1
|
|
2
|
Shao K, Zhang Y, Wen Y, Zhang Z, He S, Bo X. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Brief Bioinform 2022; 23:6563180. [PMID: 35380622 DOI: 10.1093/bib/bbac109] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Drug-target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug-drug and target-target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.
Collapse
Affiliation(s)
| | | | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Xue W, Fu T, Deng S, Yang F, Yang J, Zhu F. Molecular Mechanism for the Allosteric Inhibition of the Human Serotonin Transporter by Antidepressant Escitalopram. ACS Chem Neurosci 2022; 13:340-351. [PMID: 35041375 DOI: 10.1021/acschemneuro.1c00694] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human serotine transporter (hSERT) is one of the most influential drug targets, and its allosteric modulators (e.g., escitalopram) have emerged to be the next-generation medication for psychiatric disorders. However, the molecular mechanism underlying the allosteric modulation of hSERT is still elusive. Here, the simulation strategies of conventional (cMD) and steered (SMD) molecular dynamics were applied to investigate this molecular mechanism from distinct perspectives. First, cMD simulations revealed that escitalopram's binding to hSERT's allosteric site simultaneously enhanced its binding to the orthosteric site. Then, SMD simulation identified that the occupation of hSERT's allosteric site by escitalopram could also block its dissociation from the orthosteric site. Finally, by comparing the simulated structures of two hSERT-escitalopram complexes with and without allosteric modulation, a new conformational coupling between an extracellular (Arg104-Glu494) and an intracellular (Lys490-Glu494) salt bridge was identified. In summary, this study explored the mechanism underlying the allosteric modulation of hSERT by collectively applying two MD simulation strategies, which could facilitate our understanding of the allosteric modulations of not only hSERT but also other clinically important therapeutic targets.
Collapse
Affiliation(s)
- Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Tingting Fu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Han K, Cao P, Wang Y, Xie F, Ma J, Yu M, Wang J, Xu Y, Zhang Y, Wan J. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Front Pharmacol 2022; 12:814858. [PMID: 35153767 PMCID: PMC8835726 DOI: 10.3389/fphar.2021.814858] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Drug-drug interactions play a vital role in drug research. However, they may also cause adverse reactions in patients, with serious consequences. Manual detection of drug-drug interactions is time-consuming and expensive, so it is urgent to use computer methods to solve the problem. There are two ways for computers to identify drug interactions: one is to identify known drug interactions, and the other is to predict unknown drug interactions. In this paper, we review the research progress of machine learning in predicting unknown drug interactions. Among these methods, the literature-based method is special because it combines the extraction method of DDI and the prediction method of DDI. We first introduce the common databases, then briefly describe each method, and summarize the advantages and disadvantages of some prediction models. Finally, we discuss the challenges and prospects of machine learning methods in predicting drug interactions. This review aims to provide useful guidance for interested researchers to further promote bioinformatics algorithms to predict DDI.
Collapse
Affiliation(s)
- Ke Han
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Peigang Cao
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yu Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Fang Xie
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jiaqi Ma
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mengyao Yu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jianchun Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yaoqun Xu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Zhao Z, Yang W, Zhai Y, Liang Y, Zhao Y. Identify DNA-Binding Proteins Through the Extreme Gradient Boosting Algorithm. Front Genet 2022; 12:821996. [PMID: 35154264 PMCID: PMC8837382 DOI: 10.3389/fgene.2021.821996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The exploration of DNA-binding proteins (DBPs) is an important aspect of studying biological life activities. Research on life activities requires the support of scientific research results on DBPs. The decline in many life activities is closely related to DBPs. Generally, the detection method for identifying DBPs is achieved through biochemical experiments. This method is inefficient and requires considerable manpower, material resources and time. At present, several computational approaches have been developed to detect DBPs, among which machine learning (ML) algorithm-based computational techniques have shown excellent performance. In our experiments, our method uses fewer features and simpler recognition methods than other methods and simultaneously obtains satisfactory results. First, we use six feature extraction methods to extract sequence features from the same group of DBPs. Then, this feature information is spliced together, and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is used to construct an effective predictive model. Compared with other excellent methods, our proposed method has achieved better results. The accuracy achieved by our method is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results achieved by our strategy is similar to that of previous detection methods.
Collapse
Affiliation(s)
- Ziye Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| |
Collapse
|
6
|
Wei L, Long W, Wei L. MDL-CPI: multi-view deep learning model for compound-protein interaction prediction. Methods 2022; 204:418-427. [PMID: 35114401 DOI: 10.1016/j.ymeth.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
Abstract
Elucidating the mechanisms of Compound-Protein Interactions (CPIs) plays an essential role in drug discovery and development. Many computational efforts have been done to accelerate the development of this field. However, the current predictive performance is still not satisfactory, and existing methods consider only protein and compound features, ignoring their interactive information. In this study, we propose a multi-view deep learning method named MDL-CPI for CPI prediction. To sufficiently extract discriminative information, we introduce a hybrid architecture that leverages BERT (Bidirectional Encoder Representations from Transformers) and CNN (Convolutional Neural Network) to extract protein features from a sequential perspective, use the GNN (Graph Neural Networks) to extract compound features from a structural perspective, and generate a unified feature space by using AE2 (Autoencoder in Autoencoder Networks) network to learn the interactive information between BERT-CNN and Graph embeddings. Comparative results on benchmark datasets show that our proposed method exhibits better performance compared to existing CPI prediction methods, demonstrating the strong predictive ability of our model. Importantly, we demonstrate that the learned interactive information between compounds and proteins is critical to improve predictive performance. We release our source code and dataset at: https://github.com/Longwt123/MDL-CPI.
Collapse
|
7
|
Guo X, Zhou W, Yu Y, Cai Y, Zhang Y, Du A, Lu Q, Ding Y, Li C. Multiple Laplacian Regularized RBF Neural Network for Assessing Dry Weight of Patients With End-Stage Renal Disease. Front Physiol 2021; 12:790086. [PMID: 34966294 PMCID: PMC8711098 DOI: 10.3389/fphys.2021.790086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Dry weight (DW) is an important dialysis index for patients with end-stage renal disease. It can guide clinical hemodialysis. Brain natriuretic peptide, chest computed tomography image, ultrasound, and bioelectrical impedance analysis are key indicators (multisource information) for assessing DW. By these approaches, a trial-and-error method (traditional measurement method) is employed to assess DW. The assessment of clinician is time-consuming. In this study, we developed a method based on artificial intelligence technology to estimate patient DW. Based on the conventional radial basis function neural (RBFN) network, we propose a multiple Laplacian-regularized RBFN (MLapRBFN) model to predict DW of patient. Compared with other model and body composition monitor, our method achieves the lowest value (1.3226) of root mean square error. In Bland-Altman analysis of MLapRBFN, the number of out agreement interval is least (17 samples). MLapRBFN integrates multiple Laplace regularization terms, and employs an efficient iterative algorithm to solve the model. The ratio of out agreement interval is 3.57%, which is lower than 5%. Therefore, our method can be tentatively applied for clinical evaluation of DW in hemodialysis patients.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Yu
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yinghua Cai
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Zhang
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Aiyan Du
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qun Lu
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Chao Li
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| |
Collapse
|
8
|
Gong Y, Liao B, Wang P, Zou Q. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Front Pharmacol 2021; 12:771808. [PMID: 34916947 PMCID: PMC8669608 DOI: 10.3389/fphar.2021.771808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biological macromolecules or biomolecule structures capable of specifically binding a therapeutic effect with a particular drug or regulating physiological functions. Due to the important value and role of drug targets in recent years, the prediction of potential drug targets has become a research hotspot. The key to the research and development of modern new drugs is first to identify potential drug targets. In this paper, a new predictor, DrugHybrid_BS, is developed based on hybrid features and Bagging-SVM to identify potentially druggable proteins. This method combines the three features of monoDiKGap (k = 2), cross-covariance, and grouped amino acid composition. It removes redundant features and analyses key features through MRMD and MRMD2.0. The cross-validation results show that 96.9944% of the potentially druggable proteins can be accurately identified, and the accuracy of the independent test set has reached 96.5665%. This all means that DrugHybrid_BS has the potential to become a useful predictive tool for druggable proteins. In addition, the hybrid key features can identify 80.0343% of the potentially druggable proteins combined with Bagging-SVM, which indicates the significance of this part of the features for research.
Collapse
Affiliation(s)
- Yuxin Gong
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Peng Wang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
9
|
Joshi G, Borah P, Thakur S, Sharma P, Mayank, Poduri R. Exploring the COVID-19 vaccine candidates against SARS-CoV-2 and its variants: where do we stand and where do we go? Hum Vaccin Immunother 2021; 17:4714-4740. [PMID: 34856868 PMCID: PMC8726002 DOI: 10.1080/21645515.2021.1995283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
As of September 2021, 117 COVID-19 vaccines are in clinical development, and 194 are in preclinical development as per the World Health Organization (WHO) published draft landscape. Among the 117 vaccines undergoing clinical trials, the major platforms include protein subunit; RNA; inactivated virus; viral vector, among others. So far, USFDA recognized to approve the Pfizer-BioNTech (Comirnaty) COVID-19 vaccine for its full use in individuals of 16 years of age and older. Though the approved vaccines are being manufactured at a tremendous pace, the wealthiest countries have about 28% of total vaccines despite possessing only 10.8% of the total world population, suggesting an inequity of vaccine distribution. The review comprehensively summarizes the history of vaccines, mainly focusing on vaccines for SARS-CoV-2. The review also connects relevant topics, including measurement of vaccines efficacy against SARS-CoV-2 and its variants, associated challenges, and limitations, as hurdles in global vaccination are also kept forth.
Collapse
Affiliation(s)
- Gaurav Joshi
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneshwar, India
| | - Praveen Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, India
| | - Mayank
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ramarao Poduri
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Guo Y, Hou L, Zhu W, Wang P. Prediction of Hormone-Binding Proteins Based on K-mer Feature Representation and Naive Bayes. Front Genet 2021; 12:797641. [PMID: 34887905 PMCID: PMC8650314 DOI: 10.3389/fgene.2021.797641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Hormone binding protein (HBP) is a soluble carrier protein that interacts selectively with different types of hormones and has various effects on the body's life activities. HBPs play an important role in the growth process of organisms, but their specific role is still unclear. Therefore, correctly identifying HBPs is the first step towards understanding and studying their biological function. However, due to their high cost and long experimental period, it is difficult for traditional biochemical experiments to correctly identify HBPs from an increasing number of proteins, so the real characterization of HBPs has become a challenging task for researchers. To measure the effectiveness of HBPs, an accurate and reliable prediction model for their identification is desirable. In this paper, we construct the prediction model HBP_NB. First, HBPs data were collected from the UniProt database, and a dataset was established. Then, based on the established high-quality dataset, the k-mer (K = 3) feature representation method was used to extract features. Second, the feature selection algorithm was used to reduce the dimensionality of the extracted features and select the appropriate optimal feature set. Finally, the selected features are input into Naive Bayes to construct the prediction model, and the model is evaluated by using 10-fold cross-validation. The final results were 95.45% accuracy, 94.17% sensitivity and 96.73% specificity. These results indicate that our model is feasible and effective.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Liping Hou
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Peng Wang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
11
|
Lv H, Shi L, Berkenpas JW, Dao FY, Zulfiqar H, Ding H, Zhang Y, Yang L, Cao R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief Bioinform 2021; 22:bbab320. [PMID: 34410360 PMCID: PMC8511807 DOI: 10.1093/bib/bbab320] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a dramatic loss of human life worldwide. Despite many efforts, the development of effective drugs and vaccines for this novel virus will take considerable time. Artificial intelligence (AI) and machine learning (ML) offer promising solutions that could accelerate the discovery and optimization of new antivirals. Motivated by this, in this paper, we present an extensive survey on the application of AI and ML for combating COVID-19 based on the rapidly emerging literature. Particularly, we point out the challenges and future directions associated with state-of-the-art solutions to effectively control the COVID-19 pandemic. We hope that this review provides researchers with new insights into the ways AI and ML fight and have fought the COVID-19 outbreak.
Collapse
Affiliation(s)
- Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | | | - Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hasan Zulfiqar
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma 98447, USA
| |
Collapse
|
12
|
An Q, Yu L. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions. Brief Bioinform 2021; 22:6346805. [PMID: 34373895 DOI: 10.1093/bib/bbab275] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Accurate prediction of drug-target interactions (DTIs) through biological data can reduce the time and economic cost of drug development. The prediction method of DTIs based on a similarity network is attracting increasing attention. Currently, many studies have focused on predicting DTIs. However, such approaches do not consider the features of drugs and targets in multiple networks or how to extract and merge them. In this study, we proposed a Network EmbeDding framework in mulTiPlex networks (NEDTP) to predict DTIs. NEDTP builds a similarity network of nodes based on 15 heterogeneous information networks. Next, we applied a random walk to extract the topology information of each node in the network and learn it as a low-dimensional vector. Finally, the Gradient Boosting Decision Tree model was constructed to complete the classification task. NEDTP achieved accurate results in DTI prediction, showing clear advantages over several state-of-the-art algorithms. The prediction of new DTIs was also verified from multiple perspectives. In addition, this study also proposes a reasonable model for the widespread negative sampling problem of DTI prediction, contributing new ideas to future research. Code and data are available at https://github.com/LiangYu-Xidian/NEDTP.
Collapse
Affiliation(s)
- Qi An
- College of Computer Science and Technology at Xidian University, Xi'an 710071, P.R. China
| | - Liang Yu
- College of Computer Science and Technology at Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
13
|
Yang H, Ding Y, Tang J, Guo F. Identifying potential association on gene-disease network via dual hypergraph regularized least squares. BMC Genomics 2021; 22:605. [PMID: 34372777 PMCID: PMC8351363 DOI: 10.1186/s12864-021-07864-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Identifying potential associations between genes and diseases via biomedical experiments must be the time-consuming and expensive research works. The computational technologies based on machine learning models have been widely utilized to explore genetic information related to complex diseases. Importantly, the gene-disease association detection can be defined as the link prediction problem in bipartite network. However, many existing methods do not utilize multiple sources of biological information; Additionally, they do not extract higher-order relationships among genes and diseases. RESULTS In this study, we propose a novel method called Dual Hypergraph Regularized Least Squares (DHRLS) with Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL), in order to detect all potential gene-disease associations. First, we construct multiple kernels based on various biological data sources in gene and disease spaces respectively. After that, we use CAK-MKL to obtain the optimal kernels in the two spaces respectively. To specific, hypergraph can be employed to establish higher-order relationships. Finally, our DHRLS model is solved by the Alternating Least squares algorithm (ALSA), for predicting gene-disease associations. CONCLUSION Comparing with many outstanding prediction tools, DHRLS achieves best performance on gene-disease associations network under two types of cross validation. To verify robustness, our proposed approach has excellent prediction performance on six real-world networks. Our research work can effectively discover potential disease-associated genes and provide guidance for the follow-up verification methods of complex diseases.
Collapse
Affiliation(s)
- Hongpeng Yang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yijie Ding
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China.
| |
Collapse
|
14
|
Yu L, Su Y, Liu Y, Zeng X. Review of unsupervised pretraining strategies for molecules representation. Brief Funct Genomics 2021; 20:323-332. [PMID: 34342611 DOI: 10.1093/bfgp/elab036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022] Open
Abstract
In recent years, the computer-assisted techniques make a great progress in the field of drug discovery. And, yet, the problem of limited labeled data problem is still challenging and also restricts the performance of these techniques in specific tasks, such as molecular property prediction, compound-protein interaction and de novo molecular generation. One effective solution is to utilize the experience and knowledge gained from other tasks to cope with related pursuits. Unsupervised pretraining is promising, due to its capability of leveraging a vast number of unlabeled molecules and acquiring a more informative molecular representation for the downstream tasks. In particular, models trained on large-scale unlabeled molecules can capture generalizable features, and this ability can be employed to improve the performance of specific downstream tasks. Many relevant pretraining works have been recently proposed. Here, we provide an overview of molecular unsupervised pretraining and related applications in drug discovery. Challenges and possible solutions are also summarized.
Collapse
|
15
|
Yang H, Tong F, Qi C, Wang P, Li J, Cheng L. Prioritizing Disease-Related Microbes Based on the Topological Properties of a Comprehensive Network. Front Microbiol 2021; 12:685549. [PMID: 34326821 PMCID: PMC8315281 DOI: 10.3389/fmicb.2021.685549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Many microbes are parasitic within the human body, engaging in various physiological processes and playing an important role in human diseases. The discovery of new microbe-disease associations aids our understanding of disease pathogenesis. Computational methods can be applied in such investigations, thereby avoiding the time-consuming and laborious nature of experimental methods. In this study, we constructed a comprehensive microbe-disease network by integrating known microbe-disease associations from three large-scale databases (Peryton, Disbiome, and gutMDisorder), and extended the random walk with restart to the network for prioritizing unknown microbe-disease associations. The area under the curve values of the leave-one-out cross-validation and the fivefold cross-validation exceeded 0.9370 and 0.9366, respectively, indicating the high performance of this method. Despite being widely studied diseases, in case studies of inflammatory bowel disease, asthma, and obesity, some prioritized disease-related microbes were validated by recent literature. This suggested that our method is effective at prioritizing novel disease-related microbes and may offer further insight into disease pathogenesis.
Collapse
Affiliation(s)
- Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fan Tong
- Academy of Military Medical Science, Beijing, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiangyu Li
- Academy of Military Medical Science, Beijing, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Ru X, Ye X, Sakurai T, Zou Q, Xu L, Lin C. Current status and future prospects of drug-target interaction prediction. Brief Funct Genomics 2021; 20:312-322. [PMID: 34189559 DOI: 10.1093/bfgp/elab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
Collapse
Affiliation(s)
| | - Xiucai Ye
- Department of Computer Science, and Center for Artificial Intelligence Research (C-AIR), University of Tsukuba
| | - Tetsuya Sakurai
- Department of Computer Science and is the director of the C-AIR, University of Tsukuba
| | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | | |
Collapse
|
17
|
Xu L, Ru X, Song R. Application of Machine Learning for Drug-Target Interaction Prediction. Front Genet 2021; 12:680117. [PMID: 34234813 PMCID: PMC8255962 DOI: 10.3389/fgene.2021.680117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Xiaoqing Ru
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Rong Song
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
18
|
Zou Y, Wu H, Guo X, Peng L, Ding Y, Tang J, Guo F. MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for Predicting DNA-binding Proteins via Support Vector Data Description. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200607173829] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Detecting DNA-binding proteins (DBPs) based on biological and chemical
methods is time-consuming and expensive.
Objective:
In recent years, the rise of computational biology methods based on Machine Learning
(ML) has greatly improved the detection efficiency of DBPs.
Method:
In this study, the Multiple Kernel-based Fuzzy SVM Model with Support Vector Data
Description (MK-FSVM-SVDD) is proposed to predict DBPs. Firstly, sex features are extracted
from the protein sequence. Secondly, multiple kernels are constructed via these sequence features.
Then, multiple kernels are integrated by Centered Kernel Alignment-based Multiple Kernel
Learning (CKA-MKL). Next, fuzzy membership scores of training samples are calculated with
Support Vector Data Description (SVDD). FSVM is trained and employed to detect new DBPs.
Results:
Our model is evaluated on several benchmark datasets. Compared with other methods, MKFSVM-
SVDD achieves best Matthew's Correlation Coefficient (MCC) on PDB186 (0.7250) and
PDB2272 (0.5476).
Conclusion:
We can conclude that MK-FSVM-SVDD is more suitable than common SVM, as the
classifier for DNA-binding proteins identification.
Collapse
Affiliation(s)
- Yi Zou
- School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, China
| | - Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Li Peng
- School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
19
|
Guo X, Zhou W, Shi B, Wang X, Du A, Ding Y, Tang J, Guo F. An Efficient Multiple Kernel Support Vector Regression Model for Assessing Dry Weight of Hemodialysis Patients. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200614172536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Dry Weight (DW) is the lowest weight after dialysis, and patients with
lower weight usually have symptoms of hypotension and shock. Several clinical-based approaches
have been presented to assess the dry weight of hemodialysis patients. However, these traditional
methods all depend on special instruments and professional technicians.
Objective:
In order to avoid this limitation, we need to find a machine-independent way to assess dry
weight, therefore we collected some clinical influencing characteristic data and constructed a
Machine Learning-based (ML) model to predict the dry weight of hemodialysis patients.
Methods::
In this paper, 476 hemodialysis patients' demographic data, anthropometric measurements,
and Bioimpedance spectroscopy (BIS) were collected. Among them, these patients' age, sex, Body
Mass Index (BMI), Blood Pressure (BP) and Heart Rate (HR) and Years of Dialysis (YD) were
closely related to their dry weight. All these relevant data were used to enter the regression equation.
Multiple Kernel Support Vector Regression-based on Maximizes the Average Similarity (MKSVRMAS)
model was proposed to predict the dry weight of hemodialysis patients.
Result:
The experimental results show that dry weight is positively correlated with BMI and HR.
And age, sex, systolic blood pressure, diastolic blood pressure and hemodialysis time are negatively
correlated with dry weight. Moreover, the Root Mean Square Error (RMSE) of our model was
1.3817.
Conclusion:
Our proposed model could serve as a viable alternative for dry weight estimation of
hemodialysis patients, thus providing a new way for clinical practice. Our proposed model could serve as a viable alternative of dry weight estimation for hemodialysis patients,
thus providing a new way for the clinic.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Wei Zhou
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Bin Shi
- Hemodialysis Center, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Xiaohua Wang
- Department of Urology, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Aiyan Du
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214000, Wuxi, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
20
|
Yin J, Li X, Li F, Lu Y, Zeng S, Zhu F. Identification of the key target profiles underlying the drugs of narrow therapeutic index for treating cancer and cardiovascular disease. Comput Struct Biotechnol J 2021; 19:2318-2328. [PMID: 33995923 PMCID: PMC8105181 DOI: 10.1016/j.csbj.2021.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
An appropriate therapeutic index is crucial for drug discovery and development since narrow therapeutic index (NTI) drugs with slight dosage variation may induce severe adverse drug reactions or potential treatment failure. To date, the shared characteristics underlying the targets of NTI drugs have been explored by several studies, which have been applied to identify potential drug targets. However, the association between the drug therapeutic index and the related disease has not been dissected, which is important for revealing the NTI drug mechanism and optimizing drug design. Therefore, in this study, two classes of disease (cancers and cardiovascular disorders) with the largest number of NTI drugs were selected, and the target property of the corresponding NTI drugs was analyzed. By calculating the biological system profiles and human protein–protein interaction (PPI) network properties of drug targets and adopting an AI-based algorithm, differentiated features between two diseases were discovered to reveal the distinct underlying mechanisms of NTI drugs in different diseases. Consequently, ten shared features and four unique features were identified for both diseases to distinguish NTI from NNTI drug targets. These computational discoveries, as well as the newly found features, suggest that in the clinical study of avoiding narrow therapeutic index in those diseases, the ability of target to be a hub and the efficiency of target signaling in the human PPI network should be considered, and it could thus provide novel guidance in the drug discovery and clinical research process and help to estimate the drug safety of cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinjing Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
21
|
Shang Y, Gao L, Zou Q, Yu L. Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Dao FY, Lv H, Su W, Sun ZJ, Huang QL, Lin H. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network. Brief Bioinform 2021; 22:6158360. [PMID: 33751027 DOI: 10.1093/bib/bbab047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023] Open
Abstract
DNase I hypersensitive site (DHS) refers to the hypersensitive region of chromatin for the DNase I enzyme. It is an important part of the noncoding region and contains a variety of regulatory elements, such as promoter, enhancer, and transcription factor-binding site, etc. Moreover, the related locus of disease (or trait) are usually enriched in the DHS regions. Therefore, the detection of DHS region is of great significance. In this study, we develop a deep learning-based algorithm to identify whether an unknown sequence region would be potential DHS. The proposed method showed high prediction performance on both training datasets and independent datasets in different cell types and developmental stages, demonstrating that the method has excellent superiority in the identification of DHSs. Furthermore, for the convenience of related wet-experimental researchers, the user-friendly web-server iDHS-Deep was established at http://lin-group.cn/server/iDHS-Deep/, by which users can easily distinguish DHS and non-DHS and obtain the corresponding developmental stage ofDHS.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Informational Biology at University of Electronic Science and Technology of China, China
| | - Hao Lv
- Informational Biology at University of Electronic Science and Technology of China, China
| | - Wei Su
- Informational Biology at University of Electronic Science and Technology of China, China
| | - Zi-Jie Sun
- Informational Biology at University of Electronic Science and Technology of China, China
| | - Qin-Lai Huang
- Informational Biology at University of Electronic Science and Technology of China, China
| | - Hao Lin
- Informational Biology at University of Electronic Science and Technology of China, China
| |
Collapse
|
23
|
LC-MS/MS-Based Quantitative Proteomics Analysis of Different Stages of Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561569. [PMID: 33728331 PMCID: PMC7937045 DOI: 10.1155/2021/5561569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has a higher incidence rate and mortality rate than all other cancers. Early diagnosis and treatment of lung cancer remain a major challenge, and the 5-year survival rate of its patients is only 15%. Basic and clinical research, especially the discovery of biomarkers, is crucial for improving the diagnosis and treatment of lung cancer patients. To identify novel biomarkers for lung cancer, we used the iTRAQ8-plex labeling technology combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the serum and urine of patients with different stages of lung adenocarcinoma and healthy individuals. A total of 441 proteins were identified in the serum, and 1,161 proteins were identified in the urine. The levels of elongation factor 1-alpha 2, proteasome subunit alpha type, and spermatogenesis-associated protein increased significantly in the serum of patients with lung cancer compared with those in healthy controls. The levels of transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11 decreased significantly in the serum of patients with metastases compared with those of nonmetastatic lung cancer patients. In the urine of stage III and IV lung cancer patients, the prostate-specific antigen and prostatic acid phosphatase decreased significantly, whereas neutrophil defensin 1 increased significantly. The results of LC-MS/MS were confirmed by enzyme-linked immunosorbent assay (ELISA) for transmembrane protein 143, cadherin 5, fibronectin 1, and collectin-11 in the serum. These proteins may be a potential early diagnosis and metastasis biomarkers for lung adenocarcinoma. Furthermore, the relative content of these markers in the serum and urine could be used to determine the progression of lung adenocarcinoma and achieve accurate staging and diagnosis.
Collapse
|
24
|
Chen Y, Fu X, Li Z, Peng L, Zhuo L. Prediction of lncRNA-Protein Interactions via the Multiple Information Integration. Front Bioeng Biotechnol 2021; 9:647113. [PMID: 33718346 PMCID: PMC7947871 DOI: 10.3389/fbioe.2021.647113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
The long non-coding RNA (lncRNA)-protein interaction plays an important role in the post-transcriptional gene regulation, such as RNA splicing, translation, signaling, and the development of complex diseases. The related research on the prediction of lncRNA-protein interaction relationship is beneficial in the excavation and the discovery of the mechanism of lncRNA function and action occurrence, which are important. Traditional experimental methods for detecting lncRNA-protein interactions are expensive and time-consuming. Therefore, computational methods provide many effective strategies to deal with this problem. In recent years, most computational methods only use the information of the lncRNA-lncRNA or the protein-protein similarity and cannot fully capture all features to identify their interactions. In this paper, we propose a novel computational model for the lncRNA-protein prediction on the basis of machine learning methods. First, a feature method is proposed for representing the information of the network topological properties of lncRNA and protein interactions. The basic composition feature information and evolutionary information based on protein, the lncRNA sequence feature information, and the lncRNA expression profile information are extracted. Finally, the above feature information is fused, and the optimized feature vector is used with the recursive feature elimination algorithm. The optimized feature vectors are input to the support vector machine (SVM) model. Experimental results show that the proposed method has good effectiveness and accuracy in the lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yifan Chen
- College of Information Science and Engineering, Hunan University, Changsha, China
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Xiangzheng Fu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zejun Li
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Linlin Zhuo
- Department of Mathematics and Information Engineering, Wenzhou University Oujiang College, Wenzhou, China
| |
Collapse
|
25
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
26
|
Assessing Dry Weight of Hemodialysis Patients via Sparse Laplacian Regularized RVFL Neural Network with L 2,1-Norm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6627650. [PMID: 33628794 PMCID: PMC7880720 DOI: 10.1155/2021/6627650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient's dry weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of dry weight assessment.
Collapse
|
27
|
Qiu W, Lv Z, Hong Y, Jia J, Xiao X. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences. Front Cell Dev Biol 2021; 8:623858. [PMID: 33598456 PMCID: PMC7882597 DOI: 10.3389/fcell.2020.623858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background: As a class of membrane protein receptors, G protein-coupled receptors (GPCRs) are very important for cells to complete normal life function and have been proven to be a major drug target for widespread clinical application. Hence, it is of great significance to find GPCR targets that interact with drugs in the process of drug development. However, identifying the interaction of the GPCR–drug pairs by experimental methods is very expensive and time-consuming on a large scale. As more and more database about GPCR–drug pairs are opened, it is viable to develop machine learning models to accurately predict whether there is an interaction existing in a GPCR–drug pair. Methods: In this paper, the proposed model aims to improve the accuracy of predicting the interactions of GPCR–drug pairs. For GPCRs, the work extracts protein sequence features based on a novel bag-of-words (BOW) model improved with weighted Silhouette Coefficient and has been confirmed that it can extract more pattern information and limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT) is used to extract features from the original molecular fingerprints. Subsequently, the above-mentioned two types of features are contacted, and SMOTE algorithm is selected to balance the training dataset. Then, artificial neural network is used to extract features further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected features. In this paper, the proposed model is named as BOW-GBDT. Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for a cross-validation dataset which contains 635 interactive GPCR–drug pairs and 1,225 non-interactive pairs. Check390 is used for an independent test dataset which consists of 130 interactive GPCR–drug pairs and 260 non-interactive GPCR–drug pairs, and each element in Check390 cannot be found in D92M. According to the results, the proposed model has a better performance in generation ability compared with the existing machine learning models. Conclusion: The proposed predictor improves the accuracy of the interactions of GPCR–drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the predictor has been settled into a brand-new server, which is available at http://www.jci-bioinfo.cn/bowgbdt.
Collapse
Affiliation(s)
- Wangren Qiu
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Zhe Lv
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Yaoqiu Hong
- School of Information Engineering, Jingdezhen University, Jingdezhen, China
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Xuan Xiao
- School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China
| |
Collapse
|
28
|
Screening of Prospective Plant Compounds as H1R and CL1R Inhibitors and Its Antiallergic Efficacy through Molecular Docking Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/6683407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allergens have the ability to enter the body and cause illness. Leukotriene is the widespread allergen which could stimulate mast cells to discharge histamine which causes allergy symptoms. An effective strategy for treating leukotriene-induced allergy is to find the inhibitors of leukotriene or histamine activity from phytochemicals. For this purpose, a library of 8,500 phytochemicals was generated using MOE software. The structures of histamine-1 receptor and cysteinyl leukotriene receptor-1 were predicted by the homology modeling method through the SWISS model. The phytochemicals were docked with predicted structures of histamine-1 and cysteinyl leukotriene receptor-1 in MOE software to determine the binding affinity of the phytochemicals against the targets. Moreover, chemoinformatics properties and ADMET of phytochemicals were assessed to find the drug likeness behavior of compounds. Compound ID 10054216 has the lowest
-score value for H-1 receptor that is -18.9186 kcal/mol which is lower than the value of standard -15.167 kcal/mol. The other compounds 393471, 71448939, 10722577, and 442614 also showed good
-score values than the standard. Moreover, compound ID 11843082 has the lowest
-score value for CL1R that is -15.481 kcal/mol which is lower than the value of standard -12.453 kcal/mol. The other compounds 72284, 5282102, 66559251, and 102506430 also showed good
-score values than the standard. In this research article, we performed molecular docking to find the best inhibitors against H1R and CL1R and their antiallergic efficacy. This in silico knowledge will be helpful in near future for the design of novel, safe, and less costing H-1 receptor and CL1R inhibitors with the aim to improve human life quality.
Collapse
|
29
|
Li Q, Zhou W, Wang D, Wang S, Li Q. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model. Front Bioeng Biotechnol 2020; 8:892. [PMID: 32903381 PMCID: PMC7434836 DOI: 10.3389/fbioe.2020.00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer is still a severe health problem globally. The therapy of cancer traditionally involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these methods are quite expensive and have side effects, which will cause great harm to patients. With the find of anticancer peptides (ACPs), significant progress has been achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify anticancer peptides. Although biochemical experiments can solve this work, this method is expensive and time-consuming. To promote the application of anticancer peptides in cancer therapy, machine learning can be used to recognize anticancer peptides by extracting the feature vectors of anticancer peptides. Nevertheless, poor performance usually be found in training the machine learning model to utilizing high-dimensional features in practice. In order to solve the above job, this paper put forward a 19-dimensional feature model based on anticancer peptide sequences, which has lower dimensionality and better performance than some existing methods. In addition, this paper also separated a model with a low number of dimensions and acceptable performance. The few features identified in this study may represent the important features of anticancer peptides.
Collapse
Affiliation(s)
- Qingwen Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenyang Zhou
- Center for Bioinformatics, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Sui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qingyuan Li
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|