1
|
Lee BW, Lee JJ, Jung JY, Ju JH. Intra-Articular Injection of Human Bone Marrow-Derived Mesenchymal Stem Cells in Knee Osteoarthritis: A Randomized, Double-Blind, Controlled Trial. Cell Transplant 2025; 34:9636897241303275. [PMID: 39874108 PMCID: PMC11775978 DOI: 10.1177/09636897241303275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
To assess the impact of a single intra-articular (IA) injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with knee osteoarthritis (OA), a randomized, double-blind, placebo-controlled study was conducted. The study included 24 patients with knee OA who were randomly assigned to receive either a single IA injection of BM-MSCs or normal saline. Changes in the visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS) after IA injection were assessed at 3, 6, 9, and 12 months. Magnetic resonance imaging (MRI) with T2 mapping sequences was conducted for knee cartilage assessment at baseline and at 3 and 12 months. The MSC group showed between-group improvement in WOMAC (-5.0 ± 3.6 vs. -0.1 ± 5.5, P = 0.02) and KOOS (23.9 ± 18.3 vs. 7.2 ± 15.9, P = 0.028) scores at 9 months compared with the control group. The MSC group exhibited a less sharp increase in the mean T2 value of the medial compartment than the control group at 12 months, with no serious adverse events observed during follow-up. A single IA injection of allogeneic BM-MSCs provided satisfactory pain relief for patients with knee OA compared with the control group at 9 months. Quantitative T2 MRI mapping of the cartilage showed that IA BM-MSCs could have a preventive effect on OA progression for 12 months. Our findings suggest the potential of allogeneic BM-MSCs IA injection as a pain-relieving and disease-modifying treatment for patients with knee OA in the outpatient setting.
Collapse
Affiliation(s)
- Bong-Woo Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jennifer Jooha Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O'Connell R, Bothner B, Vap AR, June RK. Metabolic phenotypes reflect patient sex and injury status: A cross-sectional analysis of human synovial fluid. Osteoarthritis Cartilage 2024; 32:1074-1083. [PMID: 37716406 PMCID: PMC10940192 DOI: 10.1016/j.joca.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis is a heterogeneous disease. The objective was to compare differences in underlying cellular mechanisms and endogenous repair pathways between synovial fluid (SF) from male and female participants with different injuries to improve the current understanding of the pathophysiology of downstream post-traumatic osteoarthritis (PTOA). DESIGN SF from n = 33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. SF was extracted and analyzed via liquid chromatography-mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies (ligament, meniscal, and combined ligament and meniscal) and patient sex. Samples were pooled and underwent secondary fragmentation to identify metabolites. RESULTS Different knee injuries uniquely altered SF metabolites and downstream pathways including amino acid, lipid, and inflammatory-associated metabolic pathways. Notably, sexual dimorphic metabolic phenotypes were examined between males and females and within injury pathology. Cervonyl carnitine and other identified metabolites differed in concentrations between sexes. CONCLUSIONS These results suggest that different injuries and patient sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries, sex, and PTOA development may yield data regarding how endogenous repair pathways differ between male and female injury types. Ongoing metabolomic analysis of SF in injured male and female patients can be performed to monitor PTOA development and progression.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Avery H Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert O'Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, United States
| | - Alexander R Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
3
|
Welhaven HD, Viles E, Starke J, Wallace C, Bothner B, June RK, Hahn AK. Metabolomic profiles of cartilage and bone reflect tissue type, radiography-confirmed osteoarthritis, and spatial location within the joint. Biochem Biophys Res Commun 2024; 703:149683. [PMID: 38373382 DOI: 10.1016/j.bbrc.2024.149683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints. Articular cartilage and subchondral bone from 9 human femoral heads were obtained after total joint arthroplasty, homogenized and metabolites were extracted for liquid chromatography-mass spectrometry analysis. Metabolomic profiling revealed that distinct metabolic endotypes exist between osteoarthritic tissues, late-stage grades, and regions of the diseased joint. The pathways that contributed the most to these differences between tissues were associated with lipid and amino acid metabolism. Differences between grades were associated with nucleotide, lipid, and sugar metabolism. Specific metabolic pathways such as glycosaminoglycan degradation and amino acid metabolism, were spatially constrained to more superior regions of the femoral head. These results suggest that radiography-confirmed grades III and IV osteoarthritis are associated with distinct global metabolic and that metabolic shifts are not uniform across the joint. The results of this study enhance our understanding of osteoarthritis pathogenesis and may lead to potential drug targets to slow, halt, or reverse tissue damage in late stages of osteoarthritis.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, United States.
| | - Ethan Viles
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, United States.
| | - Jenna Starke
- Montana WWAMI, University of Washington School of Medicine, Seattle, WA, 98195, United States.
| | - Cameron Wallace
- Department of Orthopaedic Surgery, University of Utah Health, Salt Lake City, UT, 84103, United States.
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, United States.
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, United States.
| | - Alyssa K Hahn
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, 59625, United States.
| |
Collapse
|
4
|
Haartmans MJJ, Claes BSR, Eijkel GB, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals potential lipid markers between infrapatellar fat pad biopsies of osteoarthritis and cartilage defect patients. Anal Bioanal Chem 2023; 415:5997-6007. [PMID: 37505238 PMCID: PMC10556153 DOI: 10.1007/s00216-023-04871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The incidence of osteoarthritis (OA) has been expected to increase due to an aging population, as well as an increased incidence of intra-articular (osteo-) chondral damage. Lipids have already been shown to be involved in the inflammatory process of OA. This study aims at revealing region-specific lipid profiles of the infrapatellar fat pad (IPFP) of OA or cartilage defect patients by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which could be used as biomarkers for early OA detection. A higher presence of phospholipids was found in OA patients compared with cartilage defect patients. In addition, a higher abundance of ether-linked phosphatidylethanolamines (PE O-s) containing arachidonic acid was specifically found in OA patients compared with cartilage defect patients. These lipids were mainly found in the connective tissue of the IPFP. Specific lipid species were associated to OA patients compared with cartilage defect patients. PE O-s have been suggested as possible biomarkers for OA. As these were found more abundantly in the connective tissue, the IPFP's intra-tissue heterogeneity might play an important role in biomarker discovery, implying that the amount of fibrous tissue is associated with OA.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Britt S R Claes
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Gert B Eijkel
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Orthopedic Surgery and Sport Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gabrielle J M Tuijthof
- Biomedical Device Design and Production Technology, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands
| | - Ron M A Heeren
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Division of Imaging Mass Spectrometry, Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Noriega-González D, Caballero-García A, Roche E, Álvarez-Mon M, Córdova A. Inflammatory Process on Knee Osteoarthritis in Cyclists. J Clin Med 2023; 12:jcm12113703. [PMID: 37297897 DOI: 10.3390/jcm12113703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Osteoarthritis is a disorder affecting the joints and is characterized by cellular stress and degradation of the extracellular matrix cartilage. It begins with the presence of micro- and macro-lesions that fail to repair properly, which can be initiated by multiple factors: genetic, developmental, metabolic, and traumatic. In the case of the knee, osteoarthritis affects the tissues of the diarthrodial joint, manifested by morphological, biochemical, and biomechanical modifications of the cells and the extracellular matrix. All this leads to remodeling, fissuring, ulceration, and loss of articular cartilage, as well as sclerosis of the subchondral bone with the production of osteophytes and subchondral cysts. The symptomatology appears at different time points and is accompanied by pain, deformation, disability, and varying degrees of local inflammation. Repetitive concentric movements, such as while cycling, can produce the microtrauma that leads to osteoarthritis. Aggravation of the gradual lesion in the cartilage matrix can evolve to an irreversible injury. The objective of the present review is to explain the evolution of knee osteoarthritis in cyclists, to show the scarce research performed in this particular field and extract recommendations to propose future therapeutic strategies.
Collapse
Affiliation(s)
- David Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, HVUV, 47003 Valladolid, Spain
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition and Institute of Bioengineering, Miguel Hernández University (UMH), 03202 Elche, Spain
- Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Internal Medicine, University of Alcalá de Henares, 28801 Alcalá de Henares, Spain
| | - Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| |
Collapse
|
6
|
Sconza C, Di Matteo B, Queirazza P, Dina A, Amenta R, Respizzi S, Massazza G, Ammendolia A, Kon E, de Sire A. Ozone Therapy versus Hyaluronic Acid Injections for Pain Relief in Patients with Knee Osteoarthritis: Preliminary Findings on Molecular and Clinical Outcomes from a Randomized Controlled Trial. Int J Mol Sci 2023; 24:ijms24108788. [PMID: 37240135 DOI: 10.3390/ijms24108788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Ozone therapy (OT) is used for the treatment of multiple musculoskeletal disorders. In recent years, there has been a growing interest in its use for the treatment of osteoarthritis (OA). The aim of this double-blind randomized controlled trial was to evaluate the efficacy of OT compared with hyaluronic acid (HA) injections for pain relief in patients with knee OA. Patients with knee OA for at least three months were included and randomly assigned to receive three intra-articular injections of ozone or HA (once a week). Patients were assessed at baseline and at 1, 3, and 6 months after the injections for pain, stiffness, and function using the WOMAC LK 3.1, the NRS, and the KOOS questionnaire. Out of 55 patients assessed for eligibility, 52 participants were admitted to the study and randomly assigned into the 2 groups of treatment. During the study, eight patients dropped out. Thus, a total of 44 patients, reached the endpoint of the study at 6 months. Both Group A and B consisted of 22 patients. At 1-month follow-up after injections, both treatment groups improved statistically significantly from baseline in all outcomes measured. At 3 months, improvements remained similarly consistent for Group A and Group B. At 6-month follow-up, the outcomes were comparable between the 2 groups, showing only a worsening trend in pain. No significant differences were found between the two groups in pain scores. Both therapies have proven to be safe, with the few recorded adverse events being mild and self-limiting. OT has demonstrated similar results to HA injections, proving to be a safe approach with significant effects on pain control in patients affected by knee OA. Due to its anti-inflammatory and analgesic effects, ozone might be considered as a potential treatment for OA.
Collapse
Affiliation(s)
- Cristiano Sconza
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Paolo Queirazza
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Arianna Dina
- Physical Medicine and Rehabilitation, University of Milan, 20122 Milan, Italy
| | - Roberta Amenta
- Department of Rehabilitation, Casa di Cura Villa Aurelia, 96100 Syracuse, Italy
| | - Stefano Respizzi
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Giuseppe Massazza
- Division of Physical Medicine and Rehabilitation, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O’Connell R, Bothner B, Vap AR, June RK. Metabolomic Phenotypes Reflect Patient Sex and Injury Status: A Cross-Sectional Analysis of Human Synovial Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527040. [PMID: 36846378 PMCID: PMC9959930 DOI: 10.1101/2023.02.03.527040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design A cross-sectional study. Methods Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman MT
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Robert O’Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alexander R. Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
8
|
Apurba G, Sudip B. Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective? CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:590-606. [PMID: 38024172 PMCID: PMC10646351 DOI: 10.22088/cjim.14.43.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 10/15/2022] [Indexed: 12/01/2023]
Abstract
Background This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldolase-A (Aldo-A). Methods This twelve-week registry included 54 patients treated with JNDS mainly comprised of calcium, phosphorus, vitamin-K2, coenzyme-Q10, boswellic acid, and curcumin mixed with soy and whey protein (experimental group) and 51 patients treated with symptomatic slow-acting drugs for osteoarthritis (SYSADOA) (control group) for KOA confirmed with radiological images. At week 0 and week 12 for both the groups evaluated, the non-fasting serum levels of TNF-α, IL-10, CRP, CK-MM, and Aldo-A by using appropriate kits. Results At week-twelve, the respective values of area under the ROC curves of the studied biomarkers for pooled experimental cohorts were 0.928, 0.907, 0.908, 0.927, and 0.988 having the significance of accuracy (R-square):66.28%, 47.25%, 70.39%, 65.13%, and 68.00%, indicating a satisfactory treatment policy, their mean± SD, and risk ratio, all exhibited highly significant differences (p<0.0001) and KOA-gradation was upgraded between≥2 and ≥3 from≥4 as per the Kellgren-Lawrence scale compared to the control. Fewer patients had to use emergency medications (p<0.05). Conclusions Results suggest that JNDS may be effectively used to strengthen the skeletal muscle metabolism and function of elderly patients with KOA confirmed with the stabilization of studied biomarkers as an alternative to the treatment of SYSAD correlated with ROC curves and the Kellgren-Lawrence scale.
Collapse
Affiliation(s)
- Ganguly Apurba
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| | - Banerjee Sudip
- Department of Biochemistry, Techno India University, Salt Lake, Kolkata, India
| |
Collapse
|
9
|
de Sire A, Marotta N, Ferrillo M, Agostini F, Sconza C, Lippi L, Respizzi S, Giudice A, Invernizzi M, Ammendolia A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23052528. [PMID: 35269681 PMCID: PMC8910188 DOI: 10.3390/ijms23052528] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
To date, the application of oxygen-ozone (O2O3) therapy has significantly increased in the common clinical practice in several pathological conditions. However, beyond the favorable clinical effects, the biochemical effects of O2O3 are still far from being understood. This comprehensive review aimed at investigating the state of the art about the effects of O2O3 therapy on pro-inflammatory cytokines serum levels as a modulator of oxidative stress in patients with musculoskeletal and temporomandibular disorders (TMD). The efficacy of O2O3 therapy could be related to the moderate oxidative stress modulation produced by the interaction of ozone with biological components. More in detail, O2O3 therapy is widely used as an adjuvant therapeutic option in several pathological conditions characterized by chronic inflammatory processes and immune overactivation. In this context, most musculoskeletal and temporomandibular disorders (TMD) share these two pathophysiological processes. Despite the paucity of in vivo studies, this comprehensive review suggests that O2O3 therapy might reduce serum levels of interleukin 6 in patients with TMD, low back pain, knee osteoarthritis and rheumatic diseases with a concrete and measurable interaction with the inflammatory pathway. However, to date, further studies are needed to clarify the effects of this promising therapy on inflammatory mediators and their clinical implications.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
- Correspondence: ; Tel.: +39-0961712819
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Martina Ferrillo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy;
| | - Cristiano Sconza
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
| | - Stefano Respizzi
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
| | - Amerigo Giudice
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| |
Collapse
|
10
|
Welhaven HD, McCutchen CN, June RK. Effects of mechanical stimulation on metabolomic profiles of SW1353 chondrocytes: shear and compression. Biol Open 2022; 11:274218. [PMID: 35113136 PMCID: PMC8822358 DOI: 10.1242/bio.058895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanotransduction is a biological phenomenon where mechanical stimuli are converted to biochemical responses. A model system for studying mechanotransduction are the chondrocytes of articular cartilage. Breakdown of this tissue results in decreased mobility, increased pain, and reduced quality of life. Either disuse or overloading can disrupt cartilage homeostasis, but physiological cyclical loading promotes cartilage homeostasis. To model this, we exposed SW1353 cells to cyclical mechanical stimuli, shear and compression, for different durations of time (15 and 30 min). By utilizing liquid chromatography-mass spectroscopy (LC-MS), metabolomic profiles were generated detailing metabolite features and biological pathways that are altered in response to mechanical stimulation. In total, 1457 metabolite features were detected. Statistical analyses identified several pathways of interest. Taken together, differences between experimental groups were associated with inflammatory pathways, lipid metabolism, beta-oxidation, central energy metabolism, and amino acid production. These findings expand our understanding of chondrocyte mechanotransduction under varying loading conditions and time periods. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry and Molecular Biosciences Program, Montana State University, Bozeman, MT 59717, USA
| | - Carley N McCutchen
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA.,Department of Microbiology & Cell Biology, Montana State University, Bozeman MT 59717, USA.,Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Kim KI, Lee WS, Kim JH, Bae JK, Jin W. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:586-596. [PMID: 35567774 PMCID: PMC9216498 DOI: 10.1093/stcltm/szac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2022] [Indexed: 11/15/2022] Open
Abstract
Although successful short-term results of the intra-articular injection of mesenchymal stem cells (MSCs) for the conservative treatment of knee osteoarthritis (OA) have been reported, the mid-term results of the injection of adipose-derived (AD) MSCs remains unknown. We assessed the mid-term safety and efficacy of the intra-articular injection of ADMSCs in patients with knee OA. Eleven patients with knee OA were prospectively enrolled and underwent serial evaluations during a 5-year follow-up of a single intra-articular injection of autologous high-dose (1.0 × 108) ADMSCs. The safety profiles were assessed using the World Health Organization Common Toxicity Criteria. The clinical evaluations included visual analog scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores for pain and function, respectively. The radiologic evaluations included chondral defect area and whole-organ magnetic resonance imaging scores (WORMS) by serial magnetic resonance imaging (MRI). Hip-knee-ankle axis (HKAA) and Kellgren-Lawrence (K-L) grades were assessed on simple radiographs. No treatment-related adverse events occurred during the 5-year follow-up. Both VAS and total WOMAC scores improved significantly at 6 months after the injection and until the latest follow-up. Total WORMS was significantly improved until 3 years after the injection. However, the chondral defect size on MRI or other radiologic evaluations did not change significantly. A single intra-articular injection of autologous, high-dose ADMSCs provided safe and clinical improvement without radiologic aggravation for 5 years. Furthermore, structural changes in the osteoarthritic knee showed significant improvement up to 3 years, suggesting a possible option for disease-modifying outpatient treatment for patients with knee OA.
Collapse
Affiliation(s)
- Kang-Il Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
- Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Woo-Suk Lee
- Department of Orthopaedic Surgery, College of Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, South Korea
| | - Jun-Ho Kim
- Corresponding author: Jun-Ho Kim, Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea. Tel: +82-10-7170-0409;
| | - Jung-Kwon Bae
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gandong, Seoul, South Korea
| |
Collapse
|
12
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
13
|
Liu R, Wu H, Song H. Knockdown of TRIM8 Attenuates IL-1β-induced Inflammatory Response in Osteoarthritis Chondrocytes Through the Inactivation of NF-κB Pathway. Cell Transplant 2021; 29:963689720943604. [PMID: 32757662 PMCID: PMC7563946 DOI: 10.1177/0963689720943604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease associated with inflammatory response. Tripartite motif 8 (TRIM8) is a member of TRIM family that has been found to regulate inflammation. The present study was aimed to evaluate the role of TRIM8 in OA chondrocytes. Our results showed that TRIM8 expression was significantly increased in interleukin 1 beta (IL-1β)-stimulated OA chondrocytes. To knock down the TRIM8 expression in chondrocytes, the chondrocytes were transfected with si-TRIM8. Knockdown of TRIM8 attenuated IL-1β-induced production of inflammatory mediators including nitric oxide and prostaglandin E2. The increased expression levels of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-induced chondrocytes were suppressed by TRIM8 knockdown. The IL-1β-induced production of proinflammatory cytokines including TNF-α and IL-6 was significantly decreased after transfection with si-TRIM8. Besides, knockdown of TRIM8 mitigated the IL-1β-induced decrease in aggrecan and collagen-II proteins expression and increase in matrix-degrading enzymes in chondrocytes. Furthermore, TRIM8 knockdown prevented IL-1β-induced nuclear factor kappa B (NF-κB) activation in chondrocytes. Taken together, these findings indicated that knockdown of TRIM8 attenuates IL-1β-induced inflammatory response in OA chondrocytes through the inactivation of NF-κB pathway. Thus, targeting TRIM8 might provide therapeutic treatment for OA.
Collapse
Affiliation(s)
- Ruoxi Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanjin Song
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Feng D, Zhu X. Preventive Effect of Saussurea lappa Extract on Osteoarthritis in Mice Model through Inhibition of NF-κB Pathway. DOKL BIOCHEM BIOPHYS 2021; 496:56-61. [PMID: 33689077 DOI: 10.1134/s1607672921010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022]
Abstract
The current study evaluated Saussurea lappa extract (SLE) as possible therapeutic agent for osteoarthritis treatment in mice model. Male BALB/c nude mice were separated into sham, model and SLE treatment (at 1.0, 1.5, 2.0, 2.5, and 3.0 mg/kg) groups. Osteoarthritis mice model was prepared by injecting 5 mg/kg doses of monosodium iodoacetate (MIA) to mice via intra-articular route. The SLE was injected to mice for 20 days from day 2 of MIA injection through intraperitoneal route. The SLE treatment alleviated OA-induced higher secretion of interleukin-6, TNF-α, and IL-1β in mice serum. Moreover, elevated levels of P2X7R and MMP-13 in OA mice were also significantly down-regulated on treatment with SLE. In OA mice SLE treatment suppressed expression of SP and PGE2 in cartilage tissues. The expression of activated IκBα and NF-κB p65 was also inhibited markedly by SLE treatment in OA mice. In summary, SLE has protective effect on osteoarthritis in mice by targeting interleukin overproduction and P2X7R expression. Besides, it suppressed MMP expression and deactivated NF-κB signaling pathway. Therefore, SLE can be developed for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Dong Feng
- Department of Orthopaedics, First People's Hospital of Tancheng County, 276100, Linyi, Shandong Province, China
| | - Xiaohu Zhu
- Department of Orthopedics, Funing County People's Hospital, Funing County, 224400, Yancheng, Jiangsu Province, China.
| |
Collapse
|
15
|
Yamazaki A, Edamura K, Tomo Y, Seki M, Asano K. Variations in gene expression levels with severity of synovitis in dogs with naturally occurring stifle osteoarthritis. PLoS One 2021; 16:e0246188. [PMID: 33507995 PMCID: PMC7842980 DOI: 10.1371/journal.pone.0246188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the major causes of chronic pain in dogs. However, the pathogenesis of OA has not been fully understood in dogs. The objective of this study was to comprehensively investigate the mRNA expression levels of proinflammatory cytokines, inflammatory mediators, nerve growth factor and its receptor, and matrix metalloproteinases in the synovium of dogs with spontaneous OA as well as to elucidate their relationships with the severity of synovitis. Dogs that were diagnosed with stifle OA on the basis of radiographic findings were included, and the degree of synovitis was observed using stifle arthroscopy. The dogs were assigned to two different groups depending on their synovitis scores: the low-grade group (score of 1 or 2; n = 8) and high-grade group (score of 3 to 5; n = 18). The dogs showing no evidence of orthopedic disease were included in the control group (n = 6). Synovial tissue samples were collected from the sites at which synovitis scores were assessed using arthroscopy. Total RNA was extracted from the collected synovial tissue, and cDNA was synthesized. Subsequently, RT-qPCR were performed using canine-specific primer sets for IL1B, IL6, CXCL8, TNF, TGFB1, PTGS2, PTGES, MMP3, MMP13, NGF, NTRK1, and PTGER4. Expression levels of IL1B, IL6, CXCL8, and MMP13 were significantly higher in the high-grade group than in the control group. In addition, expression levels of IL1B, CXCL8, TNF, and PTGS2 were significantly higher in the high-grade group than in the low-grade group. Expression levels of IL1B, IL6, CXCL8, TNF, PTGS2, and PTGER4 showed significant positive correlation with synovitis score. In conclusion, all mRNA expression levels in the synovial membrane varied according to the degree of synovitis in dogs with spontaneous OA. Thus, this study may partially elucidate the pathogenesis of synovitis in dogs with spontaneous OA.
Collapse
Affiliation(s)
- Atsushi Yamazaki
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
- * E-mail:
| | - Yuma Tomo
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mamiko Seki
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kazushi Asano
- Department of Veterinary Medicine, Laboratory of Veterinary Surgery, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
16
|
Vaamonde-García C, Burguera EF, Vela-Anero Á, Hermida-Gómez T, Filgueira-Fernández P, Fernández-Rodríguez JA, Meijide-Faílde R, Blanco FJ. Intraarticular Administration Effect of Hydrogen Sulfide on an In Vivo Rat Model of Osteoarthritis. Int J Mol Sci 2020; 21:ijms21197421. [PMID: 33050005 PMCID: PMC7582513 DOI: 10.3390/ijms21197421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular chronic disease. However, its current treatment is limited and mostly symptomatic. Hydrogen sulfide (H2S) is an endogenous gas with recognized physiological activities. The purpose here was to evaluate the effects of the intraarticular administration of a slow-releasing H2S compound (GYY-4137) on an OA experimental model. OA was induced in Wistar rats by the transection of medial collateral ligament and the removal of the medial meniscus of the left joint. The animals were randomized into three groups: non-treated and intraarticularly injected with saline or GYY-4137. Joint destabilization induced articular thickening (≈5% increment), the loss of joint mobility and flexion (≈12-degree angle), and increased levels of pain (≈1.5 points on a scale of 0 to 3). Animals treated with GYY-4137 presented improved motor function of the joint, as well as lower pain levels (≈75% recovery). We also observed that cartilage deterioration was attenuated in the GYY-4137 group (≈30% compared with the saline group). Likewise, these animals showed a reduced presence of pro-inflammatory mediators (cyclooxygenase-2, inducible nitric oxide synthase, and metalloproteinase-13) and lower oxidative damage in the cartilage. The increment of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) levels and Nrf-2-regulated gene expression (≈30%) in the GYY-4137 group seem to be underlying its chondroprotective effects. Our results suggest the beneficial impact of the intraarticular administration of H2S on experimental OA, showing a reduced cartilage destruction and oxidative damage, and supporting the use of slow H2S-producing molecules as a complementary treatment in OA.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Terapia Celular y Medicina Regenerativa, Universidad de A Coruña, Agrupación Estratégica CICA- INIBIC, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain; (C.V.-G.); (Á.V.-A.)
- Grupo de Investigación en Reumatología (GIR), INIBIC-Complexo Hospitalario Universitario A Coruña, Sergas, As Xubias, 15006 A Coruña, Spain; (E.F.B.); (T.H.-G.); (P.F.-F.)
| | - Elena F. Burguera
- Grupo de Investigación en Reumatología (GIR), INIBIC-Complexo Hospitalario Universitario A Coruña, Sergas, As Xubias, 15006 A Coruña, Spain; (E.F.B.); (T.H.-G.); (P.F.-F.)
- Centro de investigación biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ángela Vela-Anero
- Grupo de Terapia Celular y Medicina Regenerativa, Universidad de A Coruña, Agrupación Estratégica CICA- INIBIC, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain; (C.V.-G.); (Á.V.-A.)
| | - Tamara Hermida-Gómez
- Grupo de Investigación en Reumatología (GIR), INIBIC-Complexo Hospitalario Universitario A Coruña, Sergas, As Xubias, 15006 A Coruña, Spain; (E.F.B.); (T.H.-G.); (P.F.-F.)
- Centro de investigación biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Purificación Filgueira-Fernández
- Grupo de Investigación en Reumatología (GIR), INIBIC-Complexo Hospitalario Universitario A Coruña, Sergas, As Xubias, 15006 A Coruña, Spain; (E.F.B.); (T.H.-G.); (P.F.-F.)
- Centro de investigación biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jennifer A. Fernández-Rodríguez
- Grupo de Envejecimiento e Inflamación, Agrupación Estratégica CICA- INIBIC, Complexo Hospitalario Universitario A Coruña, Sergas, Universidad de A Coruña, As Xubias, 15006 A Coruña, Spain;
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidad de A Coruña, Agrupación Estratégica CICA- INIBIC, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain; (C.V.-G.); (Á.V.-A.)
- Correspondence: (R.M.-F.); (F.J.B.); Tel.: +34-981167000 (ext. 5855) (R.M.-F.); +34-981176399 (F.J.B.)
| | - Francisco J. Blanco
- Grupo de Investigación en Reumatología (GIR), INIBIC-Complexo Hospitalario Universitario A Coruña, Sergas, As Xubias, 15006 A Coruña, Spain; (E.F.B.); (T.H.-G.); (P.F.-F.)
- Grupo de Investigación de Reumatología y Salud (GIR), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Agrupación Estrategica CICA-INIBIC, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
- Correspondence: (R.M.-F.); (F.J.B.); Tel.: +34-981167000 (ext. 5855) (R.M.-F.); +34-981176399 (F.J.B.)
| |
Collapse
|
17
|
Maki CB, Beck A, Wallis CBCC, Choo J, Ramos T, Tong R, Borjesson DL, Izadyar F. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study. Front Vet Sci 2020; 7:570. [PMID: 33110913 PMCID: PMC7489271 DOI: 10.3389/fvets.2020.00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
This study was conducted to investigate the therapeutic effect of allogeneic adipose-derived MSCs on dogs with hip osteoarthritis (OA). Twenty dogs with bilateral osteoarthritis of the coxofemoral (hip) joint, diagnosed by a veterinarian through physical examination and radiographs were randomly allocated into four groups. Group 1 served as a placebo control and were injected with 0.9% sodium chloride (saline) (n = 4). Group 2 were injected with a single dose of 5 million MSCs (n = 5). Group 3 received a single dose of 25 million MSCs (n = 6) and Group 4 received a single dose of 50 million MSCs (n = 5). Intra-articular administration of allogeneic MSCs into multiple joints did not result in any serious adverse events. The average lameness score of the dogs in the placebo control group (−0.31) did not show improvement after 90 days of intra-articular saline administration. However, the average lameness score of the all MSC-treated dogs was improved 2.11 grade at this time point (P < 0.001). Overall, sixty five percent (65%) of the dogs that received various doses of MSCs showed improvement in lameness scores 90 days after intra-articular MSC administration. Our results showed that intra-articular administration of allogeneic adipose derived MSCs was well-tolerated and improved lameness scores and reduced pain in dogs associated with hip OA. All doses of MSCs were effective. Subsequent studies with more animals per group are needed to make a conclusion about the dose response. The improved lameness effect was present up to 90 days post-injection. Serum interleukin 10 was increased in a majority of the dogs that received MSCs and that also had improved lameness.
Collapse
Affiliation(s)
- Chad B Maki
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | - Anthony Beck
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | | | - Justin Choo
- Doctors Beck and Stone Clinic, Discovery Bay, Hong Kong
| | - Thomas Ramos
- VetCell Therapeutics USA, Santa Ana, CA, United States
| | | | - Dori L Borjesson
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, Veterinary Institute for Regenerative Cures, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
18
|
Ma H, Qin S, Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-κB) Pathway Downregulation. Med Sci Monit 2020; 26:e921276. [PMID: 32249762 PMCID: PMC7160605 DOI: 10.12659/msm.921276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cartilage degeneration during osteoarthritis (OA) most adversely affects the quality of life by hindering the movement. The present study investigated the role of verbascoside in the protection of cartilage degeneration induced by osteoarthritis. Material/Methods The enzyme-linked immunosorbent (ELISA) and western blot assays were used for determination of inflammatory cytokine secretion in serum and cartilage tissues, respectively. Results Treatment of the OA rats with verbascoside inhibited overproduction of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β in serum as well as cartilage tissues. The expression of P2X7R and matrix metalloproteinase (MMP)-13 was much higher in the rats induced with OA. However, administration of verbascoside reversed the OA-induced upregulation of P2X7R and MMP-13 expression in the cartilage tissues. The OA-mediated increase in substance P (SP) and prostaglandin E2 (PGE2) expression was also reduced in the cartilage tissues by the verbascoside treatment. Western blot assay revealed that verbascoside treatment markedly decreased the activation of IκBα and NF-κB p65 in the OA rats. Conclusions Thus, verbascoside inhibited inflammatory cytokine secretion in the OA rats by targeting P2X7R expression, production of matrix metalloproteinase, PGE2 and downregulation of NF-κB signaling pathway. Therefore, verbascoside may be used as potent agent for osteoarthritis treatment.
Collapse
Affiliation(s)
- Hongbing Ma
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Shourong Qin
- Department of Traumatic Orthopaedics, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Shaoheng Zhao
- Department of Orthopedic, Xi'an No.3 Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
19
|
Bar-Or D, Thomas G, Rael LT, Frederick E, Hausburg M, Bar-Or R, Brody E. On the Mechanisms of Action of the Low Molecular Weight Fraction of Commercial Human Serum Albumin in Osteoarthritis. Curr Rheumatol Rev 2020; 15:189-200. [PMID: 30451114 PMCID: PMC6791032 DOI: 10.2174/1573397114666181119121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Abstract
The low molecular weight fraction of commercial human serum albumin (LMWF5A) has been shown to successfully relieve pain and inflammation in severe osteoarthritis of the knee (OAK). LMWF5A contains at least three active components that could account for these antiinflammatory and analgesic effects. We summarize in vitro experiments in bone marrow-derived mesenchymal stem cells, monocytic cell lines, chondrocytes, peripheral blood mononuclear cells, fibroblast-like synoviocytes, and endothelial cells on the biochemistry of anti-inflammatory changes induced by LMWF5A. We then look at four of the major pathways that cut across cell-type considerations to examine which biochemical reactions are affected by mTOR, COX-2, CD36, and AhR pathways. All three components show anti-inflammatory activities in at least some of the cell types. The in vitro experiments show that the effects of LMWF5A in chondrocytes and bone marrow- derived stem cells in particular, coupled with recent data from previous clinical trials of single and multiple injections of LMWF5A into OAK patients demonstrated improvements in pain, function, and Patient Global Assessment (PGA), as well as high responder rates that could be attributed to the multiple mechanism of action (MOA) pathways are summarized here. In vitro and in vivo data are highly suggestive of LMWF5A being a disease-modifying drug for OAK.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Gregory Thomas
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Leonard T Rael
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Elizabeth Frederick
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Melissa Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States
| | - Raphael Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E. Hampden Avenue, Englewood, CO 80113, United States.,Trauma Research Department, St. Anthony Hospital, 1600 W. 2nd Place, Lakewood, CO 80228, United States.,Trauma Research Department, Medical City Plano, 3901 W. 15th Street, Plano, TX 75075, United States.,Trauma Research Department, Penrose Hospital, 2222 N. Nevada Avenue, Colorado Springs, CO 80907, United States.,Trauma Research Department, Research Medical Center, 2315 E. Meyer Boulevard, Kansas City, MO 64132, United States.,Trauma Research Department, Wesley Medical Center, 550 N. Hillside Street, Witchita, KS 67214, United States.,Ampio Pharmaceuticals, Inc., 373 Inverness Parkway, #200, Englewood, CO 80112, United States
| | - Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| |
Collapse
|
20
|
He J, Zheng S. NF-κB Phosphorylation Inhibition Prevents Articular Cartilage Degradation in Osteoarthritis Rats via 2-Aminoquinoline. Med Sci Monit 2020; 26:e920346. [PMID: 31978040 PMCID: PMC6998790 DOI: 10.12659/msm.920346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis is a chronic degenerative disease of the joints that is common in older people worldwide. The characteristic features of osteoarthritis include cartilage degradation, synovitis, and remodelling of subchondral bone. The present study investigated the effect of 2-aminoquinoline on knee articular cartilage degradation in an osteoarthritis rat model. Material/Methods The rat model of osteoarthritis was established in Wistar rats by intra-articular injection of monosodium iodoacetate. The rats were randomly divided into 6 groups of 10 rats each: a normal control group, an untreated group, and 4 (5, 10, 15 and 20 mg/kg) treatment groups. The rats in treatment groups received 5, 10, 15, or 20 mg/kg doses of 2-aminoquinoline on day 2 of monosodium iodoacetate injection. Results The 2-aminoquinoline treatment of monosodium iodoacetate-injected rats markedly decreased weight-bearing asymmetry, inhibited edema formation, and improved paw withdrawal thresholds. The expression of inflammatory cytokines was markedly higher in the osteoarthritis rats. Treatment with 2-aminoquinoline led to a significant reduction in inflammatory cytokine expression in osteoarthritis rats in a dose-dependent manner. In osteoarthritis rats, the expressions of prostaglandin E2 (PGE2), matrix metalloproteinase-13 (MMP-13), and substance P were also higher in comparison to the control group. The 2-aminoquinoline treatment supressed PGE2, MMP-13, and substance P levels in osteoarthritis rats. Moreover, the expression of phosphorylated nuclear factor kappaB (p-NF-κB) was markedly higher in the untreated rats. However, activation of NF-κB was downregulated in the osteoarthritis rats by treatment with 2-aminoquinoline. Conclusions The present study demonstrated that 2-aminoquinoline prevents articular cartilage damage in osteoarthritis rats through inhibition of inflammatory factors and downregulation of NF-κB activation, suggesting that 2-aminoquinoline would be effective in treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jinlong He
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shicheng Zheng
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
21
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
22
|
Deng Y, Ma F, Ruiz-Ortega L, Peng Y, Tian Y, He W, Tang B. Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol 2019; 140:727-735. [DOI: 10.1016/j.ijbiomac.2019.08.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
23
|
Apurba G. Evaluation of a Cost-Effective Novel Diagnostic Method for Lumbar Herniated Disc with Knee-Osteoarthritis: A Randomized Sample Study. Med Sci (Basel) 2019; 7:E69. [PMID: 31212862 PMCID: PMC6630886 DOI: 10.3390/medsci7060069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine a cost-effective diagnostic method for lumbar herniated disc with knee osteoarthritis (LHD-KOA) based on aberrant outcome measures, levels of biomarkers, and examination of the lower-extremity. Data were separately analyzed for each cohort suffering with LHD-KOA (n=108; 59.82±7.15years) and without LHD-KOA (n=108; 58.81±7.61years), and findings were confirmed with radiological images. The aberrant-leg-features (bilateral: knee gaps between the short head of biceps femoris and the surface of the bed, diameters of calves and thighs, angles of straight leg raising, knee-flexion and -extension in a supine position) and biochemical parameters (Interleukin-10, Tumor necrosis factor-alpha, C-reactive protein, creatine kinase-muscle, and Aldolase-A), and outcome measures, Western Ontario and McMaster Universities osteoarthritis index (WOMAC), knee-injury osteoarthritis outcomes scale (KOOS), Oswestry disability index (ODI), and body mass index (BMI)for participants with and without LHD-KOA were evaluated with appropriate techniques. All the subjects underwent standardized physical examination and completed a questionnaire. The risk ratios and mean± standard deviations of biomarkers, anatomical features, and outcome measures of the experimental subjects were highly significant compared to controls (p<0.0001). Results suggest that monitoring the studied aberrant outcome measures, biomarkers, and lower-anatomical features may be a cost-effective diagnostic tool for LHD-KOA. Further research is recommended for an alternative treatment protocol for LHD-KOA.
Collapse
Affiliation(s)
- Ganguly Apurba
- Department of Research and Development, OPTM Research Institute, 145 Rashbehari Avenue, Kolkata-700029, India.
| |
Collapse
|
24
|
Wang ZW, Chen L, Hao XR, Qu ZA, Huang SB, Ma XJ, Wang JC, Wang WM. Elevated levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and vascular endothelial growth factor in patients with knee articular cartilage injury. World J Clin Cases 2019; 7:1262-1269. [PMID: 31236390 PMCID: PMC6580334 DOI: 10.12998/wjcc.v7.i11.1262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Inflammatory cytokines play a vital role in the occurrence of osteoarticular injury and inflammation. Whether inflammation-associated factors interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) are involved in the pathogenesis of keen articular cartilage injury remains poorly understood.
AIM To measure the levels of inflammatory factors [IL-1β, IL-6, TNF-α and VEGF] in patients with knee articular cartilage injury.
METHODS Fifty-five patients with knee articular cartilage injury were selected as patient groups, who were divided into three grades [mild (n = 20), moderate (n = 19) and severe (n = 16)] according to disease severity and X-ray examinations. Meanwhile, 30 healthy individuals who underwent physical examination were selected as the control group. The levels of IL-1β, IL-6, TNF-α and VEGF were measured by ELISA and immunohistochemical staining.
RESULTS Compared with the control group, patient groups displayed significantly higher levels of IL-1β, IL-6, TNF-α and VEGF, and the extent of increase was directly proportional to the severity of injury (P < 0.05). In addition, the number of cells with positive staining of IL-1β, IL-6, TNF-α and VEGF in the synovial membrane were significantly increased, along with increased disease severity (P < 0.05). After treatment, the scores of visual analogue scale and the Western Ontario and McMaster University of Orthopaedic Index in patient groups were 2.26 ± 1.13 and 15.56 ± 7.12 points, respectively, which were significantly lower than those before treatment (6.98 ± 1.32 and 49.48 ± 8.96). Correlation analysis suggested that IL-1β and TNF-α were positively correlated with VEGF.
CONCLUSION IL-1β, IL-6, TNF-α and VEGF levels are increased in patients with knee articular cartilage injury, and are associated with the disease severity, indicating they might play an important role in the occurrence and development of knee articular cartilage injury. Furthermore, therapeutically targeting them might be a novel approach for the treatment of keen articular cartilage injury.
Collapse
Affiliation(s)
- Zhen-Wei Wang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Le Chen
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Xiao-Rui Hao
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Zhen-An Qu
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Shi-Bo Huang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Xiao-Jun Ma
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Jian-Chuan Wang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| | - Wei-Ming Wang
- Department of Sports Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian 16000, Liaoning Province, China
| |
Collapse
|
25
|
Tran TDX, Wu CM, Dubey NK, Deng YH, Su CW, Pham TT, Thi Le PB, Sestili P, Deng WP. Time- and Kellgren⁻Lawrence Grade-Dependent Changes in Intra-Articularly Transplanted Stromal Vascular Fraction in Osteoarthritic Patients. Cells 2019; 8:E308. [PMID: 30987218 PMCID: PMC6523621 DOI: 10.3390/cells8040308] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most prevalent disorders in elderly population. Among various therapeutic alternatives, we employed stromal vascular fraction (SVF), a heterogeneous cell population, to regenerate damaged knee cartilage. OA patients were classified on the basis of age, gender, body mass index (BMI), and x-ray-derived Kellgren-Lawrence (KL) grade. They were treated with SVF and followed-up for 24 months. Visual analogue scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index were used to determine treatment efficacy. Cartilage healing was assessed using the MRI-based Outerbridge score (OS) and evaluation of bone marrow edema (BME) lesions, while a placebo group was used as a control. Time- and KL-dependent changes were also monitored. We observed a decreasing trend in VAS score and WOMAC index in the SVF-treated group up to 24 months, as compared with the placebo group. Besides, a significant increase and decrease in Lysholm and OS, respectively, were observed in the treatment group. Compared with the values before treatment, the greatly reduced WOMAC scores of KL3 than KL2 groups at 24 months, indicate more improvement in the KL3 group. Highly decreased BME in the treated group was also noted. In conclusion, the SVF therapy is effective in the recovery of OA patients of KL3 grade in 24 months.
Collapse
Affiliation(s)
- Tung Dang Xuan Tran
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
- Van Hanh Stem Cells Unit, Van Hanh Hospital, Ho Chi Minh City 700000, Vietnam.
| | - Chi-Ming Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Navneet Kumar Dubey
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yue-Hua Deng
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Chun-Wei Su
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tu Thanh Pham
- Van Hanh Stem Cells Unit, Van Hanh Hospital, Ho Chi Minh City 700000, Vietnam.
| | - Phuong Bich Thi Le
- Department of Pulmonary Medicine, Vietnam Military Medical Academy, Ha Noi 12108, Vietnam.
| | - Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo Via "I Maggetti" 26, 61029 Urbino, Italy.
| | - Win-Ping Deng
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
26
|
Kozijn AE, Tartjiono MT, Ravipati S, van der Ham F, Barrett DA, Mastbergen SC, Korthagen NM, Lafeber FPJG, Zuurmond AM, Bobeldijk I, Weinans H, Stoop R. Human C-reactive protein aggravates osteoarthritis development in mice on a high-fat diet. Osteoarthritis Cartilage 2019; 27:118-128. [PMID: 30248505 DOI: 10.1016/j.joca.2018.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE C-reactive protein (CRP) levels can be elevated in osteoarthritis (OA) patients. In addition to indicating systemic inflammation, it is suggested that CRP itself can play a role in OA development. Obesity and metabolic syndrome are important risk factors for OA and also induce elevated CRP levels. Here we evaluated in a human CRP (hCRP)-transgenic mouse model whether CRP itself contributes to the development of 'metabolic' OA. DESIGN Metabolic OA was induced by feeding 12-week-old hCRP-transgenic males (hCRP-tg, n = 30) and wild-type littermates (n = 15) a 45 kcal% high-fat diet (HFD) for 38 weeks. Cartilage degradation, osteophytes and synovitis were graded on Safranin O-stained histological knee joint sections. Inflammatory status was assessed by plasma lipid profiling, flow cytometric analyses of blood immune cell populations and immunohistochemical staining of synovial macrophage subsets. RESULTS Male hCRP-tg mice showed aggravated OA severity and increased osteophytosis compared with their wild-type littermates. Both classical and non-classical monocytes showed increased expression of CCR2 and CD86 in hCRP-tg males. HFD-induced effects were evident for nearly all lipids measured and indicated a similar low-grade systemic inflammation for both genotypes. Synovitis scores and synovial macrophage subsets were similar in the two groups. CONCLUSIONS Human CRP expression in a background of HFD-induced metabolic dysfunction resulted in the aggravation of OA through increased cartilage degeneration and osteophytosis. Increased recruitment of classical and non-classical monocytes might be a mechanism of action through which CRP is involved in aggravating this process. These findings suggest interventions selectively directed against CRP activity could ameliorate metabolic OA development.
Collapse
Affiliation(s)
- A E Kozijn
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - M T Tartjiono
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - S Ravipati
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - F van der Ham
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - D A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - N M Korthagen
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - A M Zuurmond
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - I Bobeldijk
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H Weinans
- Department of Orthopaedics, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands.
| |
Collapse
|
27
|
Rael LT, Bar-Or R, Banton KL, Mains CW, Roshon M, Tanner AH, Lieser MJ, Acuna DL, Bar-Or D. The anti-inflammatory effect of LMWF5A and N-acetyl kynurenine on macrophages: Involvement of aryl hydrocarbon receptor in mechanism of action. Biochem Biophys Rep 2018; 15:61-67. [PMID: 30073204 PMCID: PMC6068081 DOI: 10.1016/j.bbrep.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 11/04/2022] Open
Abstract
After a traumatic insult, macrophages can become activated leading to general inflammation at the site of injury. Activated macrophages are partially regulated by the aryl hydrocarbon receptor (AhR) which when activated suppresses inflammation by limiting the secretion of pro-inflammatory cytokines and promoting the over expression of immuno-modulatory mediators. This study aims to determine whether the low molecular weight fraction of 5% human serum albumin (LMWF5A) and N-acetyl kynurenine (NAK), an N-acetyl tryptophan (NAT) breakdown product in LMWF5A, can regulate inflammation by inhibiting macrophage activation through the AhR since kynurenine is a known AhR agonist. Using LCMS, we demonstrate that NAT is non-enzymatically degraded during accelerated aging of LMWF5A with high heat accelerating degradation. More importantly, NAK is a major degradation product found in LMWF5A. THP-1 monocytes were differentiated into macrophages using phorbol 12-myristate 13-acetate (PMA) and pre-treated with 2-fold dilutions of LMWF5A or synthetic NAK with or without an AhR antagonist (CH223191) prior to overnight stimulation with lipopolysaccharide (LPS). Treatment with LMWF5A caused a 50–70% decrease in IL-6 release throughout the dilution series. A dose-response inhibition of IL-6 release was observed for NAK with maximal inhibition (50%) seen at the highest NAK concentration. Finally, an AhR antagonist partially blocked the anti-inflammatory effect of LMWF5A while completely blocking the effect of NAK. A similar inhibitory effect was observed for CXCL-10, but the AhR antagonist was not effective suggesting additional mechanisms for CXCL-10 release. These preliminary findings suggest that LMWF5A and NAK partially promote the suppression of activated macrophages via the AhR receptor. Therefore, LMWF5A, which contains NAK, is potentially a useful therapeutic in medical conditions where inflammation is prevalent such as trauma, sepsis, and wound healing. LMWF5A contains degradation products of N-acetyl tryptophan (NAT). A major degradation product of NAT in LMWF5A is N-acetyl kynurenine (NAK). LMWF5A and NAK decrease IL-6 and CXCL-10 release from activated macrophages. AhR is partially involved in the mechanism of action for LMWF5A and NAK. The anti-inflammatory properties of LMWF5A are also AhR-independent.
Collapse
Affiliation(s)
- Leonard T Rael
- Swedish Medical Center, Englewood, CO 80113, USA.,St. Anthony Hospital, Lakewood, CO 80228, USA.,Medical City Plano, Plano, TX 75075, USA.,Penrose Hospital, Colorado Springs, CO 80907, USA.,Research Medical Center, Kansas City, MO 64132, USA.,Wesley Medical Center, Wichita, KS 67214, USA
| | - Raphael Bar-Or
- Swedish Medical Center, Englewood, CO 80113, USA.,St. Anthony Hospital, Lakewood, CO 80228, USA.,Medical City Plano, Plano, TX 75075, USA.,Penrose Hospital, Colorado Springs, CO 80907, USA.,Research Medical Center, Kansas City, MO 64132, USA.,Wesley Medical Center, Wichita, KS 67214, USA.,Ampio Pharmaceuticals, Inc., Englewood, CO 80112, USA
| | | | | | | | | | | | | | - David Bar-Or
- Swedish Medical Center, Englewood, CO 80113, USA.,St. Anthony Hospital, Lakewood, CO 80228, USA.,Medical City Plano, Plano, TX 75075, USA.,Penrose Hospital, Colorado Springs, CO 80907, USA.,Research Medical Center, Kansas City, MO 64132, USA.,Wesley Medical Center, Wichita, KS 67214, USA.,Ampio Pharmaceuticals, Inc., Englewood, CO 80112, USA.,Rocky Vista University, Parker, CO 80134, USA
| |
Collapse
|
28
|
Hu H, Yang B, Li Y, Zhang S, Li Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-κB pathways in the cartilage tissue of rats with osteoarthritis. Int J Mol Med 2016; 38:1922-1932. [PMID: 27748894 DOI: 10.3892/ijmm.2016.2770] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
P2X purinoceptor 7 (P2X7) receptor (P2X7R) is known to play a significant role in inflammation and pain-causing diseases, including osteoarthritis (OA). However, the mechanisms of action of P2X7R and its role in OA remain unclear. The articular cartilage is the crucial region in which pathological changes occur in OA, involving the dysregulation of degradation and maintenance mechanisms. In this study, we aimed to reveal the molecular mechanisms of action of P2X7R in articular cartilage in OA-induced pain and inflammation by using AZD9056, an antagonist of P2X7R. We created an animal model of OA by using Wistar rats administered (by intra-articular injection) monosodium iodoacetate (MIA), and the rats with OA were then treated with the P2X7R antagonist, AZD9056. We found that treatment with AZD9056 exerted pain-relieving and anti-inflammatory effects. Importantly, we found that the upregulated expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-13 (MMP-13), substance P (SP) and prostaglandin E2 (PGE2) which was induced by MIA in cartilage tissues was reversed by AZD9056. Western blot analysis was used to examine the expression of inhibitor of nuclear factor-κB (NF-κB) kinase (IKK)α, IKKβ, inhibitor of NF-κB (IκB)α, NF-κB p65 and their phosphorylation forms; they were found to be significantly increased in the knee cartilage tissues from rats with OA; however, opposite effects were observed by the injection of AZD9056. These results implied that P2X7R was associated with the activation of the NF-κB pathway in the development of OA. Our results also revealed that helenalin, an NF-κB pathway inhibitor, decreased the expression of P2X7R, IL-1β, IL-6, TNF-α, SP, PGE2 and MMP-13, which was induced by MIA, in the knee cartilage tissues of rats with OA. On the whole, our findings suggest that P2X7R regulates the MMP-13 and NF-κB pathways in cartilage tissue and mediate OA-induced pain and inflammation.
Collapse
Affiliation(s)
- Hongbo Hu
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Baohui Yang
- Department of Οrthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yumin Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Subin Zhang
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Zheng Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
29
|
Thomas GW, Rael LT, Hausburg M, Frederick ED, Mains CW, Slone D, Carrick MM, Bar-Or D. The low molecular weight fraction of human serum albumin upregulates production of 15d-PGJ2 in Peripheral Blood Mononuclear Cells. Biochem Biophys Res Commun 2016; 473:1328-1333. [PMID: 27095392 DOI: 10.1016/j.bbrc.2016.04.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
Abstract
Activation of the innate immune system involves a series of events designed to counteract the initial insult followed by the clearance of debris and promotion of healing. Aberrant regulation can lead to systemic inflammatory response syndrome, multiple organ failure, and chronic inflammation. A better understanding of the innate immune response may help manage complications while allowing for proper immune progression. In this study, the ability of several classes of anti-inflammatory drugs to affect LPS-induced cytokine and prostaglandin release from peripheral blood mononuclear cells (PBMC) was evaluated. PBMC were cultured in the presence of dexamethasone (DEX), ibuprofen (IBU), and the low molecular weight fraction of 5% albumin (LMWF5A) followed by stimulation with LPS. After 24 h, TNFα, PGE2, and 15d-PGJ2 release was determined by ELISA. Distinct immunomodulation patterns emerged following LPS stimulation of PBMC in the presence of said compounds. DEX, a steroid with strong immunosuppressive properties, reduced TNFα, PGE2, and 15d-PGJ2 release. IBU caused significant reduction in prostaglandin release while TNFα release was unchanged. An emerging biologic with known anti-inflammatory properties, LMWF5A, significantly reduced TNFα release while enhancing PGE2 and 15d-PGJ2 release. Incubating LMWF5A together with IBU negated this observed increased prostaglandin release without affecting the suppression of TNFα release. Additionally, LMWF5A caused an increase in COX-2 transcription and translation. LMWF5A exhibited a unique immune modulation pattern in PBMC, disparate from steroid or NSAID administration. This enhancement of prostaglandin release (specifically 15d-PGJ2), in conjunction with a decrease in TNFα release, suggests a switch that favors resolution and decreased inflammation.
Collapse
Affiliation(s)
- Gregory W Thomas
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA; St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA; The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA.
| | - Leonard T Rael
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA; St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA; The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA.
| | - Melissa Hausburg
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA; St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA; The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA.
| | - Elizabeth D Frederick
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA; St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA; The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA.
| | - Charles W Mains
- St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA.
| | - Denetta Slone
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA.
| | - Matthew M Carrick
- The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA.
| | - David Bar-Or
- Swedish Medical Center, 501 E. Hampden Ave., Englewood, CO 80113, USA; St. Anthony Hospital, 11600 W. 2nd, Pl., Lakewood, CO 80228, USA; The Medical Center of Plano, 3901 W. 15th, St., Plano, TX 75075, USA; Rocky Vista University, 8401 S. Chambers Rd., Parker, CO 80134, USA.
| |
Collapse
|