic cathinones, methylone has aversive effects as indexed by significant taste avoidance and changes in temperature and activity (two characteristics of methylone overdose in humans). The only endpoint for which there were significant sex differences was in general activity with males displaying a faster onset and females displaying a longer duration. Although sex was not a factor with taste avoidance and temperature, separate analyses for males and females revealed different patterns, e.g., males displayed a more rapid acquisition of taste avoidance and females displayed changes in temperature at lower doses. Males displayed a faster onset and females displayed a longer duration of activity (consistent with the analyses considering sex as a factor), while time- and dose-dependent stereotypies did not show consistent pattern differences. Although sex differences were relatively limited when sex was specifically assessed as a factor (or only evident when sex comparisons were made in the patterns of effects), sex as a biological variable in the study of drugs should be made to determine if differences exist and, if evident, the basis for these differences.
Collapse
|
6
|
Sorribes-Soriano A, Sánchez-Martínez S, Arráez-González R, Esteve-Turrillas F, Armenta S. Methylone determination in oral fluid using microextraction by packed sorbent coupled to ion mobility spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Synthetic cathinones and their phenethylamine analogues produce distinct psychomotor and reward behavior in crayfish. Behav Brain Res 2020; 379:112368. [PMID: 31743730 DOI: 10.1016/j.bbr.2019.112368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
Synthetic cathinones share potent sympathomimetic properties with amphetamines due to their shared phenethylamine backbone. Despite recent work focused on understanding the behavioral effects of synthetic cathinones, a systematic comparison of neuropharmacology, behavior, and physiological effects with other stimulants, has remained elusive. In the present study, we explore the behavioral effects of cathinones in crayfish, a model system which combines a well characterized behavioral paradigm for addiction-like behaviors, a modularly organized nervous system, the lack of a formal blood-brain barrier, and experimental tractability. The objective of this study was to characterize the psychomotor and rewarding effects of methylated cathinones (methylone, mephedrone), and their non β-ketone substituted amphetamine analogs (4-methylmethamphetamine, 4-MMA and 3,4-methylenedioxymethamphetamine MDMA) in crayfish. Our results suggest that these drugs produce psychostimulation, which sensitizes upon repeated drug administration. Furthermore, crayfish demonstrated a conditioned substrate preference for mephedrone and 4-MMA drug-pairings at a 10 μg/g dose, a preference which persisted even through a series of extinction trials. Our study indicates that synthetic cathinones and substituted amphetamine analogues produce distinct behavioral effects in an invertebrate system which consists of a relatively simple neuronal organization. The present findings provide an evolutionary context to our understanding about how drugs of abuse initiate reward at levels far beyond those specific to humans.
Collapse
|
8
|
|
9
|
Pantano F, Tittarelli R, Mannocchi G, Pacifici R, di Luca A, Busardò FP, Marinelli E. Neurotoxicity Induced by Mephedrone: An up-to-date Review. Curr Neuropharmacol 2018; 15:738-749. [PMID: 27908258 PMCID: PMC5771050 DOI: 10.2174/1570159x14666161130130718] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
Mephedrone is a β-ketoamphetamine belonging to the family of synthetic cathinones, an emerging class of designer drugs known for their hallucinogenic and psychostimulant properties as well as for their abuse potential. The aim of this review was to examine the emerging scientific literature on the possible mephedrone-induced neurotoxicity, yet not well defined due to the limited number of experimental studies, mainly carried on animal models. Relevant scientific articles were identified from international literature databases (Medline, Scopus, etc.) using the keywords: “Mephedrone”, “4-MMC,” “neurotoxicity,” “neuropharmacology”, “patents”, “monoamine transporters” and “neurochemical effects”. Of the 498 sources initially found, only 36 papers were suitable for the review. Neurotoxic effect of mephedrone on 5-HT and DA systems remains controversial. Although some studies in animal models reported no damage to DA nerve endings in the striatum and no significant changes in brain monoamine levels, some others suggested a rapid reduction in 5-HT and DA transporter function. Persistent serotonergic deficits were observed after binge like treatment in a warm environment and in both serotonergic and dopaminergic nerve endings at high ambient temperature. Oxidative stress cytotoxicity and an increase in frontal cortex lipid peroxidation were also reported. In vitro cytotoxic properties were also observed, suggesting that mephedrone may act as a reductant agent and can also determine changes in mitochondrial respiration. However, due to the differences in the design of the experiments, including temperature and animal model used, the results are difficult to compare. Further studies on toxicology and pharmacology of mephedrone are therefore necessary to establish an appropriate treatment for substance abuse and eventual consequences for public health.
Collapse
Affiliation(s)
- Flaminia Pantano
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Tittarelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Giulio Mannocchi
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Pacifici
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Alessandro di Luca
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Francesco Paolo Busardò
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Viale Regina Elena 336, 00161 Rome, Italy. Italy
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| |
Collapse
|
10
|
Hondebrink L, Zwartsen A, Westerink RHS. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol Ther 2017; 182:193-224. [PMID: 29097307 DOI: 10.1016/j.pharmthera.2017.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing and currently >600 NPS have been reported. However, limited information on neuropharmacological and toxicological effects of NPS is available, hampering risk characterization. We reviewed the literature on the in vitro neuronal modes of action to obtain effect fingerprints of different classes of illicit drugs and NPS. The most frequently reported NPS were selected for review: cathinones (MDPV, α-PVP, mephedrone, 4-MEC, pentedrone, methylone), cannabinoids (JWH-018), (hallucinogenic) phenethylamines (4-fluoroamphetamine, benzofurans (5-APB, 6-APB), 2C-B, NBOMes (25B-NBOMe, 25C-NBOMe, 25I-NBOMe)), arylcyclohexylamines (methoxetamine) and piperazine derivatives (mCPP, TFMPP, BZP). Our effect fingerprints highlight the main modes of action for the different NPS studied, including inhibition and/or reversal of monoamine reuptake transporters (cathinones and non-hallucinogenic phenethylamines), activation of 5-HT2receptors (hallucinogenic phenethylamines and piperazines), activation of cannabinoid receptors (cannabinoids) and inhibition of NDMA receptors (arylcyclohexylamines). Importantly, we identified additional targets by relating reported effect concentrations to the estimated human brain concentrations during recreational use. These additional targets include dopamine receptors, α- and β-adrenergic receptors, GABAAreceptors and acetylcholine receptors, which may all contribute to the observed clinical symptoms following exposure. Additional data is needed as the number of NPS continues to increase. Also, the effect fingerprints we have obtained are still incomplete and suffer from a large variation in the reported effects and effect sizes. Dedicated in vitro screening batteries will aid in complementing specific effect fingerprints of NPS. These fingerprints can be implemented in the risk assessments of NPS that are necessary for eventual control measures to reduce Public Health risks.
Collapse
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anne Zwartsen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Thirakul P, S Hair L, L Bergen K, M Pearson J. Clinical Presentation, Autopsy Results and Toxicology Findings in an Acute N-Ethylpentylone Fatality. J Anal Toxicol 2017; 41:342-346. [PMID: 28137731 DOI: 10.1093/jat/bkx004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
The clinical presentation, autopsy findings and toxicology results in an acute fatality involving N-ethylpentylone, a new cathinone derivative, are described. Law enforcement transported a male who was agitated and exhibiting unusual behavior to a local hospital. Upon arrival at the hospital, his body temperature was 105.5 degrees Fahrenheit and his blood pH was 6.7. Clinical laboratory analysis revealed elevated troponins, rhabdomyolysis, hypoglycemia, hepatic and renal injury, respiratory failure and disseminated intravascular coagulation. He was intubated and admitted to the intensive care unit, treated with cooling blankets, bicarbonate and intravenous fluids. Despite medical treatment, he went into cardiac arrest and was pronounced dead ~36 h after admission. Autopsy findings identified some abrasions on his arms and legs, a bloody nose and a mildly enlarged heart. Antemortem blood was analyzed by gas chromatography coupled with a mass spectrometer which identified N-ethylpentylone. Based on clinical presentation, autopsy findings and toxicology results, the medical examiner concluded the cause of death was intoxication by N-ethylpentylone and the manner of death was accident.
Collapse
Affiliation(s)
- Phoutthasone Thirakul
- Hillsborough County Medical Examiner Department, 11025 N. 46th Street, Tampa, FL 33617, USA
| | - Laura S Hair
- Hillsborough County Medical Examiner Department, 11025 N. 46th Street, Tampa, FL 33617, USA
| | - Kirstin L Bergen
- Hillsborough County Medical Examiner Department, 11025 N. 46th Street, Tampa, FL 33617, USA
| | - Julia M Pearson
- Hillsborough County Medical Examiner Department, 11025 N. 46th Street, Tampa, FL 33617, USA
| |
Collapse
|
12
|
Abstract
The present review briefly explores the neurotoxic properties of methcathinone, mephedrone, methylone, and methylenedioxypyrovalerone (MDPV), four synthetic cathinones most commonly found in "bath salts." Cathinones are β-keto analogs of the commonly abused amphetamines and display pharmacological effects resembling cocaine and amphetamines, but despite their commonalities in chemical structures, synthetic cathinones possess distinct neuropharmacological profiles and produce unique effects. Among the similarities of synthetic cathinones with their non-keto analogs are their targeting of monoamine systems, the release of neurotransmitters, and their stimulant properties. Most of the literature on synthetic cathinones has focused on describing their properties as psychostimulants, their behavioral effects on locomotion, memory, and potential for abuse, whereas descriptions of their neurotoxic properties are not abundant. The biochemical gauges of neurotoxicity induced by non-keto analogs are well studied in humans and experimental animals and include their ability to induce neuroinflammation, oxidative stress, excitotoxicity, temperature alterations as well as dysregulation of neurotransmitter systems and induce changes in monoamine transporters and receptors. These neurotoxicity gauges will serve as parameters to discuss the effects of the four previously mentioned synthetic cathinones alone or in combination with either another cathinone or with some of their non-keto analogs. Bath salts are not a defined combination of drugs and may consist of one synthetic cathinone compound or combinations of more cathinones. Furthermore, this review also presents some of the mechanisms that are thought to underlie this toxicity. A better understanding of the cellular and molecular mechanisms involved in the synthetic cathinones-induced neurotoxicity should contribute to generate modern therapeutic approaches to prevent or attenuate the adverse consequences of use of these drugs in humans.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - John H Anneken
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Donald M Kuhn
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
13
|
Guirguis A, Corkery JM, Stair JL, Kirton SB, Zloh M, Schifano F. Intended and unintended use of cathinone mixtures. Hum Psychopharmacol 2017; 32. [PMID: 28657191 DOI: 10.1002/hup.2598] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Cathinones are one of the most popular categories of new psychoactive substances (NPS) consumed. Cathinones have different pharmacological activities and receptor selectivity for monoamine transporters based on their chemical structures. They are incorporated into NPS mixtures and used with other NPS or 'traditional' drugs. Cathinone use represents significant health risks to individuals and is a public health burden. METHODS Evidence of poly-NPS use with cathinones, seizure information, and literature analyses results on NPS mixtures was systematically gathered from online database sources, including Google Scholar, Scopus, Bluelight, and Drugs-Forum. RESULTS AND DISCUSSION Results highlight the prevalence of NPS with low purity, incorporation of cathinones into NPS mixtures since 2008, and multiple members of the cathinone family being present in individual UK-seized samples. Cathinones were identified as adulterants in NPS marketed as being pure NPS, drugs of abuse, branded products, herbal blends, and products labelled "not for human consumption." Toxicity resulting from cathinone mixtures is unpredictable because key attributes remain largely unknown. Symptoms of intoxication include neuro-psychological, psychiatric, and metabolic symptoms. Proposed treatment includes holistic approaches involving psychosocial, psychiatric and pharmacological interventions. CONCLUSION Raising awareness of NPS, education, and training of health care professionals are paramount in reducing harms related to cathinone use.
Collapse
Affiliation(s)
- Amira Guirguis
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - John Martin Corkery
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Jacqueline Leslie Stair
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Stewart Brian Kirton
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Mire Zloh
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
14
|
Sleep bruxism frequency and platelet serotonin transporter activities in young adult subjects. Sleep Breath 2015; 20:271-6. [DOI: 10.1007/s11325-015-1281-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
|
15
|
den Hollander B, Sundström M, Pelander A, Siltanen A, Ojanperä I, Mervaala E, Korpi ER, Kankuri E. Mitochondrial respiratory dysfunction due to the conversion of substituted cathinones to methylbenzamides in SH-SY5Y cells. Sci Rep 2015; 5:14924. [PMID: 26462443 PMCID: PMC4604489 DOI: 10.1038/srep14924] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/09/2015] [Indexed: 11/12/2022] Open
Abstract
The increased use of cathinone-type designer drugs, known as legal highs, has led to concerns about their potential neurotoxicity due to their similarity to methamphetamine (METH). Therefore, closer investigations of their toxic effects are needed. We investigated the effects of the cathinones 4-methylmethcathinone (4-MMC) and 3,4-methylenedioxymethcathinone (MDMC) and the amphetamine METH on cytotoxicity and mitochondrial respiration in SH-SY5Y neuroblastoma cells. We also investigated the contribution of reactive species, dopamine, Bcl-2 and tumor necrosis factor α (TNFα) on toxicity. Finally, we investigated the effect of cathinone breakdown products using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry and studied their involvement in toxicity. We observed dose-dependent increases in cytotoxicity and decreases in mitochondrial respiration following treatment with all cathinones and amphetamines. Glutathione depletion increases amphetamine, but not cathinone toxicity. Bcl-2 and TNFα pathways are involved in toxicity but dopamine levels are not. We also show that cathinones, but not amphetamines, spontaneously produce reactive species and cytotoxic methylbenzamide breakdown products when in aqueous solution. These results provide an important first insight into the mechanisms of cathinone cytotoxicity and pave the way for further studies on cathinone toxicity in vivo.
Collapse
Affiliation(s)
- Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
| | - Mira Sundström
- Department of Forensic Medicine, Kytösuontie 11, FI-00014 University of Helsinki, Finland
| | - Anna Pelander
- Department of Forensic Medicine, Kytösuontie 11, FI-00014 University of Helsinki, Finland
| | - Antti Siltanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
| | - Ilkka Ojanperä
- Department of Forensic Medicine, Kytösuontie 11, FI-00014 University of Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
| |
Collapse
|
16
|
Barrios L, Grison-Hernando H, Boels D, Bouquie R, Monteil-Ganiere C, Clement R. Death following ingestion of methylone. Int J Legal Med 2015; 130:381-5. [DOI: 10.1007/s00414-015-1212-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
|
17
|
Chavant F, Boucher A, Le Boisselier R, Deheul S, Debruyne D. New synthetic drugs in addictovigilance. Therapie 2015; 70:167-89. [PMID: 25858573 DOI: 10.2515/therapie/2015001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/21/2014] [Indexed: 01/23/2023]
Abstract
New substances, also known as "designer drugs" or "legal highs" are increasingly available to drug users. Two hundred and fifteen hitherto unlisted substances have been notified by European Union member states since 2005. These synthetic drugs, which have been developed to side-step the legislation on drugs, are analogues or derivatives of existing drugs and medications. The availability of these "legal highs", sold on Internet under various denominations such as bath salt, plant fertilizer, chemical not intended for human use, or spice, is unlimited. The effects felt by users vary, and the substances may be stimulant, entactogenic, hallucinogenic, psychedelic or dissociative. The pharmacological targets also vary, and may be either the increase of extracellular levels of neurotransmitters via different mechanisms (reuptake inhibition, stimulation of intracellular release) or else fixation on specific receptors. Several chemical classes, themselves divided into sub-classes, are involved: phenethylamines, tryptamines, piperazines, cathinones, cannabinoids etc. The toxicity of the main members of these categories is increasingly well known, the most deleterious being behavioural effects, physical manifestations, and cardiovascular consequences. However, small variations in their chemical structure can generate effects that are quantitatively different, thus enhancing their toxicity or addictive potential, and much remains to be achieved in terms of knowledge about these new drugs. These substances are indeed present on the French territory, as shown by data provided by the Observatoire Français des Drogues et Toxicomanies, and notifications by the French Addictovigilance network. Screening in clinical toxicology laboratories is not widespread, since these molecules are not detected by the standard screening tests, so that there is probably an under-estimation of the use of these new drugs. The legislation on these substances changes regularly, with more and more countries classifying them as "narcotics" or illegal psychotropic drugs so as to restrict their use, applying a generic classification when possible.
Collapse
Affiliation(s)
| | | | | | - Sylvie Deheul
- Centre d'Addictovigilance de Lille, Faculté de médecine, Lille, France
| | | |
Collapse
|
18
|
Chavant F, Boucher A, Le Boisselier R, Deheul S, Debruyne D. Nouvelles drogues de synthèse en addictovigilance. Therapie 2015. [DOI: 10.2515/therapie/2014235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
López-Arnau R, Martínez-Clemente J, Pubill D, Escubedo E, Camarasa J. Serotonergic impairment and memory deficits in adolescent rats after binge exposure of methylone. J Psychopharmacol 2014; 28:1053-63. [PMID: 25237120 DOI: 10.1177/0269881114548439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylone is a cathinone derivative that has recently emerged as a designer drug of abuse in Europe and the USA. Studies on the acute and long-term neurotoxicity of cathinones are starting to be conducted. We investigated the neurochemical/enzymatic changes indicative of neurotoxicity after methylone administration (4 × 20 mg/kg, subcutaneously, per day with 3 h intervals) to adolescent rats, to model human recreational use. In addition, we studied the effect of methylone on spatial learning ad memory using the Morris water maze paradigm. Our experiments were carried out at a high ambient temperature to simulate the hot conditions found in dance clubs where the drug is consumed. We observed a hyperthermic response to methylone that reached a peak 30 min after each dose. We determined a serotonergic impairment in methylone-treated rats, especially in the frontal cortex, where it was accompanied by astrogliosis. Some serotonergic alterations were also present in the hippocampus and striatum. No significant neurotoxic effect on the dopaminergic system was identified. Methylone-treated animals only displayed impairments in the probe trial of the Morris water maze, which concerns reference memory, while the spatial learning process seemed to be preserved.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - José Martínez-Clemente
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse. Psychopharmacology (Berl) 2014; 231:3119-29. [PMID: 24705904 DOI: 10.1007/s00213-014-3493-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Methylone, a new drug of abuse sold as "bath salts," has similar effects to ecstasy or cocaine. OBJECTIVE We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage induced by methylone in the frontal cortex, hippocampus, and striatum of mice, according to two different treatment schedules. METHODS Methylone was given subcutaneously to male Swiss CD1 mice at an ambient temperature of 26 °C. Treatment A consisted of three doses of 25 mg/kg at 3.5-h intervals between doses for two consecutive days, and treatment B consisted of four doses of 25 mg/kg at 3-h intervals in 1 day. RESULTS Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. CONCLUSIONS The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3-h intervals, which is in accordance with its short half-life.
Collapse
|
21
|
Jinzenji A, Sogawa C, Miyawaki T, Wen XF, Yi D, Ohyama K, Kitayama S, Sogawa N, Morita K. Antiallodynic action of 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), a betaine/GABA transporter inhibitor. J Pharmacol Sci 2014; 125:217-26. [PMID: 24881960 DOI: 10.1254/jphs.13146fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 μM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 μM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters.
Collapse
Affiliation(s)
- Ayako Jinzenji
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D. Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil 2014; 5:37-52. [PMID: 24966713 PMCID: PMC4043811 DOI: 10.2147/sar.s37257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Substituted cathinones are synthetic analogs of cathinone that can be considered as derivatives of phenethylamines with a beta-keto group on the side chain. They appeared in the recreational drug market in the mid-2000s and now represent a large class of new popular drugs of abuse. Initially considered as legal highs, their legal status is variable by country and is rapidly changing, with government institutions encouraging their control. Some cathinones (such as diethylpropion or pyrovalerone) have been used in a medical setting and bupropion is actually indicated for smoking cessation. Substituted cathinones are widely available from internet websites, retail shops, and street dealers. They can be sold under chemical, evocative or generic names, making their identification difficult. Fortunately, analytical methods have been developed in recent years to solve this problem. Available as powders, substituted cathinones are self-administered by snorting, oral injestion, or intravenous injection. They act as central nervous system stimulants by causing the release of catecholamines (dopamine, noradrenaline, and serotonin) and blocking their reuptake in the central and peripheral nervous system. They may also decrease dopamine and serotonin transporter function as nonselective substrates or potent blockers and may inhibit monoamine oxidase effects. Nevertheless, considerable differences have been found in the potencies of the different substituted cathinones in vitro. Desired effects reported by users include increased energy, empathy, and improved libido. Cardiovascular (tachycardia, hypertension) and psychiatric/neurological signs/symptoms (agitation, seizures, paranoia, and hallucinations) are the most common adverse effects reported. Severe toxicity signs compatible with excessive serotonin activity, such as hyperthermia, metabolic acidosis, and prolonged rhabdomyolysis, have also been observed. Reinforcing potential observed in animals predicts a high potential for addiction and abuse in users. In case of overdose, no specific antidote exists and no curative treatment has been approved by health authorities. Therefore, management of acute toxic effects is mainly extrapolated from experience with cocaine/amphetamines.
Collapse
Affiliation(s)
| | - Alexandre Cesbron
- Toxicology and Pharmacology Laboratory, University Hospital Centre, Caen, France
| | - Reynald Le Boisselier
- Centre d'Evaluation et d'Information sur la Pharmacodépendance - Addictovigilance (CEIP-A), Department of Pharmacology, University Hospital Centre, Caen, France
| | - Joanna Bourgine
- Toxicology and Pharmacology Laboratory, University Hospital Centre, Caen, France
| | - Danièle Debruyne
- Toxicology and Pharmacology Laboratory, University Hospital Centre, Caen, France ; Centre d'Evaluation et d'Information sur la Pharmacodépendance - Addictovigilance (CEIP-A), Department of Pharmacology, University Hospital Centre, Caen, France
| |
Collapse
|
23
|
Iversen L, White M, Treble R. Designer psychostimulants: pharmacology and differences. Neuropharmacology 2014; 87:59-65. [PMID: 24456744 DOI: 10.1016/j.neuropharm.2014.01.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
Abstract
More than 200 novel psychoactive drugs have been reported in Europe, with 73 added in 2012 and additional compounds encountered every week in 2013. Many of these are "designer psychostimulants" which aim to mimic the subjective effects of amphetamines, cocaine or 3,4-methylenedioxymethylamphetamine (MDMA; "Ecstasy"). Several drugs are based on the beta-ketoamphetamine cathinone chemical structure, others include aminoindanes, aminotetralins, piperazines, amphetamine analogues and pipradrol derivatives. Although a detailed analysis of the pharmacology of these novel drugs is largely lacking, a number of scientific studies have been reported in 2011-2013 and these are reviewed. All of the novel psychostimulants activate monoamine systems in the brain - with differing dopamine (DA) v serotonin (5-HT) preferences. Those activating principally DA systems are amphetamine-like stimulants, such as naphyrone, desoxypipradrol, 3,4-methylenedioxypyrovalerone (MDPV), and benzylpiperazine while those preferentially activating 5-HT mechanisms are MDMA-like or cocaine-like stimulants, such as mephedrone, methylone and other substituted cathinones, aminoindanes, aminotetralins and piperazines. The ability of mephedrone and other novel psychostimulants to substitute for methylamphetamine or cocaine in drug discrimination tests in rats, and the ability of mephedrone to induce conditioned place preference and to sustain self-administration behaviour suggests that this and other cocaine/methylamphetamine-like drugs have dependence liability. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Leslie Iversen
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, UK.
| | - Michael White
- Forensic Adviser, Advisory Council on the Misuse of Drugs (ACMD) Secretariat, 2 Marsham Street, London SW1P 4DP, UK
| | - Ric Treble
- LGC Forensics, Queens Road, Teddington, London TW11 0LY, UK
| |
Collapse
|
24
|
Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M. Khat and synthetic cathinones: a review. Arch Toxicol 2013; 88:15-45. [PMID: 24317389 DOI: 10.1007/s00204-013-1163-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
Abstract
For centuries, 'khat sessions' have played a key role in the social and cultural traditions among several communities around Saudi Arabia and most East African countries. The identification of cathinone as the main psychoactive compound of khat leaves, exhibiting amphetamine-like pharmacological properties, resulted in the synthesis of several derivatives structurally similar to this so-called natural amphetamine. Synthetic cathinones were primarily developed for therapeutic purposes, but promptly started being misused and extensively abused for their euphoric effects. In the mid-2000's, synthetic cathinones emerged in the recreational drug markets as legal alternatives ('legal highs') to amphetamine, 'ecstasy', or cocaine. Currently, they are sold as 'bath salts' or 'plant food', under ambiguous labels lacking information about their true contents. Cathinone derivatives are conveniently available online or at 'smartshops' and are much more affordable than the traditional illicit drugs. Despite the scarcity of scientific data on these 'legal highs', synthetic cathinones use became an increasingly popular practice worldwide. Additionally, criminalization of these derivatives is often useless since for each specific substance that gets legally controlled, one or more structurally modified analogs are introduced into the legal market. Chemically, these substances are structurally related to amphetamine. For this reason, cathinone derivatives share with this drug both central nervous system stimulating and sympathomimetic features. Reports of intoxication and deaths related to the use of 'bath salts' have been frequently described over the last years, and several attempts to apply a legislative control on synthetic cathinones have been made. However, further research on their pharmacological and toxicological properties is fully required in order to access the actual potential harm of synthetic cathinones to general public health. The present work provides a review on khat and synthetic cathinones, concerning their historical background, prevalence, patterns of use, legal status, chemistry, pharmacokinetics, pharmacodynamics, and their physiological and toxicological effects on animals and humans.
Collapse
Affiliation(s)
- Maria João Valente
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal,
| | | | | | | | | |
Collapse
|
25
|
McIntyre IM, Hamm CE, Aldridge L, Nelson CL. Acute methylone intoxication in an accidental drowning – A case report. Forensic Sci Int 2013; 231:e1-3. [DOI: 10.1016/j.forsciint.2013.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 11/28/2022]
|
26
|
Substituted cathinone products: a new trend in "bath salts" and other designer stimulant drug use. J Addict Med 2013; 7:153-62. [PMID: 23732954 DOI: 10.1097/adm.0b013e31829084b7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a growing concern about the availability of a new generation of "designer drug" stimulants that are marketed as "bath salts" and other household products. The products are not true bath salts and contain substituted cathinone stimulant substances, such as methylenedioxypyrovalerone (MDPV) and mephedrone. Calls to the American Association of Poison Control Centers regarding "bath salts" consumption began in 2010 and have continued since that time. Few reports of systematic epidemiologic surveillance or definitive clinical effects of toxicity specifically associated with "bath salts" consumption have been reported in the medical literature. The current narrative review describes the growing trend of designer substituted cathinone use, pharmacology, clinical effects, and recent regulatory changes. It is hoped that a greater understanding of the clinical effects and use patterns will help inform policy and practice.
Collapse
|
27
|
Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci 2013; 97:31-6. [PMID: 23892197 DOI: 10.1016/j.lfs.2013.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
Abstract
AIMS Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus. MAIN METHODS The status of 5HT nerve endings in the hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4. KEY FINDINGS Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone. SIGNIFICANCE Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together.
Collapse
|
28
|
Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur J Pharmacol 2013; 714:32-40. [PMID: 23764466 DOI: 10.1016/j.ejphar.2013.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 11/20/2022]
Abstract
The recent shortage of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) has led to an increased demand for alternative amphetamine-like drugs such as the synthetic cathinone, 4-methylmethcathinone (mephedrone). Despite the re-classification of mephedrone as a Class B restricted substance by the United Kingdom and restrictive legislation by the United States, international policy regarding mephedrone control is still developing and interest in synthetic amphetamine-like drugs could drive the development of future mephedrone analogues. Currently, there is little literature investigating the mechanism of action and long-term effects of mephedrone. As such, we reviewed the current understanding of amphetamines, cathinones, and cocaine emphasizing the potentially translational aspects to mephedrone, as well as contrasting with the work that has been done specifically on mephedrone in order to present the current state of understanding of mephedrone in terms of its risks, mechanisms, and behavioral effects. Emerging research suggests that while there are structural and behavioral similarities of mephedrone with amphetamine-like compounds, it appears that serotonergic signaling may mediate more of mephedrone's effects unlike the more dopaminergic dependent effects observed in traditional amphetamine-like compounds. As new designer drugs are produced, current and continuing research on mephedrone and other synthetic cathinones should help inform policymakers' decisions regarding the regulation of novel 'legal highs.'
Collapse
|
29
|
Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products. Neuropsychopharmacology 2013; 38:552-62. [PMID: 23072836 PMCID: PMC3572453 DOI: 10.1038/npp.2012.204] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. Assessments of in vivo neurochemistry, locomotor activity, and cardiovascular parameters were carried out in rats. We found that MDPV blocks uptake of [(3)H]dopamine (IC(50)=4.1 nM) and [(3)H]norepinephrine (IC(50)=26 nM) with high potency but has weak effects on uptake of [(3)H]serotonin (IC(50)=3349 nM). In contrast to other psychoactive cathinones (eg, mephedrone), MDPV is not a transporter substrate. The clearance of endogenous dopamine is inhibited by MDPV and cocaine in a similar manner, but MDPV displays greater potency and efficacy. Consistent with in vitro findings, MDPV (0.1-0.3 mg/kg, intravenous) increases extracellular concentrations of dopamine in the nucleus accumbens. Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.
Collapse
Affiliation(s)
- Michael H Baumann
- Medicinal Chemistry Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - John S Partilla
- Medicinal Chemistry Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Kurt R Lehner
- Medicinal Chemistry Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Eric B Thorndike
- Preclinical Pharmacology Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Richard B Rothman
- Medicinal Chemistry Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Carl R Lupica
- Electrophysiology Research Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Srihari R Tella
- Drug and Chemical Evaluation Section, Office of Diversion Control, Drug Enforcement Administration, Springfield, VA, USA
| | - Nicholas V Cozzi
- Neuropharmacology Laboratory, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Charles W Schindler
- Preclinical Pharmacology Section of the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
30
|
Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Sykes CE, Shah MM, Thomas DM, Kuhn DM. Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. J Neurochem 2013. [PMID: 23205838 DOI: 10.1111/jnc.12114] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its re-uptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20, or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (four injections of 2.5 or 5.0 mg/kg at 2 h intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT, and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and 3,4-methylenedioxymethamphetamine on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. As mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S, Johnson CT, Wegner S, Blough BE, Marusich JA, Olive MF. The Reinforcing and Rewarding Effects of Methylone, a Synthetic Cathinone Commonly Found in "Bath Salts". ACTA ACUST UNITED AC 2013; Suppl 9. [PMID: 24244886 DOI: 10.4172/2155-6105.s9-002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylone is a member of the designer drug class known as synthetic cathinones which have become increasingly popular drugs of abuse in recent years. Commonly referred to as "bath salts", these amphetamine-like compounds are sold as "legal" alternatives to illicit drugs such as cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Following their dramatic rise in popularity along with numerous reports of toxicity and death, several of these drugs were classified as Schedule I drugs in the United States in 2012. Despite these bans, these drugs and other new structurally similar analogues continue to be abused. Currently, however, it is unknown whether these compounds possess the potential for compulsive use and addiction. The present study sought to determine the relative abuse liability of methylone by employing intravenous self-administration (IVSA) and intracranial self-stimulation (ICSS) paradigms in rats. We demonstrate that methylone (0.05, 0.1, 0.2, and 0.5 mg/kg/infusion) dose-dependently functions as a reinforcer, and that there is a significant positive relationship between methylone dose and reinforcer efficacy. Furthermore, responding during short access sessions (ShA, 2 hr/day) appeared more robust than previous IVSA studies with MDMA. However, unlike previous findings with abused stimulants such as cocaine or methamphetamine, long access sessions (LgA, 6 hr/day) did not lead to escalated drug intake or increased reinforcer efficacy. Finally, methylone produced a dose-dependent, but statistically non-significant, trend towards reductions in ICSS thresholds. Together these results reveal that methylone may possess an addiction potential similar to or greater than MDMA, yet patterns of self-administration and effects on brain reward function suggest that this drug may have a lower potential for abuse and compulsive use than prototypical psychostimulants.
Collapse
Affiliation(s)
- Lucas R Watterson
- Department of Psychology (LRW, LEH, KS, SET, SY, CTJ, SW, MFO) and Interdisciplinary Graduate Program in Neuroscience (MFO), Arizona State University, Tempe, Arizona, USA ; Discovery and Analytical Sciences, Research Triangle Institute, International Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 2012. [DOI: 10.1007/s11419-012-0172-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Abstract
Recently there has been a dramatic rise in the abuse of so-called "bath salts" products that are purchased as legal alternatives to illicit drugs like cocaine and 3,4-methylenedioxymethamphetamine (MDMA). Baths salts contain one or more synthetic derivatives of the naturally-occurring stimulant cathinone. Low doses of bath salts produce euphoria and increase alertness, but high doses or chronic use can cause serious adverse effects such as hallucinations, delirium, hyperthermia and tachycardia. Owing to the risks posed by bath salts, the governments of many countries have made certain cathinones illegal, namely: 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV). Similar to other psychomotor stimulants, synthetic cathinones target plasma membrane transporters for dopamine (i.e., DAT), norepinephrine (i.e., NET) and serotonin (i.e, SERT). Mephedrone and methylone act as non-selective transporter substrates, thereby stimulating non-exocytotic release of dopamine, norepinephrine and serotonin. By contrast, MDPV acts as a potent blocker at DAT and NET, with little effect at SERT. Administration of mephedrone or methylone to rats increases extracellular concentrations of dopamine and serotonin in the brain, analogous to the effects of MDMA. Not surprisingly, synthetic cathinones elicit locomotor activation in rodents. Stimulation of dopamine transmission by synthetic cathinones predicts a high potential for addiction and may underlie clinical adverse effects. As popular synthetic cathinones are rendered illegal, new replacement cathinones are appearing in the marketplace. More research on the pharmacology and toxicology of abused cathinones is needed to inform public health policy and develop strategies for treating medical consequence of bath salts abuse.
Collapse
Affiliation(s)
- Michael H Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Suite 4500, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
34
|
Long-term cognitive and neurochemical effects of "bath salt" designer drugs methylone and mephedrone. Pharmacol Biochem Behav 2012; 103:501-9. [PMID: 23099177 DOI: 10.1016/j.pbb.2012.10.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION/AIMS The use of cathinone-derivative designer drugs methylone and mephedrone has increased rapidly in recent years. Our aim was to investigate the possible long-term effects of these drugs on a range of behavioral tests in mice. Further, we investigated the long-term effects of these drugs on brain neurochemistry in both rats and mice. METHODS We treated animals with a binge-like regimen of methylone or mephedrone (30 mg/kg, twice daily for 4 days) and, starting 2 weeks later, we performed behavioral tests of memory, anxiety and depression and measured brain levels of dopamine (DA), serotonin (5-HT), their metabolites and norepinephrine (NE). 5-HT and DA transporter (5-HTT and DAT) levels were also measured in rats by [(3)H]paroxetine and [(3)H]mazindol binding. RESULTS Mephedrone reduced working memory performance in the T-maze spontaneous alternation task but did not affect neurotransmitter levels aside from a 22% decrease in striatal homovanillic acid (HVA) levels in mice. Methylone had little effect on behavior or neurotransmitter levels in mice but produced a widespread depletion of 5-HT and 5-HTT levels in rats. CONCLUSIONS Both methylone and mephedrone appeared to have a long-term effect on either behavioral or biochemical gauges of neurotoxicity in rodents.
Collapse
|
35
|
Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC, Garg U, Pietak BR. Three fatal intoxications due to methylone. J Anal Toxicol 2012; 36:444-51. [PMID: 22589523 DOI: 10.1093/jat/bks043] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present three fatal intoxications of methylone, a cathinone derivative. Blood was analyzed with a routine alkaline liquid-liquid extraction and analyzed by gas chromatography coupled with a mass spectrometer (GC-MS). Methylone was identified by a full scan mass spectral comparison to an analytical standard of methylone. For a definitive and conclusive confirmation and quantitation, methylone was also derivatized with heptafluorobutyric anhydride and analyzed by GC-MS. In all three fatalities, the deceased exhibited seizure-like activity and elevated body temperatures (103.9, 105.9 and 107°F) before death. Two of the three cases also exhibited metabolic acidosis. One of the three cases had prolonged treatment and hospitalization before death with symptoms similar to sympathomimetic toxicity, including metabolic acidosis, rhabdomyolysis, acute renal failure and disseminated intravascular coagulation. The laboratory results for this patient over the 24 h period of hospitalization were significant for increased lactate, liver transaminases, creatinine, myoglobin, creatine kinase and clotting times, and decreased pH, glucose and calcium. Peripheral blood methylone concentrations in the three fatal cases were 0.84, 3.3 and 0.56 mg/L. In conlusion, peripheral blood methylone concentrations in excess of 0.5 mg/L may result in death due to its toxic properties, which can include elevated body temperature and other sympathomimetic-like symptoms.
Collapse
Affiliation(s)
- Julia M Pearson
- Hillsborough County Medical Examiner Department, Tampa, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, Holler JM. Distribution of methylone in four postmortem cases. J Anal Toxicol 2012; 36:434-9. [PMID: 22582221 DOI: 10.1093/jat/bks046] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drugs derived from amphetamine, methamphetamine and their methylenedioxy- analogues, although being sold as plant food or bath salts, are being used as legal alternatives to scheduled amphetamine stimulants. These products often contain methylone, mephedrone and methylenedioxypyrovalerone (MDPV)--three amphetamine derivatives shown to have strong pharmacological effects. Four postmortem cases were analyzed for methylone, mephedrone and MDPV, with drug levels quantitated in multiple biological matrices. All four cases had detectable levels of methylone, with heart blood concentrations of 0.740, 0.118, 0.060 and 1.12 mg/L. Analysis of several tissue samples shows that methylone does not sequester in a particular tissue type after death. The average liver-to-blood ratio was 2.68. Two cases also had MDPV present, but insufficient data were collected to formulate a hypothesis on postmortem sequestration or redistribution. Two different extraction methods, as well as analysis of derivatized and underivatized methylone, show that the drug is suitable for analysis in either method. The cases are believed to show one instance of chronic methylone use, with a urine concentration of 38 mg/L.
Collapse
Affiliation(s)
- Brian M Cawrse
- Office of the Chief Medical Examiner, 900 W. Baltimore St., Baltimore, MD 21223, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 2012; 37:1192-203. [PMID: 22169943 PMCID: PMC3306880 DOI: 10.1038/npp.2011.304] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nonmedical use of 'designer' cathinone analogs, such as 4-methylmethcathinone (mephedrone) and 3,4-methylenedioxymethcathinone (methylone), is increasing worldwide, yet little information is available regarding the mechanism of action for these drugs. Here, we employed in vitro and in vivo methods to compare neurobiological effects of mephedrone and methylone with those produced by the structurally related compounds, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. In vitro release assays using rat brain synaptosomes revealed that mephedrone and methylone are nonselective substrates for plasma membrane monoamine transporters, similar to MDMA in potency and selectivity. In vivo microdialysis in rat nucleus accumbens showed that i.v. administration of 0.3 and 1.0 mg/kg of mephedrone or methylone produces dose-related increases in extracellular dopamine and serotonin (5-HT), with the magnitude of effect on 5-HT being greater. Both methcathinone analogs were weak motor stimulants when compared with methamphetamine. Repeated administrations of mephedrone or methylone (3.0 and 10.0 mg/kg, s.c., 3 doses) caused hyperthermia but no long-term change in cortical or striatal amines, whereas similar treatment with MDMA (2.5 and 7.5 mg/kg, s.c., 3 doses) evoked robust hyperthermia and persistent depletion of cortical and striatal 5-HT. Our data demonstrate that designer methcathinone analogs are substrates for monoamine transporters, with a profile of transmitter-releasing activity comparable to MDMA. Dopaminergic effects of mephedrone and methylone may contribute to their addictive potential, but this hypothesis awaits confirmation. Given the widespread use of mephedrone and methylone, determining the consequences of repeated drug exposure warrants further study.
Collapse
Affiliation(s)
- Michael H Baumann
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Mario A Ayestas
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - John S Partilla
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jacqueline R Sink
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | - Paul F Daley
- Alexander Shulgin Research Institute, Lafayette, CA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Richard B Rothman
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Arnold E Ruoho
- Department of Neuroscience and the UW Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas V Cozzi
- Neuropharmacology Laboratory, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
38
|
Abstract
Synthetic cathinones have recently emerged and grown to be popular drugs of abuse. Their dramatic increase has resulted in part from sensationalized media attention as well as widespread availability on the Internet. They are often considered "legal highs" and sold as "bath salts" or "plant food" and labeled "not for human consumption" to circumvent drug abuse legislation. Cathinone is a naturally occurring beta-ketone amphetamine analogue found in the leaves of the Catha edulis plant. Synthetic cathinones are derivatives of this compound. Those that are being used as drugs of abuse include butylone, dimethylcathinone, ethcathinone, ethylone, 3- and 4-fluoromethcathinone, mephedrone, methedrone, methylenedioxypyrovalerone (MDPV), methylone, and pyrovalerone. Synthetic cathinones are phenylalkylamines derivatives, and are often termed "bk-amphetamines" for the beta-ketone moiety. They may possess both amphetamine-like properties and the ability to modulate serotonin, causing distinct psychoactive effects. Desired effects reported by users of synthetic cathinones include increased energy, empathy, openness, and increased libido. Cardiac, psychiatric, and neurological signs and symptoms are the most common adverse effects reported in synthetic cathinone users who require medical care. Deaths associated with use of these compounds have been reported. Exposure to and use of synthetic cathinones are becoming increasingly popular despite a lack of scientific research and understanding of the potential harms of these substances. The clinical similarities to amphetamines and MDMA specifically are predictable based on the chemical structure of this class of agents. More work is necessary to understand the mechanisms of action, toxicokinetics, toxicodynamics, metabolism, clinical and psychological effects as well as the potential for addiction and withdrawal of these agents.
Collapse
|
39
|
|