1
|
Elefante C, Brancati GE, Ismail Z, Ricciardulli S, Beatino MF, Lepri V, Famà A, Ferrari E, Giampietri L, Baldacci F, Ceravolo R, Maremmani I, Lattanzi L, Perugi G. Mild Behavioral Impairment in Psychogeriatric Patients: Clinical Features and Psychopathology Severity. J Clin Med 2023; 12:5423. [PMID: 37629464 PMCID: PMC10455739 DOI: 10.3390/jcm12165423] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The Mild Behavioral Impairment (MBI) concept was developed to determine whether late-onset persistent neuropsychiatric symptoms (NPSs) may be early manifestations of cognitive decline. Our study aims to investigate the prevalence and differentiating features of MBI with respect to major neurocognitive disorders (MNDs) and primary psychiatric disorders (PPDs). A total of 144 elderly patients who were referred to our psychogeriatric outpatient service were recruited. The severity of mental illness was evaluated by means of the Clinical Global Impression Severity scale, the severity of psychopathology was evaluated by means of the Brief Psychiatric Rating Scale (BPRS), and overall functioning was evaluated by means of the Global Assessment of Functioning scale. The sample included 73 (50.6%) patients with PPDs, 40 (27.8%) patients with MBI, and 31 (21.5%) patients with MNDs. Patients with MNDs reported the greatest severity of mental illness, the highest BPRS Total, Psychosis, Activation, and Negative Symptom scores, and the lowest functioning. Patients with MBI and PPDs had comparable levels of severity of mental illness and overall functioning, but MBI patients reported higher BPRS Total and Negative Symptom scores than PPD patients. Patients with MBI frequently reported specific clinical features, including a higher severity of apathy and motor retardation. These features merit further investigation since they may help the differential diagnosis between MBI and PPDs.
Collapse
Affiliation(s)
- Camilla Elefante
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Giulio Emilio Brancati
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, Community Health Sciences, and Pathology and Laboratory Medicine, Hotchkiss Brain Institute & O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 1N4, Canada;
- College of Health and Medicine, University of Exeter, Exeter EX4 4QG, UK
| | - Sara Ricciardulli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Maria Francesca Beatino
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Vittoria Lepri
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
| | - Antonella Famà
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Elisabetta Ferrari
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Linda Giampietri
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Filippo Baldacci
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Roberto Ceravolo
- Neurology Unit, Santa Chiara University Hospital, 56126 Pisa, Italy; (L.G.); (F.B.); (R.C.)
| | - Icro Maremmani
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
- G. De Lisio Institute of Behavioral Sciences, 56127 Pisa, Italy
- Addiction Medicine, Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy
| | - Lorenzo Lattanzi
- Psychiatry Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (A.F.); (E.F.); (L.L.)
| | - Giulio Perugi
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.E.); (G.E.B.); (S.R.); (M.F.B.); (V.L.); (G.P.)
- G. De Lisio Institute of Behavioral Sciences, 56127 Pisa, Italy
| |
Collapse
|
2
|
Tarawneh R. Biomarkers: Our Path Towards a Cure for Alzheimer Disease. Biomark Insights 2020; 15:1177271920976367. [PMID: 33293784 PMCID: PMC7705771 DOI: 10.1177/1177271920976367] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, biomarkers have significantly improved our understanding of
the pathophysiology of Alzheimer disease (AD) and provided valuable tools to
examine different disease mechanisms and their progression over time. While
several markers of amyloid, tau, neuronal, synaptic, and axonal injury,
inflammation, and immune dysregulation in AD have been identified, there is a
relative paucity of biomarkers which reflect other disease mechanisms such as
oxidative stress, mitochondrial injury, vascular or endothelial injury, and
calcium-mediated excitotoxicity. Importantly, there is an urgent need to
standardize methods for biomarker assessments across different centers, and to
identify dynamic biomarkers which can monitor disease progression over time
and/or response to potential disease-modifying treatments. The updated research
framework for AD, proposed by the National Institute of Aging- Alzheimer’s
Association (NIA-AA) Work Group, emphasizes the importance of incorporating
biomarkers in AD research and defines AD as a biological construct consisting of
amyloid, tau, and neurodegeneration which spans pre-symptomatic and symptomatic
stages. As results of clinical trials of AD therapeutics have been
disappointing, it has become increasingly clear that the success of future AD
trials will require the incorporation of biomarkers in participant selection,
prognostication, monitoring disease progression, and assessing response to
treatments. We here review the current state of fluid AD biomarkers, and discuss
the advantages and limitations of the updated NIA-AA research framework.
Importantly, the integration of biomarker data with clinical, cognitive, and
imaging domains through a systems biology approach will be essential to
adequately capture the molecular, genetic, and pathological heterogeneity of AD
and its spatiotemporal evolution over time.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H. Nose to Brain Delivery of Nanocarriers Towards Attenuation of Demented Condition. Curr Pharm Des 2020; 26:2233-2246. [DOI: 10.2174/1381612826666200313125613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Increasing incidence of demented patients around the globe with limited FDA approved conventional
therapies requires pronounced research attention for the management of the demented conditions in the growing
elderly population in the developing world. Dementia of Alzheimer’s type is a neurodegenerative disorder, where
conventional therapies are available for symptomatic treatment of the disease but possess several peripheral toxicities
due to lack of brain targeting. Nanotechnology based formulations via intranasal (IN) routes of administration
have shown to improve therapeutic efficacy of several therapeutics via circumventing blood-brain barrier and
limited peripheral exposure. Instead of numerous research on polymeric and lipid-based nanocarriers in the improvement
of therapeutic chemicals and peptides in preclinical research, a step towards clinical studies still requires
wide-ranging data on safety and efficacy. This review has focused on current approaches of nanocarrierbased
therapies on Alzheimer’s disease (AD) via the IN route for polymeric and lipid-based nanocarriers for the
improvement of therapeutic efficacy and safety. Moreover, the clinical application of IN nanocarrier-based delivery
of therapeutics to the brain needs a long run; however, proper attention towards AD therapy via this platform
could bring a new era for the AD patients.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Davinaa C. Rajeswary
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Santosh A. Kumbhar
- Department of Pharmaceutics, Marathwada Mitra Mandals, College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Davtyan H, Hovakimyan A, Kiani Shabestari S, Antonyan T, Coburn MA, Zagorski K, Chailyan G, Petrushina I, Svystun O, Danhash E, Petrovsky N, Cribbs DH, Agadjanyan MG, Blurton-Jones M, Ghochikyan A. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimers Res Ther 2019; 11:107. [PMID: 31847886 PMCID: PMC6918571 DOI: 10.1186/s13195-019-0556-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aβ or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration. Therefore, combinatorial therapies that concurrently target both Aβ and tau might be needed for effective disease modification. METHODS A combinatorial vaccination approach was designed to concurrently target both Aβ and tau pathologies. Tau22/5xFAD (T5x) bigenic mice that develop both pathological Aβ and tau aggregates were injected intramuscularly with a mixture of two MultiTEP epitope vaccines: AV-1959R and AV-1980R, targeting Aβ and tau, respectively, and formulated in AdvaxCpG, a potent polysaccharide adjuvant. Antibody responses of vaccinated animals were measured by ELISA, and neuropathological changes were determined in brain homogenates of vaccinated and control mice using ELISA and Meso Scale Discovery (MSD) multiplex assays. RESULTS T5x mice immunized with a mixture of Aβ- and tau-targeting vaccines generated high Aβ- and tau-specific antibody titers that recognized senile plaques and neurofibrillary tangles/neuropil threads in human AD brain sections. Production of these antibodies in turn led to significant reductions in the levels of soluble and insoluble total tau, and hyperphosphorylated tau as well as insoluble Aβ42, within the brains of bigenic T5x mice. CONCLUSIONS AV-1959R and AV-1980R formulated with AdvaxCpG adjuvant are immunogenic and therapeutically potent vaccines that in combination can effectively reduce both of the hallmark pathologies of AD in bigenic mice. Taken together, these findings warrant further development of this vaccine technology for ultimate testing in human AD.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | | | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Morgan A. Coburn
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
- Current address: Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
| | - Olga Svystun
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Emma Danhash
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- School of Biological Sciences, University of California, Irvine, Irvine, CA USA
| | | | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA USA
- School of Biological Sciences, University of California, Irvine, Irvine, CA USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA USA
| |
Collapse
|
5
|
Cuperlovic-Culf M, Badhwar A. Recent advances from metabolomics and lipidomics application in alzheimer's disease inspiring drug discovery. Expert Opin Drug Discov 2019; 15:319-331. [PMID: 31619081 DOI: 10.1080/17460441.2020.1674808] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Although age is a major risk factor for Alzheimer's disease (AD), it is not an inevitable consequence of aging nor is it exclusively an old-age disease. Several other major risk factors for AD are strongly associated with metabolism and include lack of exercise, obesity, diabetes, high blood pressure and cholesterol, over-consumption of alcohol and depression in addition to low educational level, social isolation, and cognitive inactivity. Approaches for Alzheimer prevention and treatment through manipulation of metabolism and utilization of active metabolites have great potential either as a primary or secondary treatment avenue or as a preventative strategy in high-risk individuals.Areas covered: This review outlines the current knowledge concerning the relationship between AD and metabolism and the novel treatments attempting to correct changes in AD patients determined through metabolomics or lipidomic analyses.Expert opinion: Metabolites are one of the main driving factors and indicators of AD and can offer many possible avenues for prevention and treatment. However, with the highly interconnected effects of metabolites and metabolism, as well as the many different routes for metabolism dysfunction, successful treatment would have to include the correction of metabolic errors as well as errors in transport and metabolite processing in order to affect and revert AD progression.
Collapse
Affiliation(s)
| | - Amanpreet Badhwar
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Canada
| |
Collapse
|
6
|
Baazaoui N, Iqbal K. A Novel Therapeutic Approach to Treat Alzheimer's Disease by Neurotrophic Support During the Period of Synaptic Compensation. J Alzheimers Dis 2019; 62:1211-1218. [PMID: 29562539 PMCID: PMC5870029 DOI: 10.3233/jad-170839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer’s disease (AD), at present, is considered an incurable disease and a major dilemma with no drug to stop or slow down its progression. Drugs that are currently available in the market are able to only transiently improve the clinical symptoms. The repeated failures in developing an effective drug has led to the suggestion that the medical intervention was probably too late to be effective since the pathology starts many years before the appearance of the clinical symptoms. Probably, at the time of the appearance of clinical symptoms the brain has undergone major neuronal and synaptic loss. Because of the uncertainty on when to use a prevention therapy, especially targeting amyloid-β (Aβ) and tau pathologies, interventions that rely on the regenerative capacity of the brain such as the modulation of the inherent neurogenesis and neuronal plasticity represent a promising therapeutic strategy. Such an approach can act both at early as well as late stages of the disease and remove the barrier of the time of intervention. In this article, we review studies mainly from our laboratory that show the merit of early intervention during the synaptic and neuronal compensation period where the brain still has the capacity to self-repair by offering neurotrophic support in reversing cognitive impairment, neuronal and synaptic deficits, Aβ, and tau pathologies and decreasing mortality in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
7
|
Michaud TL, Kane RL, McCarten JR, Gaugler JE, Nyman JA, Kuntz KM. Using Cerebrospinal Fluid Biomarker Testing to Target Treatment to Patients with Mild Cognitive Impairment: A Cost-Effectiveness Analysis. PHARMACOECONOMICS - OPEN 2018; 2:309-323. [PMID: 29623628 PMCID: PMC6103924 DOI: 10.1007/s41669-017-0054-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) biomarkers are shown to facilitate a risk identification of patients with mild cognitive impairment (MCI) into different risk levels of progression to Alzheimer's disease (AD). Knowing a patient's risk level provides an opportunity for earlier interventions, which could result in potential greater benefits. We assessed the cost effectiveness of the use of CSF biomarkers in MCI patients where the treatment decision was based on patients' risk level. METHODS We developed a state-transition model to project lifetime quality-adjusted life-years (QALYs) and costs for a cohort of 65-year-old MCI patients from a US societal perspective. We compared four test-and-treat strategies where the decision to treat was based on a patient's risk level (low, intermediate, high) of progressing to AD with two strategies without testing, one where no patients were treated during the MCI phase and in the other all patients were treated. We performed deterministic and probabilistic sensitivity analyses to evaluate parameter uncertainty. RESULTS Testing and treating low-risk MCI patients was the most cost-effective strategy with an incremental cost-effectiveness ratio (ICER) of US$37,700 per QALY. Our results were most sensitive to the level of treatment effectiveness for patients with mild AD and for MCI patients. Moreover, the ICERs for this strategy at the 2.5th and 97.5th percentiles were US$18,900 and US$50,100 per QALY, respectively. CONCLUSION Based on the best available evidence regarding the treatment effectiveness for MCI, this study suggests the potential value of performing CSF biomarker testing for early targeted treatments among MCI patients with a narrow range for the ICER.
Collapse
Affiliation(s)
- Tzeyu L Michaud
- Center for Reducing Health Disparities, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Health Promotion, Social and Behavioral Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Robert L Kane
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J Riley McCarten
- Geriatric Research, Education and Clinical Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USA
- Department of Neurology and Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joseph E Gaugler
- School of Nursing and Center on Aging, University of Minnesota, Minneapolis, MN, USA
| | - John A Nyman
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Karen M Kuntz
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Brothers HM, Gosztyla ML, Robinson SR. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Front Aging Neurosci 2018; 10:118. [PMID: 29922148 PMCID: PMC5996906 DOI: 10.3389/fnagi.2018.00118] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyloid-ß (Aß) is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD), and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes) are addressed first.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, The Ohio State University Columbus, Columbus, OH, United States
| | - Maya L Gosztyla
- Department of Neuroscience, The Ohio State University Columbus, Columbus, OH, United States
| | - Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Robinson SR, Brothers HM, Gosztyla ML. Consequences of redefining Alzheimer's disease in terms of amyloid burden without regard to cognitive decline. Neural Regen Res 2018; 13:2098-2099. [PMID: 30323134 PMCID: PMC6199922 DOI: 10.4103/1673-5374.241456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Bundoora; Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Holly M Brothers
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Maya L Gosztyla
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Stowe AM, Ireland SJ, Ortega SB, Chen D, Huebinger RM, Tarumi T, Harris TS, Cullum CM, Rosenberg R, Monson NL, Zhang R. Adaptive lymphocyte profiles correlate to brain Aβ burden in patients with mild cognitive impairment. J Neuroinflammation 2017; 14:149. [PMID: 28750671 PMCID: PMC5530920 DOI: 10.1186/s12974-017-0910-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously found that subjects with amnestic mild cognitive impairment exhibit a pro-inflammatory immune profile in the cerebrospinal fluid similar to multiple sclerosis, a central nervous system autoimmune disease. We therefore hypothesized that early neuroinflammation would reflect increases in brain amyloid burden during amnestic mild cognitive impairment. METHODS Cerebrospinal fluid and blood samples were collected from 24 participants with amnestic mild cognitive impairment (12 men, 12 women; 66 ± 6 years; 0.5 Clinical Dementia Rating) enrolled in the AETMCI study. Analyses of cerebrospinal fluid and blood included immune profiling by multi-parameter flow cytometry, genotyping for apolipoprotein (APO)ε, and quantification of cytokine and immunoglobin levels. Amyloid (A)β deposition was determined by 18F-florbetapir positron emission tomography. Spearman rank order correlations were performed to assess simple linear correlation for parameters including amyloid imaging, central and peripheral immune cell populations, and protein cytokine levels. RESULTS Soluble Aβ42 in the cerebrospinal fluid declined as Aβ deposition increased overall and in the precuneous and posterior cingulate cortices. Lymphocyte profiling revealed a significant decline in T cell populations in the cerebrospinal fluid, specifically CD4+ T cells, as Aβ deposition in the posterior cingulate cortex increased. In contrast, increased Aβ burden correlated positively with increased memory B cells in the cerebrospinal fluid, which was exacerbated in APOε4 carriers. For peripheral circulating lymphocytes, only B cell populations decreased with Aβ deposition in the precuneous cortex, as peripheral T cell populations did not correlate with changes in brain amyloid burden. CONCLUSIONS Elevations in brain Aβ burden associate with a shift from T cells to memory B cells in the cerebrospinal fluid of subjects with amnestic mild cognitive impairment in this exploratory cohort. These data suggest the presence of cellular adaptive immune responses during Aβ accumulation, but further study needs to determine whether lymphocyte populations contribute to, or result from, Aβ dysregulation during memory decline on a larger cohort collected at multiple centers. TRIAL REGISTRATION AETMCI NCT01146717.
Collapse
Affiliation(s)
- Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Ryan M Huebinger
- Department of Surgery, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - Takashi Tarumi
- Texas Health Presbyterian Hospital, Institute for Exercise and Environmental Medicine, 7232 Greenville Ave, Dallas, 75231, TX, USA
| | - Thomas S Harris
- Department of Radiology, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA.,Department of Psychiatry, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - Roger Rosenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA. .,Department of Immunology, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA.
| | - Rong Zhang
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA.,Texas Health Presbyterian Hospital, Institute for Exercise and Environmental Medicine, 7232 Greenville Ave, Dallas, 75231, TX, USA
| |
Collapse
|
11
|
Tarawneh R, D'Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM. Diagnostic and Prognostic Utility of the Synaptic Marker Neurogranin in Alzheimer Disease. JAMA Neurol 2017; 73:561-71. [PMID: 27018940 DOI: 10.1001/jamaneurol.2016.0086] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Synaptic loss is an early pathologic substrate of Alzheimer disease (AD). Neurogranin is a postsynaptic neuronal protein that has demonstrated utility as a cerebrospinal fluid (CSF) marker of synaptic loss in AD. OBJECTIVE To investigate the diagnostic and prognostic utility of CSF neurogranin levels in a large, well-characterized cohort of individuals with symptomatic AD and cognitively normal controls. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional and longitudinal observational study of cognitive decline in patients with symptomatic AD and cognitively normal controls was performed. Participants were individuals with a clinical diagnosis of early symptomatic AD and cognitively normal controls who were enrolled in longitudinal studies of aging and dementia at the Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, from January 21, 2000, through March 21, 2011. Data analysis was performed from November 1, 2013, to March 31, 2015. MAIN OUTCOMES AND MEASURES Correlations between baseline CSF biomarker levels and future cognitive decline in patients with symptomatic AD and cognitively normal controls over time. RESULTS A total of 302 individuals (mean [SE] age, 73.1 [0.4] years) were included in this study (95 patients [52 women and 43 men] with AD and 207 controls [125 women and 82 men]). The CSF neurogranin levels differentiated patients with early symptomatic AD from controls with comparable diagnostic utility (mean [SE] area under the receiver operating characteristic curve, 0.71 [0.03]; 95% CI, 0.64-0.77) to the other CSF biomarkers. The CSF neurogranin levels correlated with brain atrophy (normalized whole-brain volumes: adjusted r = -0.38, P = .02; hippocampal volumes: adjusted r = -0.36, P = .03; entorhinal volumes: adjusted r = -0.46, P = .006; and parahippocampal volumes: adjusted r = -0.47, P = .005, n = 38) in AD and with amyloid load (r = 0.39, P = .02, n = 36) in preclinical AD. The CSF neurogranin levels predicted future cognitive impairment (adjusted hazard ratio, 1.89; 95% CI, 1.29-2.78; P = .001 as a continuous measure, and adjusted hazard ratio, 2.78; 95% CI, 1.13-5.99; P = .02 as a categorical measure using the 85th percentile cutoff value) in controls and rates of cognitive decline (Clinical Dementia Rating sum of boxes score: β estimate, 0.29; P = .001; global composite scores: β estimate, -0.11; P = .001; episodic memory scores: β estimate, -0.18; P < .001; and semantic memory scores: β estimate, -0.06; P = .04, n = 57) in patients with symptomatic AD over time, similarly to the CSF proteins VILIP-1, tau, and p-tau181. CONCLUSIONS AND RELEVANCE The CSF levels of the synaptic marker neurogranin offer diagnostic and prognostic utility for early symptomatic AD that is comparable to other CSF markers of AD. Importantly, CSF neurogranin complements the collective ability of these markers to predict future cognitive decline in cognitively normal individuals and, therefore, will be a useful addition to the current panel of AD biomarkers.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - Gina D'Angelo
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri5Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Dan Crimmins
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Elizabeth Herries
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Terry Griest
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri7Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| |
Collapse
|
12
|
Petrushina I, Davtyan H, Hovakimyan A, Davtyan A, Passos GF, Cribbs DH, Ghochikyan A, Agadjanyan MG. Comparison of Efficacy of Preventive and Therapeutic Vaccines Targeting the N Terminus of β-Amyloid in an Animal Model of Alzheimer's Disease. Mol Ther 2017; 25:153-164. [PMID: 28129111 PMCID: PMC5363310 DOI: 10.1016/j.ymthe.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022] Open
Abstract
Previously, we reported that Alzheimer's disease (AD) epitope vaccines (EVs) composed of N-terminal β-amyloid (Aβ42) B cell epitope fused with universal foreign T helper (Th) epitope(s) were immunogenic, potent, and safe in different amyloid precursor protein (APP) transgenic mice with early AD-like pathology. However, developing an effective therapeutic vaccine is much more challenging, especially when a self-antigen such as Aβ42 is a target. Here, we directly compare the efficacy of anti-Aβ42 antibodies in Tg2576 mice with low or high levels of AD-like pathology at the start of immunizations: 6-6.5 months for preventive vaccinations and 16-19 months for therapeutic vaccinations. EV in a preventive setting induced high levels of anti-Aβ antibodies, significantly reducing pathologic forms of Aβ in the brains of Tg2576 mice. When used therapeutically for immunesenescent Tg2576 mice, EV induced low levels of antibodies not sufficient for clearing of AD-like pathology. Separately, we demonstrated that EV was also not effective in 11-11.5-month-old Tg2576 mice with moderate AD-like pathology. However, we augmented the titers of anti-Aβ antibodies in transgenic (Tg) mice of the same age possessing the pre-existing memory Th cells and detected a significant decrease in diffuse and core plaques in cortical regions compared to control animals along with improved novel object recognition performance.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Giselle F Passos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| | - Michael G Agadjanyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647, USA.
| |
Collapse
|
13
|
Tarawneh R, Head D, Allison S, Buckles V, Fagan AM, Ladenson JH, Morris JC, Holtzman DM. Cerebrospinal Fluid Markers of Neurodegeneration and Rates of Brain Atrophy in Early Alzheimer Disease. JAMA Neurol 2015; 72:656-65. [PMID: 25867677 DOI: 10.1001/jamaneurol.2015.0202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE Measures of neuronal loss are likely good surrogates for clinical and radiological disease progression in Alzheimer disease (AD). Cerebrospinal fluid (CSF) markers of neuronal injury or neurodegeneration may offer usefulness in predicting disease progression and guiding outcome assessments and prognostic decisions in clinical trials of disease-modifying therapies. Visinin-like protein 1 (VILIP-1) has demonstrated potential usefulness as a marker of neuronal injury in AD. OBJECTIVE To investigate the usefulness of CSF VILIP-1, tau, p-tau181, and Aβ42 levels in predicting rates of whole-brain and regional atrophy in early AD and cognitively normal control subjects over time. DESIGN, SETTING, AND PARTICIPANTS Longitudinal observational study of brain atrophy in participants with early AD and cognitively normal controls. Study participants had baseline CSF biomarker measurements and longitudinal magnetic resonance imaging assessments for a mean follow-up period of 2 to 3 years. Mixed linear models assessed the ability of standardized baseline CSF biomarker measures to predict rates of whole-brain and regional atrophy over the follow-up period. The setting was The Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis. Participants (mean age, 72.6 years) were individuals with a clinical diagnosis of very mild AD (n = 23) and cognitively normal controls (n = 64) who were enrolled in longitudinal studies of healthy aging and dementia. The study dates were 2000 to 2010. MAIN OUTCOMES AND MEASURES Correlations between baseline CSF biomarker measures and rates of whole-brain or regional atrophy in the AD and control cohorts over the follow-up period. RESULTS Baseline CSF VILIP-1, tau, and p-tau181 levels (but not Aβ42 levels) predicted rates of whole-brain and regional atrophy in AD over the follow-up period. Baseline CSF VILIP-1 levels predicted whole-brain (P = .006), hippocampal (P = .01), and entorhinal (P = .001) atrophy rates at least as well as tau and p-tau181 in early AD. Cognitively normal controls whose CSF VILIP-1, tau, or p-tau181 levels were in the upper tercile had higher rates of whole-brain (P = .02, P = .003, and P = .02, respectively), hippocampal (P = .001, P = .01, and P = .02, respectively), and entorhinal (P = .007, P = .01, and P = .01, respectively) atrophy compared with those whose levels were in the lower 2 terciles. CONCLUSIONS AND RELEVANCE Cerebrospinal fluid VILIP-1 levels predict rates of whole-brain and regional atrophy similarly to tau and p-tau181 and may provide a useful CSF biomarker surrogate for neurodegeneration in early symptomatic and preclinical AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri3The Charles F. and Joanne Knight Alzheimer's
| | - Denise Head
- The Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri5Department of Radiology, Washington University School of Medicine in St Louis, St Louis, Missouri6Department of
| | - Samantha Allison
- Department of Psychology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri3The Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri3The Charles F. and Joanne Knight Alzheimer's
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - John C Morris
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri3The Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri7Department of
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri3The Charles F. and Joanne Knight Alzheimer's
| |
Collapse
|
14
|
Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimers Dement 2015; 11:1246-59. [PMID: 26192465 DOI: 10.1016/j.jalz.2015.06.1884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Traditional vaccination against infectious diseases relies on generation of cellular and humoral immune responses that act to protect the host from overt disease even though they do not induce sterilizing immunity. More recently, attempts have been made with mixed success to generate therapeutic vaccines against a wide range of noninfectious diseases including neurodegenerative disorders. After the exciting first report of successful vaccine prevention of progression of an Alzheimer's disease (AD) animal model in 1999, various epitope-based vaccines targeting amyloid beta (Aβ) have proceeded to human clinical trials, with varied results. More recently, AD vaccines based on tau protein have advanced into clinical testing too. This review seeks to put perspective to the mixed results obtained so far in clinical trials of AD vaccines and discusses the many pitfalls and misconceptions encountered on the path to a successful AD vaccine, including better standardization of immunologic efficacy measures of antibodies, immunogenicity of platform/carrier and adjuvants.
Collapse
Affiliation(s)
- Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, South Australia; Flinders Medical Centre and Flinders University, Adelaide, South Australia
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
15
|
Michaud TL, Kane RL, McCarten JR, Gaugler JE, Nyman JA, Kuntz KM. Risk Stratification Using Cerebrospinal Fluid Biomarkers in Patients with Mild Cognitive Impairment: An Exploratory Analysis. J Alzheimers Dis 2015; 47:729-40. [PMID: 26401707 PMCID: PMC6342191 DOI: 10.3233/jad-150066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers can distinguish Alzheimer's disease (AD) patients from normal controls; however, their interpretation and potential for use in patients with mild cognitive impairment (MCI) remains unclear. OBJECTIVE To examine whether biomarker levels allow for risk stratification among MCI patients who are at increased risk to develop AD, thus allowing for improved targeting of early interventions for those whose risk are higher. METHODS We analyzed data from the Alzheimer's Disease Neuroimaging Initiative on MCI patients (n = 195) to estimate their risk of developing AD for up to 6 years on the basis of baseline CSF biomarkers. We used time-dependent receiver operating characteristic analysis to identify the best combination of biomarkers to discriminate those who converted to AD from those who remained stable. We used these data to construct a multi-biomarker score and estimated the risk of progression to AD for each quintile of the multi-biomarker score. RESULTS We found that Aβ(1-42) and P-tau(181p) were the best combination among CSF biomarkers to predict the overall risk of developing AD among MCI patients (area under the curve = 0.77). The hazard ratio of developing AD among MCI patients with high-risk (3rd-5th quintiles) biomarker levels was about 4 times greater than MCI patients with low-risk (1st quintile) levels (95% confidence interval, 1.93-7.26). CONCLUSION Our study identifies MCI patients at increased risk of developing AD by applying a multi-biomarker score using CSF biomarker results. Our findings may be of value to MCI patients and their clinicians for planning purposes and early intervention as well as for future clinical trials.
Collapse
Affiliation(s)
- Tzeyu L. Michaud
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Robert L. Kane
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J. Riley McCarten
- Geriatric Research, Education and Clinical Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, USA
- Departments of Neurology and Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joseph E. Gaugler
- School of Nursing & Center on Aging, University of Minnesota, Minneapolis, MN, USA
| | - John A. Nyman
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Karen M. Kuntz
- Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
16
|
Khowal S, Mustufa MMA, Chaudhary NK, Naqvi SH, Parvez S, Jain SK, Wajid S. Assessment of the therapeutic potential of hesperidin and proteomic resolution of diabetes-mediated neuronal fluctuations expediting Alzheimer’s disease. RSC Adv 2015. [DOI: 10.1039/c5ra01977j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) has been proposed as type III diabetes mellitus. Prognosis and early stage diagnosis of AD is essentially required in diabetes to avoid extensive irreversible neuronal damage.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Malik M. A. Mustufa
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Naveen K. Chaudhary
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | | | - Suhel Parvez
- Department of Medical Elementology and Toxicology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| | - Swatantra K. Jain
- Department of Biochemistry
- Hamdard Institute of Medical Sciences and Research
- Hamdard University (Jamia Hamdard)
- India
| | - Saima Wajid
- Department of Biotechnology
- Faculty of Science
- Hamdard University (Jamia Hamdard)
- India
| |
Collapse
|
17
|
Molinuevo JL, Blennow K, Dubois B, Engelborghs S, Lewczuk P, Perret-Liaudet A, Teunissen CE, Parnetti L. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: A consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement 2014; 10:808-17. [DOI: 10.1016/j.jalz.2014.03.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 11/16/2022]
Affiliation(s)
- José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit; Hospital Clinic i Universitari, IDIBAPS and Barcelona Beta Research Centre; Pasqual Maragall Foundation Barcelona Spain
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
| | - Bruno Dubois
- Centre des Maladies Cognitives et Comportementales, Hôpital de la Salpêtrière, AP-HP; Institute of Brain and Spinal Cord (ICM), UMR-S975; Université Pierre et Marie Curie-Paris 6 Paris France
| | - Sebastiaan Engelborghs
- Department of Neurology and Memory Clinic; Hospital Network Antwerp (ZNA); Middelheim and Hoge Beuken Antwerp Belgium
- Reference Centre for Biological Markers of Dementia (BIODEM); Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy; Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Armand Perret-Liaudet
- Centre for Memory Resources and Research (CMRR); Neurobiology Laboratory, GHE, Hôpitaux de Lyon; Université Lyon 1, CNRS UMR5292, INSERM U1028 Lyon France
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank; Department of Clinical Chemistry, VU University Medical Center; Amsterdam The Netherlands
| | - Lucilla Parnetti
- Centre for Memory Disturbances and Alzheimer's Centre, Section of Neurology; University of Perugia; Perugia Italy
| |
Collapse
|
18
|
Davtyan H, Ghochikyan A, Petrushina I, Hovakimyan A, Davtyan A, Cribbs DH, Agadjanyan MG. The MultiTEP platform-based Alzheimer's disease epitope vaccine activates a broad repertoire of T helper cells in nonhuman primates. Alzheimers Dement 2014; 10:271-83. [PMID: 24560029 DOI: 10.1016/j.jalz.2013.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND As a prelude to clinical trials we have characterized B- and T-cell immune responses in macaques to AD vaccine candidates: AV-1955 and its slightly modified version, AV-1959 (with 3 additional promiscuous Th epitopes). METHODS T- and B-cell epitope mapping was performed using the ELISPOT assay and competition ELISA, respectively. RESULTS AV-1955 and AV-1959 did not stimulate potentially harmful autoreactive T cells, but instead activated a broad but individualized repertoire of Th cells specific to the MultiTEP platform in macaques. Although both vaccines induced robust anti-Aβ antibody responses without producing antibodies specific to Th epitopes of MultiTEP platforms, analyses of cellular immune responses in macaques demonstrated that the addition of Th epitopes in the case of AV-1959 created a more potent, superior vaccine. CONCLUSION AV-1959 is a promising vaccine candidate capable of producing therapeutically potent anti-amyloid antibody in a broader population of vaccinated subjects with high MHC class II gene polymorphisms.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Arpine Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
19
|
Shi Q, Prior M, Zhou X, Tang X, He W, Hu X, Yan R. Preventing formation of reticulon 3 immunoreactive dystrophic neurites improves cognitive function in mice. J Neurosci 2013; 33:3059-66. [PMID: 23407961 PMCID: PMC3711383 DOI: 10.1523/jneurosci.2445-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 01/11/2023] Open
Abstract
Neuritic dystrophy is one of the important pathological features associated with amyloid plaques in Alzheimer's disease (AD) and age-dependent neuronal dysfunctions. We reported previously that reticulon-3 (RTN3) immunoreactive dystrophic neurites (RIDNs) are abundantly present in the hippocampus of AD patients, in AD mouse models, and in aged wild-type mice. Transgenic mice overexpressing the human RTN3 transgene spontaneously develop RIDNs in their hippocampi, and the formation of RIDNs correlates with the appearance of RTN3 aggregation. To further elucidate whether the formation of RIDNs is reversible, we generated transgenic mice expressing wild-type human RTN3 under the control of a tetracycline-responsive promoter. Treatment with doxycycline for 2 months effectively turned off expression of the human RTN3 transgene, confirming the inducible nature of the system. However, the formation of hippocampal RIDNs was dependent on whether the transgene was turned off before or after the formation of RTN3 aggregates. When transgenic human RTN3 expression was turned off at young age, formation of RIDNs was essentially eliminated compared with the vehicle-treated transgenic mice. More importantly, a fear conditioning study demonstrated that contextual associative learning and memory in inducible transgenic mice was improved if the density of RIDNs was lowered. Additional mechanistic study suggested that a reduction in BDNF levels in transgenic mice might contribute to the reduced learning and memory in transgenic mice overexpressing RTN3. Hence, we conclude that age-dependent RIDNs cannot be effectively cleared once they have formed, and we postulate that successful prevention of RIDN formation should be initiated before RTN3 aggregation.
Collapse
Affiliation(s)
- Qi Shi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Marguerite Prior
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiangdong Zhou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiaoying Tang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
20
|
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol Ther 2013; 138:311-22. [PMID: 23384597 DOI: 10.1016/j.pharmthera.2013.01.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer's disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson's disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in the blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
21
|
Abstract
Given population aging and the rise in the number of persons with Alzheimer's disease, measures that aim not only to delay but also to prevent the development of this disease are increasingly required. Advances in the diagnosis of Alzheimer's disease support the need for a review of current clinical standards for mild cognitive impairment and provide new goals in the early treatment of this disease. The current diagnostic process should be refocussed toward the pathological substrate of this disease rather than symptoms in order to initiate therapeutic measures as soon as possible without waiting for clinical manifestations to appear. Such an approach is essential in patients with greater cognitive reserve, in whom the lesions are usually more severe at diagnosis and treatment is less effective. To identify disease-modifying therapies to delay the onset of the clinical symptoms of Alzheimer's disease in cognitively intact persons at high risk, biomarkers for this disease must be validated. A single biomarker is unlikely to provide the required diagnostic accuracy and therefore a multimodal approach, incorporating biochemical, neuropathological and anatomical and metabolic neuroimaging methods, should be employed. To optimize the results of drugs under investigation, a combination of biomarkers should be used to select appropriate participants in the earliest phases of the disease, and disease progression should be followed-up. Early diagnosis might clarify essential questions in the care of patients with Alzheimer's disease, such as the possibility of distinguishing among various subtypes, thus encouraging the development of optimal treatments for each. The ultimate goal is to develop disease-modifying treatments that could be initiated early, while patients are asymptomatic or only minimally symptomatic, to maintain their quality of life.
Collapse
|
22
|
Kofler J, Lopresti B, Janssen C, Trichel AM, Masliah E, Finn OJ, Salter RD, Murdoch GH, Mathis CA, Wiley CA. Preventive immunization of aged and juvenile non-human primates to β-amyloid. J Neuroinflammation 2012; 9:84. [PMID: 22554253 PMCID: PMC3495408 DOI: 10.1186/1742-2094-9-84] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023] Open
Abstract
Background Immunization against beta-amyloid (Aβ) is a promising approach for the treatment of Alzheimer’s disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu. Methods Ten non-human primates (NHP) of advanced age (18–26 years) and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals. Results All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P < 0.01). No differences were seen in microglial density or expression of classical and alternative microglial activation markers between immunized and control animals. Conclusions Our results indicate that preventive Aβ immunization is a safe therapeutic approach lacking adverse CNS immune system activation or other serious side-effects in both aged and juvenile NHP cohorts. A significant shift in the composition of soluble oligomers towards smaller species might facilitate removal of toxic Aβ species from the brain.
Collapse
Affiliation(s)
- Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2012; 2:a006148. [PMID: 22553492 PMCID: PMC3331682 DOI: 10.1101/cshperspect.a006148] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in the elderly. Clinicopathological studies support the presence of a long preclinical phase of the disease, with the initial deposition of AD pathology estimated to begin approximately 10-15 years prior to the onset of clinical symptoms. The hallmark clinical phenotype of AD is a gradual and progressive decline in two or more cognitive domains, most commonly involving episodic memory and executive functions, that is sufficient to cause social or occupational impairment. Current diagnostic criteria can accurately identify AD in the majority of cases. As disease-modifying therapies are being developed, there is growing interest in the identification of individuals in the earliest symptomatic, as well as presymptomatic, stages of disease, because it is in this population that such therapies may have the greatest chance of success. The use of informant-based methods to establish cognitive and functional decline of an individual from previously attained levels of performance best allows for the identification of individuals in the very mildest stages of cognitive impairment.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St. Louis, St. Louis,Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis,St. Louis, Missouri, USA; The Knight Alzheimer’s Disease Research Center, Washington University School of Medicine,St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
24
|
Johnstone D, Milward EA, Berretta R, Moscato P. Multivariate protein signatures of pre-clinical Alzheimer's disease in the Alzheimer's disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One 2012; 7:e34341. [PMID: 22485168 PMCID: PMC3317783 DOI: 10.1371/journal.pone.0034341] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 03/01/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent Alzheimer's disease (AD) research has focused on finding biomarkers to identify disease at the pre-clinical stage of mild cognitive impairment (MCI), allowing treatment to be initiated before irreversible damage occurs. Many studies have examined brain imaging or cerebrospinal fluid but there is also growing interest in blood biomarkers. The Alzheimer's Disease Neuroimaging Initiative (ADNI) has generated data on 190 plasma analytes in 566 individuals with MCI, AD or normal cognition. We conducted independent analyses of this dataset to identify plasma protein signatures predicting pre-clinical AD. METHODS AND FINDINGS We focused on identifying signatures that discriminate cognitively normal controls (n = 54) from individuals with MCI who subsequently progress to AD (n = 163). Based on p value, apolipoprotein E (APOE) showed the strongest difference between these groups (p = 2.3 × 10(-13)). We applied a multivariate approach based on combinatorial optimization ((α,β)-k Feature Set Selection), which retains information about individual participants and maintains the context of interrelationships between different analytes, to identify the optimal set of analytes (signature) to discriminate these two groups. We identified 11-analyte signatures achieving values of sensitivity and specificity between 65% and 86% for both MCI and AD groups, depending on whether APOE was included and other factors. Classification accuracy was improved by considering "meta-features," representing the difference in relative abundance of two analytes, with an 8-meta-feature signature consistently achieving sensitivity and specificity both over 85%. Generating signatures based on longitudinal rather than cross-sectional data further improved classification accuracy, returning sensitivities and specificities of approximately 90%. CONCLUSIONS Applying these novel analysis approaches to the powerful and well-characterized ADNI dataset has identified sets of plasma biomarkers for pre-clinical AD. While studies of independent test sets are required to validate the signatures, these analyses provide a starting point for developing a cost-effective and minimally invasive test capable of diagnosing AD in its pre-clinical stages.
Collapse
Affiliation(s)
- Daniel Johnstone
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth A. Milward
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, New South Wales, Australia
- * E-mail:
| | | |
Collapse
|
25
|
Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology 2012; 78:709-19. [PMID: 22357717 DOI: 10.1212/wnl.0b013e318248e568] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Measures of neuronal damage/dysfunction are likely good surrogates for disease progression in Alzheimer disease (AD). CSF markers of neuronal injury may offer utility in predicting disease progression and guiding prognostic and outcome assessments in therapeutic trials. Visinin-like protein-1 (VILIP-1) has demonstrated potential utility as a marker of neuronal injury. We here investigate the utility of VILIP-1 and VILIP-1/Aβ42 in predicting rates of cognitive decline in early AD. METHODS Individuals with a clinical diagnosis of very mild or mild AD (n = 60) and baseline CSF measures of VILIP-1, tau, p-tau181, and Aβ42 were followed longitudinally for an average of 2.6 years. Annual assessments included the Clinical Dementia Rating (CDR), CDR-sum of boxes (CDR-SB), and global composite scores. Mixed linear models assessed the ability of CSF biomarker measures to predict rates of cognitive decline over time. RESULTS Baseline CSF VILIP-1 and VILIP-1/Aβ42 levels predicted rates of future decline in CDR-SB and global composite scores over the follow-up period. Individuals with CSF VILIP-1 ≥560 pg/mL (corresponding to the upper tercile) progressed much more rapidly in CDR-SB (1.61 boxes/year; p = 0.0077) and global scores (-0.53 points/year; p = 0.0002) than individuals with lower values (0.85 boxes/year and -0.15 points/year, respectively) over the follow-up period. CSF tau, p-tau181, tau/Aβ42, and p-tau181/Aβ42 also predicted more rapid cognitive decline in CDR-SB and global scores over time. CONCLUSION These findings suggest that CSF VILIP-1 and VILIP-1/Aβ42 predict rates of global cognitive decline similarly to tau and tau/Aβ42, and may be useful CSF surrogates for neurodegeneration in early AD.
Collapse
Affiliation(s)
- R Tarawneh
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
26
|
Tarawneh R, D'Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, Fagan AM, Head D, Mintun MA, Ladenson JH, Lee JM, Morris JC, Holtzman DM. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol 2011; 70:274-85. [PMID: 21823155 DOI: 10.1002/ana.22448] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE There is a growing need to identify cerebrospinal fluid (CSF) markers that can detect Alzheimer's disease (AD) pathology in cognitively normal individuals because it is in this population that disease-modifying therapies may have the greatest chance of success. While AD pathology is estimated to begin ~10-15 years prior to the onset of cognitive decline, substantial neuronal loss is present by the time the earliest signs of cognitive impairment appear. Visinin-like protein-1 (VILIP-1) has demonstrated potential utility as a marker of neuronal injury. Here we investigate CSF VILIP-1 and VILIP-1/amyloid-β42 (Aβ42) ratio as diagnostic and prognostic markers in early AD. METHODS We assessed CSF levels of VILIP-1, tau, phosphorylated-tau181 (p-tau181), and Aβ42 in cognitively normal controls (CNC) (n = 211), individuals with early symptomatic AD (n = 98), and individuals with other dementias (n = 19). Structural magnetic resonance imaging (n = 192) and amyloid imaging with Pittsburgh Compound-B (n = 156) were obtained in subsets of this cohort. Among the CNC cohort, 164 individuals had follow-up annual cognitive assessments for 2-3 years. RESULTS CSF VILIP-1 levels differentiated individuals with AD from CNC and individuals with other dementias. CSF VILIP-1 levels correlated with CSF tau, p-tau181, and brain volumes in AD. VILIP-1 and VILIP-1/Aβ42 predicted future cognitive impairment in CNC over the follow-up period. Importantly, CSF VILIP-1/Aβ42 predicted future cognitive impairment at least as well as tau/Aβ42 and p-tau181/Aβ42. INTERPRETATION These findings suggest that CSF VILIP-1 and VILIP-1/Aβ42 offer diagnostic utility for early AD, and can predict future cognitive impairment in cognitively normal individuals similarly to tau and tau/Aβ42, respectively.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sambamurti K, Greig NH, Utsuki T, Barnwell EL, Sharma E, Mazell C, Bhat NR, Kindy MS, Lahiri DK, Pappolla MA. Targets for AD treatment: conflicting messages from γ-secretase inhibitors. J Neurochem 2011; 117:359-74. [PMID: 21320126 DOI: 10.1111/j.1471-4159.2011.07213.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current evidence suggests that Alzheimer's disease (AD) is a multi-factorial disease that starts with accumulation of multiple proteins. We have previously proposed that inhibition of γ-secretase may impair membrane recycling causing neurodegeneration starting at synapses (Sambamurti K., Suram A., Venugopal C., Prakasam A., Zhou Y., Lahiri D. K. and Greig N. H. A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr. Alzheimer Res., 3, 2006, 81). We also proposed familal AD mutations increase Aβ42 by inhibiting γ-secretase. Herein, we discuss the failure of Eli Lilly's γ-secretase inhibitor, semagacestat, in clinical trials in the light of our hypothesis, which extends the problem beyond toxicity of Aβ aggregates. We elaborate that γ-secretase inhibitors lead to accumulation of amyloid precursor protein C-terminal fragments that can later be processed by γ-secretase to yields bursts of Aβ to facilitate aggregation. Although we do not exclude a role for toxic Aβ aggregates, inhibition of γ-secretase can affect numerous substrates other than amyloid precursor protein to affect multiple pathways and the combined accumulation of multiple peptides in the membrane may impair its function and turnover. Taken together, protein processing and turnover pathways play an important role in maintaining cellular homeostasis and unless we clearly see consistent disease-related increase in their levels or activity, we need to focus on preserving their function rather than inhibiting them for treatment of AD and similar diseases.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In the year 1999, a vaccine approach was found to reduce amyloid deposits in transgenic mice overproducing the amyloid precursor protein. This was followed closely by demonstrations that vaccines or passive immunotherapy could rescue memory deficits in these mice. Initial human clinical trials revealed apparent autoimmune reactions in a subset of patients, but also some cases of cognitive benefit and amyloid clearance. Further work with passive immunotherapy in mouse models confirmed exceptional clearing abilities of anti-amyloid antibodies even in older mice. However, in parallel with parenchymal amyloid clearance was the appearance of microhaemorrhages and increased vascular amyloid deposition. Additional clinical trials with passive immunotherapy confirmed occasional appearance of microhaemorrhage and occurrence of vasogenic oedema in some patients, particularly those with the apolipoprotein E4 genotype. Recent data with positron emission tomography demonstrates trial participants passively immunized with anti-Aß antibodies have reduced signals with amyloid binding ligands after 18 months of therapy. Several anti-Aß immunotherapies have reached phase 3 testing, and immunotherapy is likely to be the first test of the amyloid hypothesis of Alzheimer's disease. Identifying antibody variants that retain amyloid clearance with fewer adverse reactions remains a major focus of translational research in this area.
Collapse
Affiliation(s)
- D Morgan
- Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA.
| |
Collapse
|
29
|
Prior M, Shi Q, Hu X, He W, Levey A, Yan R. RTN/Nogo in forming Alzheimer's neuritic plaques. Neurosci Biobehav Rev 2010; 34:1201-6. [PMID: 20144652 PMCID: PMC2888855 DOI: 10.1016/j.neubiorev.2010.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/27/2010] [Accepted: 01/31/2010] [Indexed: 12/18/2022]
Abstract
One of the pathological hallmarks in brains of patients with Alzheimer's disease (AD) is the presence of neuritic plaques, in which amyloid deposits are surrounded by reactive gliosis and dystrophic neurites. Within neuritic plaques, reticulon 3 (RTN3), a homolog of Nogo protein, appears to regulate the formation of both amyloid deposition via negative modulation of BACE1 activity and dystrophic neurites via the formation of RTN3 aggregates. Transgenic mice over-expressing RTN3, but not the other known markers of dystrophic neurites in AD brain, spontaneously develop RTN3-immunoreactive dystrophic neurites. The presence of dystrophic neurites impairs cognition. Blocking abnormal RTN3 aggregation will increase the available RTN3 monomer and is therefore a promising therapeutic strategy for enhancing cognitive function in AD patients.
Collapse
Affiliation(s)
- Marguerite Prior
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Qi Shi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
30
|
Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach to Alzheimer's disease. ACTA ACUST UNITED AC 2010; 77:17-31. [PMID: 20101719 DOI: 10.1002/msj.20156] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease is the most common cause of dementia worldwide. Alzheimer's disease is a member of a broad range of neurodegenerative diseases characterized pathologically by the conformational change of a normal protein into a pathological conformer with a high beta-sheet content that renders it neurotoxic. In the case of Alzheimer's disease, the normal soluble amyloid beta peptide is converted into oligomeric/fibrillar amyloid beta. The oligomeric forms of amyloid beta have been hypothesized to be the most toxic, whereas fibrillar amyloid beta becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. In addition, the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is a critical part of the pathology. Numerous therapeutic interventions are under investigation to prevent and treat Alzheimer's disease. Among the most exciting and advanced of these approaches is vaccination. Immunomodulation is being tried for a range of neurodegenerative disorders, with great success being reported in most model animal trials; however, the much more limited human data have shown more modest clinical success so far, with encephalitis occurring in a minority of patients treated with active immunization. The immunomodulatory approaches for neurodegenerative diseases involve targeting a self-protein, albeit in an abnormal conformation; hence, effective enhanced clearance of the disease-associated conformer has to be balanced with the potential risk of stimulating excessive toxic inflammation within the central nervous system. The design of future immunomodulatory approaches that are more focused is dependent on addressing a number of questions, including when is the best time to start immunization, what are the most appropriate targets for vaccination, and is amyloid central to the pathogenesis of Alzheimer's disease or is it critical to target tau-related pathology also. In this review, we discuss the past experience with vaccination for Alzheimer's disease and the development of possible future strategies that target both amyloid beta-related and tau-related pathologies.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|