1
|
Yazici KU, Ozturk ŞK, Yazici IP, Ustundag B. Altered Arginine/Agmatine Pathway and Polyamines in Adolescents Diagnosed with Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:624-634. [PMID: 39420609 PMCID: PMC11494420 DOI: 10.9758/cpn.24.1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 10/19/2024]
Abstract
Objective Major depressive disorder (MDD) is common in childhood, but its etiopathogenesis is still unclear. Published neurochemical studies mostly focus on monoaminergic system, however, the pathophysiology of MDD cannot be explained by monoamine hypothesis only, medications that have effect on monoamines cannot have effect needed in all patients. We aimed to investigate the poliamine pathway of L-arginine metabolism which is proceeding by way of agmatine in adolescents with MDD. Methods Our study involved 45 patients with MDD (case group), and 44 healthy controls (control group) between the ages of 13-17. Sociodemographic data form, Schedule for Affective Disorders and Schizophrenia for School Age Children-Present and Lifetime Version-DSM-5-Turkish, Beck Depression Inventory (BDI), Spielberger's State-Trait Anxiety Inventory were applied to all subjects. All subjects were evaluated in terms of the levels of serum agmatine, putrescine, spermidine, and spermine. Results The levels of agmatine and spermine were significantly higher and putrescine and spermidine were significantly lower in case group compared with healthy controls. There was significant negative correlation with the levels of putrescine and spermidine between BDI scores, and there was significant positive correlation between the levels of spermine and BDI scores. No correlation found between the levels of agmatine and BDI scores. Conclusion These differences that the levels of agmatine and polyamines in the MDD group seem to be a field that worth researching. In the future, the evaluation of the arginine/polyamine metabolism in MDD with larger sample and longitudinal studies is going to capable to contribute to a better understanding of the disorder.
Collapse
Affiliation(s)
- Kemal Utku Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Şukru Kaan Ozturk
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Ipek Percinel Yazici
- Department of Child and Adolescent Psychiatry, Firat University Faculty of Medicine, Elazig, Turkey
| | - Bilal Ustundag
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| |
Collapse
|
2
|
Karanović J, Beraković D, Katrašnik M, Šalamon Arčan I, Pantović-Stefanović M, Radenković L, Garai N, Ivković M, Savić-Pavićević D, Zupanc T, Videtič Paska A. Genetic predisposition of suicidal behavior: variants in GRIN2B, GABRG2, and ODC1 genes in attempted and completed suicide in two Balkan populations. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01895-9. [PMID: 39297975 DOI: 10.1007/s00406-024-01895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Completed suicide accounts for over 700,000 deaths worldwide annually, while attempted suicide is 20 times more frequent. Genetic background is an important factor contributing to suicidal behavior, including candidate genes in glutamate, γ-aminobutyric acid (GABA), and polyamine systems. Our aim was to differentiate genetic predispositions underlying different types of suicidal behavior, attempted and completed suicide, in two Balkan populations. Analysis of variants in the genes GRIN2B (rs2268115 and rs220557), GABRG2 (rs424740), and ODC1 (rs1049500 and rs2302614) was performed on a study sample including 173 suicide attempters with comorbid psychiatric disorders, 216 non-suicidal psychiatric patients and 172 healthy controls from Serbia, and 333 suicide completers and 356 non-suicidal autopsy controls from Slovenia. CA genotype of rs220557 in GRIN2B gene increased the risk for completed suicide (P = 0.021), and violent suicide (P = 0.037), compared to controls. In ODC1 gene, CA genotype of rs2302614 decreased the risk for completed suicide compared to suicide attempt (P = 0.012). Marginally, AC haplotype for variants rs1049500-rs2302614 in ODC1 gene decreased the risk for completed suicide compared to suicide attempt (P = 0.052). Specific genetic variants of glutamate and polyamine systems are differently distributed among diverse suicidal phenotypes, providing further information on the implication of these systems in suicidality.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, Belgrade, 11042, Serbia.
| | - Doroteja Beraković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mojca Katrašnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Maja Pantović-Stefanović
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
| | - Lana Radenković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Nemanja Garai
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- University of Belgrade-Medical School, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, Ljubljana, 1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia.
| |
Collapse
|
3
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
4
|
Dantas ESO, Meira KC, Bredemeier J, Amorim KPC. Suicide among women in Brazil: a necessary discussion from a gender perspective. CIENCIA & SAUDE COLETIVA 2023; 28:1469-1477. [PMID: 37194879 DOI: 10.1590/1413-81232023285.16212022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 05/18/2023] Open
Abstract
Suicide among women is a matter of public health, and there is a lack of scientific literature on this issue. In this theoretical essay, we sought to discuss suicide among women in Brazil from a gender perspective. For that purpose, we adopted the idea that gender extrapolates the concept of sex, considering that differences between people are produced by culture and arrangements through which society transforms biological sexuality into the realizations of human life. Therefore, this article is organized in a way to indicate some explanatory models of suicide among women, discussing gender inequalities and approaching the matter of intersectionality from a protective view. Moreover, we believe that the theme is extremely complex, considering that stigma still resists, as does prejudice related to this issue. Hence, it is of utmost importance to view the structural questions that refer to suicide in women, such as violence and gender inequalities.
Collapse
Affiliation(s)
- Eder Samuel Oliveira Dantas
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Rio Grande do Norte (UFRN). Campus Universitário s/n, Lagoa Nova. 59078-970 Natal RN Brasil.
| | | | - Juliana Bredemeier
- Núcleo de Prática Baseada em Evidências, Instituto de Terapia Cognitivo Comportamental. Porto Alegre RS Brasil
| | - Karla Patrícia Cardoso Amorim
- Programa de Pós-Graduação em Saúde Coletiva, Universidade Federal do Rio Grande do Norte (UFRN). Campus Universitário s/n, Lagoa Nova. 59078-970 Natal RN Brasil.
| |
Collapse
|
5
|
Gonda X, Dome P, Serafini G, Pompili M. How to save a life: From neurobiological underpinnings to psychopharmacotherapies in the prevention of suicide. Pharmacol Ther 2023; 244:108390. [PMID: 36940791 DOI: 10.1016/j.pharmthera.2023.108390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The impact of suicide on our societies, mental healthcare, and public health is beyond questionable. Every year approximately 700 000 lives are lost due to suicide around the world (WHO, 2021); more people die by suicide than by homicide and war. Although suicide is a key issue and reducing suicide mortality is a global imperative, suicide is a highly complex biopsychosocial phenomenon, and in spite of several suicidal models developed in recent years and a high number of suicide risk factors identified, we still have neither a sufficient understanding of underpinnings of suicide nor adequate management strategies to reduce its prevalence. The present paper first overviews the background of suicidal behavior including its epidemiology, prevalence, age and gender correlations and its association with neuropsychiatric disorders as well as its clinical assessment. Then we give an overview of the etiological background, including its biopsychosocial contexts, genetics and neurobiology. Based on the above, we then provide a critical overview of the currently available intervention options to manage and reduce risk of suicide, including psychotherapeutic modalities, traditional medication classes also providing an up-to-date overview on the antisuicidal effects of lithium, as well as novel molecules such as esketamine and emerging medications and further molecules in development. Finally we give a critical overview on our current knowledge on using neuromodulatory and biological therapies, such as ECT, rTMS, tDCS and other options.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Centre, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
7
|
Sobanski T, Peikert G, Kastner UW, Wagner G. Suicidal behavior-advances in clinical and neurobiological research and improvement of prevention strategies. World J Psychiatry 2022; 12:1115-1126. [PMID: 36186502 PMCID: PMC9521537 DOI: 10.5498/wjp.v12.i9.1115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Suicide is the 14th leading cause of death worldwide. It is responsible for 1%-5% of all mortality. This article highlights the latest developments in universal, selective, and indicated prevention strategies. Concerning universal suicide prevention, current research has shown that strategies such as restricting access to lethal means (e.g., control of analgesics and hot-spots for suicide by jumping) and school-based awareness programs are most efficacious. Regarding selective prevention, substantial progress can be expected in psychological screening methods for suicidal behavior. The measurement of implicit cognition proved to be more valid in predicting future suicide attempts than classic clinical assessment. Latest developments are smartphone-based interventions and real-time monitoring of suicidal behavior. Great effort has been made to establish valid neurobiological screening methods (e.g., genetic and epigenetic risk factors for suicide, hypothalamic-pituitary-adrenal axis) without yielding a major bre-akthrough. Potentially, multiple biomarkers rather than a single one are necessary to identify individuals at risk. With regard to indicated prevention in form of psychopharmacological treatment, recent pharmacoepidemiological studies and meta-analyses have supported a protective role of antidepressants, lithium, and clozapine. However, the data concerning a specific anti-suicidal effect of these drugs are currently not consistent. Promising results exist for ketamine in reducing suicidal ideation, independently of its antidepressant effect. Concerning psychotherapy, recent findings suggest that psychotherapeutic interventions specifically designed to prevent suicide re-attempts are most efficacious. Specifically, cognitive behavioral therapy and psychodynamic therapy approaches proved to decrease the number of suicide re-attempts significantly.
Collapse
Affiliation(s)
- Thomas Sobanski
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, THUERINGEN-Kliniken GmbH, Saalfeld 07318, Germany
- Network for Suicide Prevention in Thuringia (NeST), Jena 07743, Germany
| | - Gregor Peikert
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena 07743, Germany
| | - Ulrich W Kastner
- Network for Suicide Prevention in Thuringia (NeST), Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, Helios Fachkliniken Hildburghausen, Hildburghausen 98646, Germany
| | - Gerd Wagner
- Network for Suicide Prevention in Thuringia (NeST), Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena 07743, Germany
| |
Collapse
|
8
|
Sfera A, Hazan S, Anton JJ, Sfera DO, Andronescu CV, Sasannia S, Rahman L, Kozlakidis Z. Psychotropic drugs interaction with the lipid nanoparticle of COVID-19 mRNA therapeutics. Front Pharmacol 2022; 13:995481. [PMID: 36160443 PMCID: PMC9503827 DOI: 10.3389/fphar.2022.995481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Sabine Hazan
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Jonathan J. Anton
- Patton State Hospital, San Bernardino, CA, United States
- Department of Biology, California Baptist University, Riverside, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Leah Rahman
- Department of Medicine, University of Oregon, Eugene, OR, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
9
|
Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022; 10:biomedicines10092162. [PMID: 36140263 PMCID: PMC9496097 DOI: 10.3390/biomedicines10092162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide. Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing was used, which provided information about composition but not about function. In our study, we analyzed whole metagenome sequencing data to assess changes in both the composition and functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate, glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients. These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased levels of this species in the GM of MDD patients. These results show the potential impact of the identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be confirmed in future metabolomic studies.
Collapse
|
10
|
Molecular characterization of depression trait and state. Mol Psychiatry 2022; 27:1083-1094. [PMID: 34686766 DOI: 10.1038/s41380-021-01347-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD) is a brain disorder often characterized by recurrent episode and remission phases. The molecular correlates of MDD have been investigated in case-control comparisons, but the biological alterations associated with illness trait (regardless of clinical phase) or current state (symptomatic and remitted phases) remain largely unknown, limiting targeted drug discovery. To characterize MDD trait- and state-dependent changes, in single or recurrent depressive episode or remission, we generated transcriptomic profiles of subgenual anterior cingulate cortex of postmortem subjects in first MDD episode (n = 20), in remission after a single episode (n = 15), in recurrent episode (n = 20), in remission after recurring episodes (n = 15) and control subject (n = 20). We analyzed the data at the gene, biological pathway, and cell-specific molecular levels, investigated putative causal events and therapeutic leads. MDD-trait was associated with genes involved in inflammation, immune activation, and reduced bioenergetics (q < 0.05) whereas MDD-states were associated with altered neuronal structure and reduced neurotransmission (q < 0.05). Cell-level deconvolution of transcriptomic data showed significant change in density of GABAergic interneurons positive for corticotropin-releasing hormone, somatostatin, or vasoactive-intestinal peptide (p < 3 × 10-3). A probabilistic Bayesian-network approach showed causal roles of immune-system-activation (q < 8.67 × 10-3), cytokine-response (q < 4.79 × 10-27) and oxidative-stress (q < 2.05 × 10-3) across MDD-phases. Gene-sets associated with these putative causal changes show inverse associations with the transcriptomic effects of dopaminergic and monoaminergic ligands. The study provides first insights into distinct cellular and molecular pathologies associated with trait- and state-MDD, on plasticity mechanisms linking the two pathologies, and on a method of drug discovery focused on putative disease-causing pathways.
Collapse
|
11
|
Bernstein HG, Keilhoff G, Laube G, Dobrowolny H, Steiner J. Polyamines and polyamine-metabolizing enzymes in schizophrenia: Current knowledge and concepts of therapy. World J Psychiatry 2021; 11:1177-1190. [PMID: 35070769 PMCID: PMC8717027 DOI: 10.5498/wjp.v11.i12.1177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central nervous system and other organs. A large body of evidence suggests that the polyamine pathway is prominently involved in the etiology and pathology of schizophrenia. Alterations in the expression and activity of polyamine metabolizing enzymes, as well as changes in the levels of the individual polyamines, their precursors and derivatives, have been measured in schizophrenia and animal models of the disease. Additionally, neuroleptic treatment has been shown to influence polyamine concentrations in brain and blood of individuals with schizophrenia. Thus, the polyamine system may appear to be a promising target for neuropharmacological treatment of schizophrenia. However, for a number of practical reasons there is currently only limited hope for a polyamine-based schizophrenia therapy.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gregor Laube
- Department of Anatomy, Charite, Berlin D-10117, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| |
Collapse
|
12
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
13
|
Cabrera-Mendoza B, Fresno C, Monroy-Jaramillo N, Fries GR, Walss-Bass C, Glahn DC, Ostrosky-Wegman P, Mendoza-Morales RC, García-Dolores F, Díaz-Otañez CE, González-Sáenz EE, Genis-Mendoza AD, Martínez-Magaña JJ, Romero-Pimentel AL, Flores G, Vázquez-Roque RA, Nicolini H. Sex differences in brain gene expression among suicide completers. J Affect Disord 2020; 267:67-77. [PMID: 32063575 DOI: 10.1016/j.jad.2020.01.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/23/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Suicide rates vary substantially by sex. Suicides committed by males significantly outnumber female suicides. Disparities in community and social factors provide a partial explanation for this phenomenon. Thus, the evaluation of sex differences at a biological level might contribute to the elucidation of the factors involved in this imbalance. The aim of the present study was to evaluate sex-specific gene expression patterns in the suicidal brain. METHODS postmortem samples from the dorsolateral prefrontal cortex (DLPFC) of 75 Latino individuals were analyzed. We considered the following groups: i) male suicides (n = 38), ii) female suicides (n = 10), iii) male controls (n = 20), and iv) female controls (n = 7). Gene expression profiles were evaluated by microarrays. Differentially expressed genes among the groups were identified with a linear model. Similarities and differences in the gene sets between the sexes were identified. RESULTS Differentially expressed genes were identified between suicides and controls of each sex: 1,729 genes in females and 1,997 genes in males. Female-exclusive suicide genes were related to cell proliferation and immune response. Meanwhile, male-exclusive suicide genes were associated to DNA binding and ribonucleic protein complex. Sex-independent suicide genes showed enrichment in mitochondrial and vesicular functions. LIMITATIONS Relatively small sample size. Our diagnosis approach was limited to information found on coroner's records. The analysis was limited to a single brain area (DLPFC) and we used microarrays. CONCLUSION Previously unexplored sex differences in the brain gene expression of suicide completers were identified, providing valuable foundation for the evaluation of sex-specific factors in suicide.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico; PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cristóbal Fresno
- Technological Development Department, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | | | | | | | | | | | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ana Luisa Romero-Pimentel
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Mexico City, Mexico
| | - Rubén Antonio Vázquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Mexico City, Mexico
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
14
|
Ozden A, Angelos H, Feyza A, Elizabeth W, John P. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res 2020; 120:21-28. [PMID: 31629205 DOI: 10.1016/j.jpsychires.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
L-Arginine pathway metabolites appear to play differential roles in the pathogenesis of major depressive disorder (MDD). Studies have revealed an antidepressant and anxiolytic effect of agmatine and putrescine. Possible mechanisms of these effects include inhibition of nitric oxide synthase and N-methyl-D-aspartate receptors. The present study sought to determine whether MDD is associated with altered levels of arginine metabolites and whether these metabolites are associated with depression, anxiety and stress severity. Seventy seven MDD patients 21-65 years of age with a minimum score of 18 on the Hamilton Depression Scale, and 27 age and sex matched healthy controls (HC) were included. Patients with uncontrolled physical diseases, abnormal routine lab tests, other psychiatric diagnoses, or under psychotropic medication were excluded. HC subjects were recruited from the community. Rating instruments included Hamilton Depression and Anxiety Scales, Beck Depression and Anxiety Inventory and Perceived Stress Scale. Fasting blood was drawn between 8:30 and 11:00 a.m. and High Performance Liquid Chromatography (HPLC) was used to measure plasma arginine metabolites. ADMA (Asymmetrical dimethylarginine) and putrescine were significantly lower while SDMA (Symmetric dimethylarginine), agmatine and ornithine were significantly higher in MDD patients (p˂0.05). Depression, anxiety and stress severity were negatively correlated with ADMA and putrescine (p˂0.05). Stress was positively correlated with citrulline, NOHA (N-omega-hydroxy-nor-l-arginine), SDMA, agmatine and ornithine (p˂0.05). Lower putrescine levels predicted depression diagnosis (p = 0.039) and depression severity (p = 0.003). Low ADMA level predicted depression severity as well. Arginine pathway metabolites are associated with the pathophysiology of depression. Putrescine may be a biomarker to predict MDD.
Collapse
Affiliation(s)
- Arisoy Ozden
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Psychiatry, Bolu Abant Izzet Baysal University Medical Faculty, Bolu, Turkey
| | - Halaris Angelos
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - Aricioglu Feyza
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Pharmacology, Faculty of Pharmacy and Psychopharmacology Research Unit, Marmara University, Haydarpasa, Istanbul, Turkey
| | - Wild Elizabeth
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Louisiana State University Health Sciences Center Shreveport, Department of Neurosurgery, USA
| | - Piletz John
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Biology, Missisipi College, Jackson, Missisipi, USA
| |
Collapse
|
15
|
Wang H, Liu L, Rao X, Chai T, Zeng B, Zhang X, Yu Y, Zhou C, Pu J, Zhou W, Li W, Zhang H, Wei H, Xie P. Commensal Microbiota Regulation of Metabolic Networks During Olfactory Dysfunction in Mice. Neuropsychiatr Dis Treat 2020; 16:761-769. [PMID: 32256072 PMCID: PMC7090175 DOI: 10.2147/ndt.s236541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Recently, an increasing number of studies have focused on commensal microbiota. These microorganisms have been suggested to impact human health and disease. However, only a small amount of data exists to support the assessment of the influences that commensal microbiota exert on olfactory function. METHODS We used a buried food pellet test (BFPT) to investigate and compare olfactory functions in adult, male, germ-free (GF) and specific-pathogen-free (SPF) mice, then examined and compared the metabolomic profiles for olfactory bulbs (OBs) isolated from GF and SPF mice to uncover the mechanisms associated with olfactory dysfunction. RESULTS We found that the absence of commensal microbiota was able to influence olfactory function and the metabolic signatures of OBs, with 38 metabolites presenting significant differences between the two groups. These metabolites were primarily associated with disturbances in glycolysis, the tricarboxylic acid (TCA) cycle, amino acid metabolism, and purine catabolism. Finally, the commensal microbiota regulation of metabolic networks during olfactory dysfunction was identified, based on an integrated analysis of metabolite, protein, and mRNA levels. CONCLUSION This study demonstrated that the absence of commensal microbiota may impair olfactory function and disrupt metabolic networks. These findings provide a new entry-point for understanding olfactory-associated disorders and their potential underlying mechanisms.
Collapse
Affiliation(s)
- Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuechen Rao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tingjia Chai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiaotong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
16
|
Baroli G, Sanchez JR, Agostinelli E, Mariottini P, Cervelli M. Polyamines: The possible missing link between mental disorders and epilepsy (Review). Int J Mol Med 2019; 45:3-9. [PMID: 31746386 DOI: 10.3892/ijmm.2019.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022] Open
Abstract
Polyamines are small positively charged alkylamines that are essential in a number of crucial eukaryotic processes, like normal cell growth and development. In normal physiological conditions, intracellular polyamine content is tightly regulated through a fine regulated network of biosynthetic and catabolic enzymes and a transport system. The dysregulation of this network is frequently associated to different tumors, where high levels of polyamines has been detected. Polyamines also modulate ion channels and ionotropic glutamate receptors and altered levels of polyamines have been observed in different brain diseases, including mental disorders and epilepsy. The goal of this article is to review the role of polyamines in mental disorders and epilepsy within a frame of the possible link between these two brain pathologies. The high comorbidity between these two neurological illnesses is strongly suggestive that they share a common background in the central nervous system. This review proposes an additional association between the noradrenalin/serotonin and glutamatergic neuronal circuits with polyamines. Polyamines can be considered supplementary defensive shielding molecules, important to protect the brain from the development of epilepsy and mental illnesses that are caused by different types of neurons. In this contest, the modulation of polyamine metabolism may be a novel important target for the prevention and therapeutic treatment of these diseases that have a high impact on the costs of public health and considerably affect quality of life.
Collapse
Affiliation(s)
- Giulia Baroli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | | | - Enzo Agostinelli
- Department of Biochemical Sciences 'Rossi Fanelli', University of Rome 'La Sapienza', I‑00185 Rome, Italy
| | - Paolo Mariottini
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| | - Manuela Cervelli
- Department of Science, University of Rome 'Roma Tre', I‑00146 Rome, Italy
| |
Collapse
|
17
|
Lee HS, Seo C, Kim YA, Park M, Choi B, Ji M, Lee S, Paik MJ. Metabolomic study of polyamines in rat urine following intraperitoneal injection of γ-hydroxybutyric acid. Metabolomics 2019; 15:58. [PMID: 30941522 DOI: 10.1007/s11306-019-1517-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Recently, illegal abuse of γ-hydroxybutyric acid (GHB) has increased in drug-facilitated crimes, but the determination of GHB exposure and intoxication is difficult due to rapid metabolism of GHB. Its biochemical mechanism has not been completely investigated. And a metabolomic study by polyamine profile and pattern analyses was not performed in rat urine following intraperitoneal injection with GHB. OBJECTIVES Urinary polyamine (PA) profiling by gas chromatography-tandem mass spectrometry was performed to monitor an altered PA according to GHB administration. METHODS Polyamine profiling analysis by gas chromatography-mass spectrometry combined with star pattern recognition analysis was performed in this study. The multivariate statistical analysis was used to evaluate discrimination among control and GHB administration groups. RESULTS Six polyamines were determined in control, single and multiple GHB administration groups. Star pattern showed distorted hexagonal shapes with characteristic and readily distinguishable patterns for each group. N1-Acetylspermine (p < 0.001), putrescine (p < 0.006), N1-acetylspermidine (p < 0.009), and spermine (p < 0.027) were significantly increased in single administration group but were significantly lower in the multiple administration group than in the control group. N1-Acetylspermine was the main polyamine for discrimination among control, single and multiple administration groups. Spermine showed similar levels in single and multiple administration groups. CONCLUSIONS The polyamine metabolic pattern was monitored in GHB administration groups. N1-Acetylspermine and spermine were evaluated as potential biomarkers of GHB exposure and addiction.
Collapse
Affiliation(s)
- Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-A Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Meejung Park
- National Forensic Service, 10 Ipchoon-ro, Wonju, Kangwon-do, 220-170, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Suicide is the second leading cause of death worldwide for adolescents. Despite decades of research on correlates and risk factors for adolescent suicide, we know little about why suicidal ideation and behavior frequently emerge in adolescence and how to predict, and ultimately prevent, suicidal behavior among youths. In this review, we first discuss knowledge regarding correlates, risk factors, and theories of suicide. We then review why adolescence is a period of unique vulnerability, given changing biology and social network reorganization. Next, we present a conceptual model through which to interpret emerging findings in adolescent suicide research. We suggest that a promising area for future research is to examine adolescent suicide as a failure of biological responses to acute stress in the proximal moments of a suicidal crisis. After reviewing initial evidence for this conceptualization, we review future directions for studies on adolescent suicide.
Collapse
Affiliation(s)
- Adam Bryant Miller
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
19
|
Huang N, Cao B, Brietzke E, Park C, Cha D, Pan Z, Zhu J, Liu Y, Xie Q, Zeng J, McIntyre RS, Wang J, Yan L. A pilot case-control study on the association between N-acetyl derivatives in serum and first-episode schizophrenia. Psychiatry Res 2019; 272:36-41. [PMID: 30579179 DOI: 10.1016/j.psychres.2018.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
Abstract
N-acetyl group metabolites are a general class of endogenous compounds characterized by a conjugated system consisting of an acetyl group and nitrogen moiety. The aim of our exploratory pilot case-control study is to compare the levels of five N-acetyl derivatives (i.e., N-acetyl-glutamine, N-acetyl-ornithine, N6-acetyl-L-lysine, N-acetyl-putrescine, and N-acetyl-galactosamine) in serum samples between individuals with first-episode schizophrenia and healthy controls (HC). A 1:2 age- and sex- matched pilot case-control study was performed, involving 30 cases of first-episode schizophrenia and 60 HC aged between 18 and 40 years old. The serum samples containing these N-acetyl derivatives from (first-episode patients with schizophrenia and HC were measured using liquid chromatography-tandem mass spectrometry (LC-MS). Results indicated that higher levels of N-acetyl-glutamine and lower levels of N6-acetyl-L-lysine may have a significant association with schizophrenia after adjusting for age, sex and BMI. N-acetyl-putrescine was elevated among subjects with first-episode schizophrenia when compared to HC, suggesting it as a predictor for schizophrenia onset. Further exploration of the mechanisms of N-acetyl group metabolites with respect to schizophrenia is warranted and may be useful for identifying novel disease markers and/or drug target molecules in schizophrenia.
Collapse
Affiliation(s)
- Ninghua Huang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Danielle Cha
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Faculty of Medicine, School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Judy Zhu
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China
| | - Jing Zeng
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China; Peking University Medical and Health Analysis Center, Peking University, Beijing 100191, PR China.
| |
Collapse
|
20
|
Roy B, Dwivedi Y. Understanding the Neuroepigenetic Constituents of Suicide Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:233-262. [PMID: 29933952 DOI: 10.1016/bs.pmbts.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stressful life incidents often cause a predisposition for developing mental disorders such as major depressive disorder (MDD). Impaired neurocognitive and neuro-vegetative functions of the central nervous system are the hallmarks of this mental illness. Blunted responses from emotionally salient regions of the brain including cortex, hippocampus, and amygdala have been associated with MDD-related behavioral changes. Moreover, improper signal processing and neuronal atrophy were held responsible for the overall dysfunctionality of these vulnerable regions in the MDD brain. The prevalence of genetic susceptibility along with adverse environmental stimuli often makes the situation worse for MDD patients, leading to an increased risk of suicidal behavior and eventually death by suicide. Despite considerable efforts to understand the complex neurobiology associated with MDD and suicidal behavior, their pathological determinants remain mostly elusive. Recent research, however, has shown that epigenetic perturbations have a formidable impact on the etiopathogenesis of MDD. Understanding the neuroepigenetic nature of this mental disorder may provide opportunities to devise more effective treatment strategies. Moreover, this can potentially lead to identifying predictive biomarkers associated with suicide risk. The present chapter critically reviews studies pertaining to epigenetic signatures of MDD and suicide brain.
Collapse
Affiliation(s)
- Bhaskar Roy
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yogesh Dwivedi
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
21
|
Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry 2017; 22:1395-1412. [PMID: 28696430 DOI: 10.1038/mp.2017.141] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Suicide is a major public health concern and a leading cause of death in most societies. Suicidal behaviour is complex and heterogeneous, likely resulting from several causes. It associates with multiple factors, including psychopathology, personality traits, early-life adversity and stressful life events, among others. Over the past decades, studies in fields ranging from neuroanatomy, genetics and molecular psychiatry have led to a model whereby behavioural dysregulation, including suicidal behaviour (SB), develops as a function of biological adaptations in key brain systems. More recently, the unravelling of the unique epigenetic processes that occur in the brain has opened promising avenues in suicide research. The present review explores the various facets of the current knowledge on suicidality and discusses how the rapidly evolving field of neurobehavioural epigenetics may fuel our ability to understand, and potentially prevent, SB.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - G Turecki
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
22
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
23
|
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder affecting millions of people worldwide, yet its etiology remains elusive. The last decades have seen great advances in our understanding of the genome structure and functional organization. Noncoding RNAs (ncRNAs) are RNAs that do not code for proteins but have important regulatory roles. The investigation of ncRNAs as regulators of gene expression has been a topic of growing interest in health research, including in studies investigating etiological and therapeutic factors in major depression. Several different species of ncRNAs have been identified in association to and have shown to be dysregulated in depressed individuals or in animal models of depression. This review will detail the complex relation between ncRNAs and major depression and the studies that propose mechanisms and pathways that specific ncRNAs may be involved in major depression.
Collapse
|
24
|
Liu P, Jing Y, Collie ND, Dean B, Bilkey DK, Zhang H. Altered brain arginine metabolism in schizophrenia. Transl Psychiatry 2016; 6:e871. [PMID: 27529679 PMCID: PMC5022089 DOI: 10.1038/tp.2016.144] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.
Collapse
Affiliation(s)
- P Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand,Brain Health Research Centre, University of Otago, Dunedin, New Zealand,Department of Anatomy, University of Otago, Lindo Ferguson Building, 270 Great King Street, Dunedin 9016, New Zealand. E-mail:
| | - Y Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - N D Collie
- Department of Anatomy, University of Otago, Dunedin, New Zealand,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - B Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - D K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - H Zhang
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand,School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Sokolowski M, Wasserman J, Wasserman D. An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20:56-71. [PMID: 25178164 DOI: 10.1038/mp.2014.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Suicidal behaviors (SB) may be regarded as the outmost consequence of mental illnesses, or as a distinct entity per se. Regardless, the consequences of SB are very large to both society and affected individuals. The path leading to SB is clearly a complex one involving interactions between the subject's biology and environmental influences throughout life. With the aim to generate a representative and diversified overview of the different neurobiological components hypothesized or shown implicated across the entire SB field up to date by any approach, we selected and compiled a list of 212 gene symbols from the literature. An increasing number of novel gene (products) have been introduced as candidates, with half being implicated in SB in only the last 4 years. These candidates represent different neuro systems and functions and might therefore be regarded as competing or redundant explanations. We then adopted a unifying approach by treating them all as parts of the same meta-system, using bioinformatic tools. We present a network of all components connected by physical protein-protein interactions (the SB interactome). We proceeded by exploring the differences between the highly connected core (~30% of the candidate genes) and its peripheral parts, observing more functional homogeneity at the core, with multiple signal transduction pathways and actin-interacting proteins connecting a subset of receptors in nerve cell compartments as well as development/morphology phenotypes and the stress-sensitive synaptic plasticity processes of long term potentiation/depression. We suggest that SB neurobiology might also be viewed as one meta-system and perhaps be explained as intrinsic unbalances acting within the core or as imbalances arising between core and specific peripheral components.
Collapse
Affiliation(s)
- M Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - J Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - D Wasserman
- 1] National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden [2] WHO Collaborating Centre for Research, Methods Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
26
|
|