1
|
Li X, Liu S, Wang S, Ai X, Wei L. 1-Deoxynojirimycin affects high glucose-induced pancreatic beta-cell dysfunction through regulating CEBPA expression and AMPK pathway. Biochem Cell Biol 2025; 103:1-12. [PMID: 39546764 DOI: 10.1139/bcb-2024-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
This study aims to explore the role of 1-deoxynojirimycin (DNJ) in high glucose-induced β-cells and to further explore the molecular mechanism of DNJ effect on β-cells through network pharmacology. In the study, high glucose treatment of mouse INS-1 cells inhibited cell proliferation and insulin secretion, decreased the expression of Bcl-2 protein and Ins1 and Ins2 genes, promoted apoptosis, and increased cleaved caspase-3 and cleaved caspase-9 expression levels as well as intracellular reactive oxygen species production. DNJ treatment significantly restored the dysfunction of INS-1 cells induced by high glucose, and DNJ showed no toxicity to normal INS-1 cells. Silencing CEBPA promoted, while overexpression of CEBPA relieved the dysfunction of pancreatic β-cells induced by high glucose. DNJ treatment partially restored the pancreatic β-cell dysfunction caused by silencing CEBPA. In conclusion, DNJ can inhibit high glucose-induced pancreatic β-cell dysfunction by promoting the expression of CEBPA.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
| | - Shenggui Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
| | - Siqi Wang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Xinghui Ai
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Lin Wei
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biology and Food Engineering, Huaihua University, Huaihua 418000, Hunan, China
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| |
Collapse
|
2
|
Mahmoud VL, Shayesteh R, Foong Yun Loh TK, Chan SW, Sethi G, Burgess K, Lee SH, Wong WF, Looi CY. Comprehensive review of opportunities and challenges of ethnomedicinal plants for managing type 2 diabetes. Heliyon 2024; 10:e39699. [PMID: 39687111 PMCID: PMC11648782 DOI: 10.1016/j.heliyon.2024.e39699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetes mellitus is a prevalent metabolic disorder worldwide. A variety of antidiabetic medications have been developed to help manage blood glucose levels in diabetic patients, but adverse reactions and efficacy loss over time have spurred research into new therapeutic agents. In view of this, investigations into the antidiabetic effect of herbal products have been encouraged due to their potential availability, inexpensiveness, and relatively minimal side effects. This review explores the antidiabetic potentials of the eight most promising medicinal plants in terms of molecular mechanisms, phytochemistry, toxicology, and efficacy. These plant extracts have gone through clinical trials and demonstrated good control of blood glucose levels by increasing serum insulin levels, enhancing tissue glucose uptake, and/or decreasing intestinal glucose uptake. Yet, medicinal plants are far from being able to replace conventional antidiabetic drugs for patient management but they have the potential for further development if rigorous clinical trials on their mechanisms, delivery, and dose regimen are performed. To date, no study has been performed to isolate and characterize active compounds in these plant extracts, suggesting that further investigations in this area would be the next step to advance this field.
Collapse
Affiliation(s)
- Valizadeh Lakeh Mahmoud
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ramtin Shayesteh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sook Wah Chan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Food Security & Nutrition Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX, 77842, USA
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Ajiboye BO, Omojolomoloju TE, Salami SA, Onikanni SA, Hosseinzadeh H, Mopuri R, Oyinloye BE. Effect of Dalbergiella welwitschi alkaloid-rich extracts on neuroprotective in streptozotocin-induced diabetic rats. Metab Brain Dis 2024; 39:1353-1362. [PMID: 39093507 DOI: 10.1007/s11011-024-01386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
The neuroprotective ability of alkaloid-rich leaf extract of Dalbergiella welwitschii in streptozotocin-induced type 2 diabetic rats were investigated in this study. Dalbergiella welwitshii leaf alkaloid-rich extract was obtained using standard procedure. Streptozotocin was injected into the experimental animals intraperitoneally at a dose of 45 mg/mg body weight. Prior to this, the animals were given 20% (w/v) fructose for one week. The animals were grouped into five (n = 8), comprising of normal control (NC), diabetic control (DC), diabetic rats treated with low (50 mg/mg body weight) and high (100 mg/kg body weight) doses of Dalbergiella welwitschii alkaloid-rich leaf extracts (i.e., DWL and DWH respectively) and 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day, blood and brain tissue were harvested and used for the determination of neurotransmitters, cholinesterase, some ATP activities, oxidative stress biomarkers and histological examination. The results show that diabetic rats placed on DWL, DWH and MET significantly (p < 0.05) reduced cholinergic, elevated some ATPase activities and ameliorated oxidative stress biomarkers. These were supported by the histological examination by improving neuroprotective effects in diabetic rats administered DWL, DWH and MET. Hence, it can be presumed that DWL and DWH could be beneficial in treating diabetic neurodegenerative diseases.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria.
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Tofunmi Enitan Omojolomoloju
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Salmat Adenike Salami
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 1365-91775, Mashhad, Iran
| | - Ramgopal Mopuri
- Department of Biochemistry, Bharatiya Engineering Science and Technology Innovation University, Gorantla, Anantapur, Andhra Pradesh, India
| | - Babatunji Emmanuel Oyinloye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa, 3886, South Africa
| |
Collapse
|
4
|
Jiang MY, Pu XY, Li WT, Liu J, Zeng XL, Li HR, Bai XS, Hu L, Huang XZ. Two new monoterpene esters from Illigera paviflora Dunn roots. Nat Prod Res 2024; 38:1230-1237. [PMID: 36287603 DOI: 10.1080/14786419.2022.2137802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
Abstract
Two new monoterpene esters, illigerates H and I (1 and 2), and six known compounds actinodaphine (3), bulbocupnine (4), stephanine (5), hypserpanine B (6), betulinic acid (7) and gallic acid (8) were obtained from the root of Illigera paviflora Dunn. Their structures were elucidated by spectroscopic analysis. Anti-inflammatory and α-glucosidase inhibitory activity of some isolated compounds were assessed. Two monoterpenes 1 and 2 exhibited weak in vitro anti-inflammatory activity (IC50 64.5 ± 5.3 and 79.2 ± 7.5 μM) while compounds 3-6 showed inhibition of α-glucosidase with IC50 values ranged from 87.17 to 118.74 μM.
Collapse
Affiliation(s)
- Meng-Yuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiao-Yun Pu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Wen-Ting Li
- Kunming Center for Disease Control and Prevention, Kunming, China
| | - Juan Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiao-Li Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Hong-Rui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xi-Shan Bai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Lin Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Xiang-Zhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, China
| |
Collapse
|
5
|
Dos Santos Arraes DR, Rodrigues ABL, Sanches PR, Costa Campos CE, Moreira da Silva de Almeida SS, Reis Ferreira Lima J, Dias Lima J, da Silva GA. Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:1-20. [PMID: 37889647 DOI: 10.1080/10937404.2023.2270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaina Reis Ferreira Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Jucivaldo Dias Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | | |
Collapse
|
6
|
Galarce-Bustos O, Obregón C, Vallejos-Almirall A, Folch C, Acevedo F. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:970-983. [PMID: 37488746 DOI: 10.1002/pca.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Camilo Obregón
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Christian Folch
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Center of Excellence translational Medicine, Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
7
|
Fauziah F, Ali H, Ilmiawati C, Ariyanto EF, Bakhtra DDA, Mita DS, Syafni N, Handayani D. Non-monotonic dose-response of di-(2-ethylhexyl) phthalate isolated from Penicillium citrinum XT6 on adipogenesis and expression of PPARγ and GLUT4 in 3T3-L1 adipocytes. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:804-813. [PMID: 37474486 DOI: 10.1515/jcim-2023-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES Adipogenesis is the fat cell formation process regulated by peroxisome proliferator-activated receptors (PPARγ). The insulin-responsive glucose transporter 4 (GLUT4) has a major role in glucose uptake and metabolism in insulin target tissues (i.e., adipose and muscle cells). The interplay between PPARγ and GLUT4 is essential for proper glucose homeostasis. This study aimed to isolate, elucidate, and investigate the effect of an isolated compound from Penicillium citrinum XT6 on adipogenesis, PPARγ, and GLUT4 expression in 3T3-L1 adipocytes. METHODS The isolated compound was determined by analyzing spectroscopic data (LC-MS, FT-IR, Spectrophotometry UV-Vis, and NMR). The adipogenesis activity of the isolated compound in 3T3-L1 cells was determined by the Oil Red O staining method. RT-PCR was used to analyze the gene expression of PPARγ and GLUT4. RESULTS Di-(2-ethylhexyl)-phthalate (DEHP) was the isolated compound from P.citrinum XT6. The results revealed adipogenesis stimulation and inhibition, as well as PPARγ and GLUT4 expressions. CONCLUSIONS DEHP showed a non-monotonic dose-response (NMDR) effect on adipogenesis and PPARγ and GLUT4 expression. It is the first study that reveals DEHP's NMDR effects on lipid and glucose metabolism in adipocytes.
Collapse
Affiliation(s)
- Fitra Fauziah
- Doctoral Program, Graduate School of Biomedical Science, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- School of Pharmaceutical Science Padang (STIFARM Padang), Padang, Indonesia
| | - Hirowati Ali
- Department of Biochemistry, Undergraduate Program of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- Biomedical Laboratory, Center for Integrative Biomedical Research, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Cimi Ilmiawati
- Department of Pharmacology, Undergraduate Program of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Eko Fuji Ariyanto
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | | | - Nova Syafni
- Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| | - Dian Handayani
- Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| |
Collapse
|
8
|
Nigdelioglu Dolanbay S, Şirin S, Aslim B. Cocktail of three isoquinoline alkaloids derived from Glaucium grandiflorum Boiss. & A. Huet subsp. refractum (Nábelek) Mory inhibits the production of LPS-induced ROS, pro-inflammatory cytokines, and mediators through the down-regulation of p38 MAPK in BV-2 cells. Fitoterapia 2023; 170:105652. [PMID: 37595642 DOI: 10.1016/j.fitote.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Glaucium grandiflorum extracts have traditionally been used to treat brain-related disorders. G. grandiflorum extracts also exhibited inhibitory effects on cholinesterase enzymes, as well as antigenotoxic activity. However, no research has been done on the effect of G. grandiflorum alkaloid extracts on the anti-oxidative and anti-inflammatory mechanisms. In this study we aimed to evaluate the anti-oxidative and anti-inflammatory activities of the alkaloid extract obtained from G. grandiflorum as well as the mechanisms responsible for their neuroprotective effects in neuronal damage caused by LPS in BV2 cells. We used LC-MS/MS and 1H, 13C NMR analysis to determine the presence of major alkaloids (allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide (trans-cannadine-N-oxide) in the alkaloid extracts. We used flow cytometry to study the alkaloid extracts' effects on ROS production; we also employed qRT-PCR and Western Blot to analyze the effects of oxidative stress and inflammation-related genes and proteins. ROS production within the cell was inhibited by chloroform alkaloid extract (CAE). There occurred marked CAE-induced reductions in IL-1β, Cox-2, and iNOS mRNA expressions. We also observed marked reductions in IL-6 and TNF-α mRNA expressions with methanol alkaloid extract (MAE). CAE effectively suppressed IL-1β and iNOS protein levels, especially as in qRT-PCR studies, while MAE effectively reduced IL-6 and TNF-α protein levels. Additionally, MAE was found to be prominent in suppressing the levels of Cox-2 protein, unlike qRT-PCR studies. According to our study findings, oxidative stress brought about by inflammation was suppressed by alkaloid extracts from G. grandiflorum which can be attributed to their suppressor effects on the pro-inflammatory cytokines-mediators, and p38 MAPK. As a result, a drug active substance that suppresses oxidative stress and inflammation has been brought to the neuropharmacological field.
Collapse
Affiliation(s)
| | - Seda Şirin
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| |
Collapse
|
9
|
Chen S, Xi M, Gao F, Li M, Dong T, Geng Z, Liu C, Huang F, Wang J, Li X, Wei P, Miao F. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front Pharmacol 2023; 14:1045309. [PMID: 37089923 PMCID: PMC10117911 DOI: 10.3389/fphar.2023.1045309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The effectiveness of herbal medicine in treating diabetes has grown in recent years, but the precise mechanism by which it does so is still unclear to both medical professionals and diabetics. In traditional Chinese medicine, mulberry leaf is used to treat inflammation, colds, and antiviral illnesses. Mulberry leaves are one of the herbs with many medicinal applications, and as mulberry leaf study grows, there is mounting evidence that these leaves also have potent anti-diabetic properties. The direct role of mulberry leaf as a natural remedy in the treatment of diabetes has been proven in several studies and clinical trials. However, because mulberry leaf is a more potent remedy for diabetes, a deeper understanding of how it works is required. The bioactive compounds flavonoids, alkaloids, polysaccharides, polyphenols, volatile oils, sterols, amino acids, and a variety of inorganic trace elements and vitamins, among others, have been found to be abundant in mulberry leaves. Among these compounds, flavonoids, alkaloids, polysaccharides, and polyphenols have a stronger link to diabetes. Of course, trace minerals and vitamins also contribute to blood sugar regulation. Inhibiting alpha glucosidase activity in the intestine, regulating lipid metabolism in the body, protecting pancreatic -cells, lowering insulin resistance, accelerating glucose uptake by target tissues, and improving oxidative stress levels in the body are some of the main therapeutic properties mentioned above. These mechanisms can effectively regulate blood glucose levels. The therapeutic effects of the bioactive compounds found in mulberry leaves on diabetes mellitus and their associated molecular mechanisms are the main topics of this paper’s overview of the state of the art in mulberry leaf research for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sikai Chen
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an TANK Medicinal Biology Institute, Xi’an, China
| | - Feng Gao
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - TaiWei Dong
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhixin Geng
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunyu Liu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengyu Huang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xingyu Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Xianyang, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| |
Collapse
|
10
|
Sukhikh S, Babich O, Prosekov A, Kalashnikova O, Noskova S, Bakhtiyarova A, Krol O, Tsvetkova E, Ivanova S. Antidiabetic Properties of Plant Secondary Metabolites. Metabolites 2023; 13:metabo13040513. [PMID: 37110171 PMCID: PMC10144365 DOI: 10.3390/metabo13040513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alina Bakhtiyarova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olesia Krol
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Elena Tsvetkova
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
11
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
12
|
de Araújo FHS, Nogueira CR, Trichez VDK, da Rosa Guterres Z, da Silva Pinto L, Velter SQ, Mantovani Ferreira GA, Machado MB, de Oliveira Gomes Neves K, Vieira MDC, Lima Cardoso CA, Heredia-Vieira SC, de Oliveira KMP, Piva RC, Oesterreich SA. Anti-hyperglycemic potential and chemical constituents of Aristolochia triangularis Cham. leaves - A medicinal species native to Brazilian forests. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115991. [PMID: 36470307 DOI: 10.1016/j.jep.2022.115991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia triangularis Cham. has been used in Brazilian traditional medicine for various therapeutic purposes, including as a leaf-based infusion for diabetes management. AIM OF THE STUDY This study was designed to chemically characterize an infusion of in natura A. triangularis leaves and evaluate the in vivo anti-hyperglycemic properties of this infusion. MATERIALS AND METHODS Chemical composition was examined using liquid-liquid extraction procedure, chromatographic methods, NMR, and LC-MS/MS. The in vivo anti-hyperglycemic activity of the freeze-dried infusion of A. triangularis leaves (Inf-L-At) was assessed using oral glucose tolerance test (OGTT). Initially, normoglycemic male rats were pre-treated with orally administered Inf-L-At at doses of 62.5, 125, and 250 mg/kg for two consecutive days. On the day of the OGTT, fasting animals received a glucose load (4 g/kg) 30 min after treatment with Inf-L-At, and the blood glucose levels were verified at 15, 30, 60, and 180 min. Intestinal maltase, lactase, and sucrase activities and muscle and liver glycogen contents were also assessed after the OGTT. RESULTS Inf-L-At extract led to glycemic reduction with no dose-response at 15, 30, and 60 min comparable to that of the antidiabetic drug glibenclamide and was accompanied by an increase in hepatic and muscle glycogen contents. Additionally, there was a significant statistically decrease in the in vitro activity of disaccharidases. Maltase and sucrase activities were inhibited at all doses, whereas lactase activity was inhibited only at 62.5 and 250 mg/kg. In total, 75 compounds were found in the infusion, including seven new ones, (7S*,8S*,7ꞌS*,8ꞌR*)-4,4ꞌ-dihydroxy-3,3ꞌ-dimethoxy-7,9ꞌ-epoxylignan-7ꞌ-ol; 4ꞌ-hydroxy-3ꞌ-methoxy-3,4-methylenedioxy-7,9ꞌ-epoxylignan-9,7ꞌ-diol; triangularisines A, B, and C; N-ethyl-N-methyl-affineine; and N-methyl pachyconfine, and one previously not described as a natural product, epi-secoisolariciresinol monomethyl ether. CONCLUSION The results demonstrated the anti-hyperglycemic activity of the infusion from A. triangularis leaves and showed that it is a rich source of lignoids, alkaloids, and glycosylated flavonoids, which are known to exhibit antidiabetic effects and other biological properties that can be beneficial for patients with chronic hyperglycemia, thus certifying the popular use of this herbal drink.
Collapse
Affiliation(s)
- Flávio Henrique Souza de Araújo
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Cláudio Rodrigo Nogueira
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Virginia Demarchi Kappel Trichez
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Zaira da Rosa Guterres
- Universidade Estadual de Mato Grosso do Sul - UEMS, Unidade Universitária de Mundo Novo, BR 163, km 202, s/n, Mundo Novo, MS, 79.980-000, Brazil.
| | - Luciano da Silva Pinto
- Departamento de Química, Universidade Federal de São Carlos - UFSCAR, Rodovia Washington Luís km 235, São Carlos, SP, 13.565-905, Brazil.
| | - Suzana Queiroz Velter
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Guilherme Antonio Mantovani Ferreira
- Grupo Especializado em Substâncias Secundárias e em Bioconversão por Lepidópteros (GESSBIL), Faculdade de Ciências Exatas e Tecnologia (FACET), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Marcos Batista Machado
- Laboratório de RMN, Central Analítica, Universidade Federal do Amazonas, Manaus - UFAM, Av. Gal. Rodrigo Octávio Jordão Ramos, 1200, Coroado I, Amazonas, AM, 69.067-005, Brazil.
| | - Kidney de Oliveira Gomes Neves
- Laboratório de RMN, Central Analítica, Universidade Federal do Amazonas, Manaus - UFAM, Av. Gal. Rodrigo Octávio Jordão Ramos, 1200, Coroado I, Amazonas, AM, 69.067-005, Brazil.
| | - Maria do Carmo Vieira
- Faculdade de Ciências Agrárias (FCA), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul - UEMS, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Silvia Cristina Heredia-Vieira
- Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera-Uniderp, Av. Alexandre Herculano, 1400, Taquaral Bosque, Campo Grande, MS, 79.035-470, Brazil.
| | - Kelly Mari Pires de Oliveira
- Faculdade de Ciências Biológicas e Ambientais (FCBA), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Raul Cremonize Piva
- Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul - UEMS, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| | - Silvia Aparecida Oesterreich
- Faculdade de Ciências da Saúde (FCS), Universidade Federal da Grande Dourados - UFGD, Rodovia Dourados-Itahum, km 12, s/n, Dourados, MS, 79.804-970, Brazil.
| |
Collapse
|
13
|
Olofinsan KA, Salau VF, Erukainure OL, Islam MS. Senna petersiana (Bolle) leaf extract modulates glycemic homeostasis and improves dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115998. [PMID: 36471537 DOI: 10.1016/j.jep.2022.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senna petersiana (Bolle) is a native South African medicinal shrub combined locally with other plant products to manage diabetes or used as a single therapy for several other ailing conditions. AIM OF THE STUDY This study evaluated the antidiabetic and antilipidemic effects of S. petersiana leaf ethanol extract and its modulatory effects on dysregulated enzyme activities in fructose-fed streptozotocin-induced diabetic rats. MATERIALS AND METHODS Six groups of 6-weeks old male Sprague Dawley rats were used in this study. Diabetes was induced in four of the groups by injecting (i.p.) 40 mg/kg of streptozotocin after a two-weeks feeding of 10% fructose via drinking water, while animals in the two normal groups were given similar volume of vehicle buffer and normal drinking water, respectively. After the confirmation of diabetes, treatment with 150 and 300 mg/kg body weight of the ethanolic leaf extract of S. petersiana proceeded for a period of 6 weeks. RESULTS Oral administration of S. petersiana leaf extract significantly lowered blood glucose, food and liquid intake, glycosylhaemoglobin in blood, liver and cardiac biomarkers, and lipid profile in serum and atherogenic index (AIP) in both the low and high-dose treated animal groups. This was accompanied by a simultaneous increase in Homeostatic Model Assessment-beta (HOMA-β) score, serum high-density lipoproteins cholesterol (HDL-c), and insulin levels. It also improved pancreatic and serum-reduced glutathione (GSH) levels, catalase, and superoxide dismutase (SOD) enzymes activities with a simultaneous reduction in malondialdehyde (MDA) and nitric oxide (NO) concentrations. Moreover, the extract modulated dysregulated α-amylase, lipase, cholinesterase, and 5' nucleotidase enzyme activities in pancreatic tissue as well as glycogen metabolism in the liver. Analysis of the phytochemicals in the S. petersiana extract showed the presence of phytol, 4a,7,7,10a-tetramethyldodecahydrobenzo[f]-chromen-3-ol, phytol acetate, solasodine glucoside, cassine, veratramine and solasodine acetate. Amongst these compounds, solasodine glucoside had the best binding energy (ΔG) with the selected diabetes-linked enzymes via molecular docking simulation. CONCLUSION Data from this study demonstrate the antidiabetic effects of S. petersiana leaf extract via the modulation of the dysregulated indices involved in type 2 diabetes and its associated complications. Although it has been shown safe in animals, further toxicological studies are required to ensure its safety for diabetes management in humans.
Collapse
Affiliation(s)
- Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
14
|
Faisal S, Badshah SL, Kubra B, Emwas AH, Jaremko M. Alkaloids as potential antivirals. A comprehensive review. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:4. [PMID: 36598588 PMCID: PMC9812014 DOI: 10.1007/s13659-022-00366-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 05/26/2023]
Abstract
Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at non-toxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
Amssayef A, Eddouks M. Alkaloids as Promising Agents for the Management of Insulin Resistance: A Review. Curr Pharm Des 2023; 29:3123-3136. [PMID: 38038009 DOI: 10.2174/0113816128270340231121043038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Insulin resistance is one of the main factors that lead to the development of type 2 diabetes mellitus (T2DM). The effect of alkaloids on insulin resistance has been extensively examined according to multiple scientific researches. OBJECTIVE In this work, we aimed to summarize the interesting results from preclinical and clinical studies that assessed the effects of natural alkaloids (berberine, nigelladine A, piperine, trigonelline, capsaicin, nuciferine, evodiamine, mahanine, and magnoflorine) on impaired insulin sensitivity and worsened insulin resistance, which play a pivotal role in the pathogenesis of type 2 diabetes. METHODS In the current review, PubMed, ScienceDirect, Springer, and Google Scholar databases were used. The inclusion criteria were based on the following keywords and phrases: insulin sensitivity, insulin resistance, alkaloids and insulin resistance, alkaloids and type 2 diabetes, mechanisms of action, and alkaloids. RESULTS The outcomes reported in this review demonstrated that the selected alkaloids increased insulin sensitivity and reduced insulin resistance in vitro and in vivo evidence, as well as in clinical trials, through improving insulin-signaling transduction mainly in hepatocytes, myocytes, and adipocytes, both at cellular and molecular levels. Insulin signaling components (InsR, IRS-1, PI3K, Akt, etc.), protein kinases and phosphatases, receptors, ion channels, cytokines, adipokines, and microRNAs, are influenced by alkaloids at transcriptional and translational levels, also in terms of function (activity and/or phosphorylation). Multiple perturbations associated with insulin resistance, such as ectopic lipid accumulation, inflammation, ER stress, oxidative stress, mitochondrial dysfunction, gut microbiota dysbiosis, and β-cell failure, are reversed after treatment with alkaloids. Furthermore, various indices and tests are employed to assess insulin resistance, including the Matsuda index, insulin sensitivity index (ISI), oral glucose tolerance test (OGTT), and insulin tolerance test (ITT), which are all enhanced by alkaloids. These improvements extend to fasting blood glucose, fasting insulin, and HbA1c levels as well. Additionally, the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and the Homeostasis Model Assessment of β-cell function (HOMA-β) are recognized as robust markers of insulin sensitivity and β-cell function, and it is noteworthy that alkaloids also lead to improvements in these two markers. CONCLUSION Based on the findings of the current review, alkaloids may serve as both preventive and curative agents for metabolic disorders, specifically type 2 diabetes. Nonetheless, there is an urgent need for additional clinical trials to explore the potential benefits of alkaloids in both healthy individuals and those with type 2 diabetes. Additionally, it is crucial to assess any possible side effects and interactions with antidiabetic drugs.
Collapse
Affiliation(s)
- Ayoub Amssayef
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, Morocco
| | - Mohamed Eddouks
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, Morocco
| |
Collapse
|
16
|
Chanu KD, Sharma N, Kshetrimayum V, Chaudhary SK, Ghosh S, Haldar PK, Mukherjee PK. Ageratina adenophora (Spreng.) King & H. Rob. Standardized leaf extract as an antidiabetic agent for type 2 diabetes: An in vitro and in vivo evaluation. Front Pharmacol 2023; 14:1178904. [PMID: 37138848 PMCID: PMC10149788 DOI: 10.3389/fphar.2023.1178904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Type 2 diabetes has become one of the major health concerns of the 21st century, marked by hyperglycemia or glycosuria, and is associated with the development of several secondary health complications. Due to the fact that chemically synthesized drugs lead to several inevitable side effects, new antidiabetic medications from plants have gained substantial attention. Thus, the current study aims to evaluate the antidiabetic capacity of the Ageratina adenophora hydroalcoholic (AAHY) extract in streptozotocin-nicotinamide (STZ-NA)-induced diabetic Wistar albino rats. The rats were segregated randomly into five groups with six rats each. Group I was normal control, and the other four groups were STZ-NA-induced. Group II was designated diabetic control, and group III, IV, and V received metformin (150 mg/kg b.w.) and AAHY extract (200 and 400 mg/kg b.w.) for 28 days. Fasting blood glucose, serum biochemicals, liver and kidney antioxidant parameters, and pancreatic histopathology were observed after the experimental design. The study concludes that the AAHY extract has a significant blood glucose lowering capacity on normoglycemic (87.01 ± 0.54 to 57.21 ± 0.31), diabetic (324 ± 2.94 to 93 ± 2.04), and oral glucose-loaded (117.75 ± 3.35 to 92.75 ± 2.09) Wistar albino rats. The in vitro studies show that the AAHY extract has α-glucosidase and α-amylase inhibitory activities which can restore the altered blood glucose level, glycated hemoglobin, body weight, and serum enzymes such as serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, serum alkaline phosphatase, total protein, urea, and creatinine levels close to the normal range in the treated STZ-NA-induced diabetic rats. The evaluation of these serum biochemicals is crucial for monitoring the diabetic condition. The AAHY extract has significantly enhanced tissue antioxidant parameters, such as superoxide dismutase, glutathione, and lipid peroxidation, close to normal levels. The presence of high-quantity chlorogenic (6.47% w/w) and caffeic (3.28% w/w) acids as some of the major phytoconstituents may contribute to the improvement of insulin resistance and oxidative stress. The study provides scientific support for the utilization of A. adenophora to treat type 2 diabetes in the STZ-NA-induced diabetic rat model. Although the preventive role of the AAHY extract in treating Wistar albino rat models against type 2 diabetes mellitus is undeniable, further elaborative research is required for efficacy and safety assessment in human beings.
Collapse
Affiliation(s)
- Khaidem Devika Chanu
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | - Nanaocha Sharma
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- *Correspondence: Nanaocha Sharma,
| | - Vimi Kshetrimayum
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, India
| | | | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, West Bengal, India
| | - Pulok K. Mukherjee
- Institute of Bio-resources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
17
|
Chávez-Bustos EA, Morales-González A, Anguiano-Robledo L, Madrigal-Santillán EO, Valadez-Vega C, Lugo-Magaña O, Mendoza-Pérez JA, Fregoso-Aguilar TA. Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:3052. [PMID: 36432781 PMCID: PMC9692633 DOI: 10.3390/plants11223052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Bauhinia forficata L. is a tree used in alternative medicine as an anti-diabetic agent, with little scientific information about its pharmacological properties. The hypoglycemic, antioxidant, and genoprotective activities of a methanolic extract of B. forficata leaves and stems combined were investigated in mice treated with streptozotocin (STZ). Secondary metabolites were determined by qualitative phytochemistry. In vitro antioxidant activity was determined by the DPPH method at four concentrations of the extract. The genoprotective activity was evaluated in 3 groups of mice: control, anthracene (10 mg/kg), and anthracene + B. forficata (500 mg/kg) and the presence of micronuclei in peripheral blood was measured for 2 weeks. To determine the hypoglycemic activity, the crude extract was prepared in a suspension and administered (500 mg/kg, i.g.) in previously diabetic mice with STZ (120 mg/kg, i.p.), measuring blood glucose levels every week as well as the animals' body weight for six weeks. The extract showed good antioxidant activity and caused a decrease in the number of micronuclei. The diabetic mice + B. forficata presented hypoglycemic effects in the third week of treatment, perhaps due to its secondary metabolites. Therefore, B. forficata is a candidate for continued use at the ethnomedical level as an adjuvant to allopathic therapy.
Collapse
Affiliation(s)
- Erika Anayetzi Chávez-Bustos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Department de Fisiología. Av., Wilfrido Massieu S/N, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico
| | - Angel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz S/N Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México C.P. 07738, Mexico
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Laboratorio de Farmacología Molecular, Instituto Politécnico Nacional, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía. Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Cármen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca C.P. 42080, Mexico
| | - Olivia Lugo-Magaña
- Preparatoria Número 1, Universidad Autónoma del Estado de Hidalgo, Av. Benito Juárez S/N, Constitución, Pachuca de Soto C.P. 42060, Mexico
| | - Jorge Alberto Mendoza-Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Department de Ingeniería en Sistemas Ambientales. Av., Wilfrido Massieu S/N, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico
| | - Tomás Alejandro Fregoso-Aguilar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Department de Fisiología. Av., Wilfrido Massieu S/N, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico
| |
Collapse
|
18
|
An automatic hypothesis generation for plausible linkage between xanthium and diabetes. Sci Rep 2022; 12:17547. [PMID: 36266295 PMCID: PMC9585073 DOI: 10.1038/s41598-022-20752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
There has been a significant increase in text mining implementation for biomedical literature in recent years. Previous studies introduced the implementation of text mining and literature-based discovery to generate hypotheses of potential candidates for drug development. By conducting a hypothesis-generation step and using evidence from published journal articles or proceedings, previous studies have managed to reduce experimental time and costs. First, we applied the closed discovery approach from Swanson's ABC model to collect publications related to 36 Xanthium compounds or diabetes. Second, we extracted biomedical entities and relations using a knowledge extraction engine, the Public Knowledge Discovery Engine for Java or PKDE4J. Third, we built a knowledge graph using the obtained bio entities and relations and then generated paths with Xanthium compounds as source nodes and diabetes as the target node. Lastly, we employed graph embeddings to rank each path and evaluated the results based on domain experts' opinions and literature. Among 36 Xanthium compounds, 35 had direct paths to five diabetes-related nodes. We ranked 2,740,314 paths in total between 35 Xanthium compounds and three diabetes-related phrases: type 1 diabetes, type 2 diabetes, and diabetes mellitus. Based on the top five percentile paths, we concluded that adenosine, choline, beta-sitosterol, rhamnose, and scopoletin were potential candidates for diabetes drug development using natural products. Our framework for hypothesis generation employs a closed discovery from Swanson's ABC model that has proven very helpful in discovering biological linkages between bio entities. The PKDE4J tools we used to capture bio entities from our document collection could label entities into five categories: genes, compounds, phenotypes, biological processes, and molecular functions. Using the BioPREP model, we managed to interpret the semantic relatedness between two nodes and provided paths containing valuable hypotheses. Lastly, using a graph-embedding algorithm in our path-ranking analysis, we exploited the semantic relatedness while preserving the graph structure properties.
Collapse
|
19
|
Lin B, Xu P, Zheng J, Deng X, Ye Q, Huang Z, Wang N. Effects and mechanisms of natural alkaloids for prevention and treatment of osteoporosis. Front Pharmacol 2022; 13:1014173. [PMID: 36210805 PMCID: PMC9539536 DOI: 10.3389/fphar.2022.1014173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Natural alkaloids are polycyclic, nitrogen-containing, and basic compounds obtained from plants. In this review, the advances in bioactive alkaloids with respect to their chemical structures, herbal sources, and effects for the prevention and treatment of osteoporosis are discussed. Anti-osteoporosis alkaloids are classified into six categories based on the chemical structure, namely, isoquinoline alkaloids, quinolizidine alkaloids, piperidine alkaloids, indole alkaloids, pyrrolizidine alkaloids and steroidal alkaloids. They promote mesenchymal stem cells differentiation, improve osteoblast proliferation, stimulate osteoblast autophagy and suppress osteoclast formation. These natural alkaloids can regulate multiple signaling pathways, including interrupting the tumor necrosis factor receptor associated factor 6- receptor activator of nuclear factor kappa B interaction, inhibiting the nuclear factor kappa B pathway in osteoclasts, activating the p38 mitogen-activated protein kinases pathway in osteoblasts, and triggering the wingless and int-1 pathway in mesenchymal stem cells. This review provides evidence and support for novel drug and clinical treatment of osteoporosis using natural alkaloids.
Collapse
Affiliation(s)
- Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Juan Zheng
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitao Ye
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Nani Wang,
| |
Collapse
|
20
|
I Al-Suwaydani A, Alam MA, Raish M, A Bin Jardan Y, Ahad A, I Al-Jenoobi F. Effect of C. cyminum and L. sativum on Pharmacokinetics and Pharmacodynamics of Antidiabetic Drug Gliclazide. Curr Drug Metab 2022; 23:842-849. [PMID: 35747964 DOI: 10.2174/1389200223666220623155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Numerous herbs are reported to have anti-hyperglycemic activity and are frequently used in combination with prescription drugs to lower the blood glucose levels in diabetic patients, without proper knowledge about the possibility of herb-drug interaction. OBJECTIVES To investigate the effect of cumin and garden cress on pharmacokinetics (PK) and pharmacodynamics (PD) of gliclazide (GLZ) in nicotinamide-streptozotocin diabetic model. METHODS Diabetic animals of groups II-IV were treated with GLZ, cumin, 'cumin + GLZ', garden cress and 'garden cress + GLZ'. Herb's treatments were given for two weeks, and GLZ was administered in a single dose. Blood glucose levels (BGLs) were measured at pre-determined time points. Plasma samples of pharmacokinetic study were analyzed using UPLC-MS/MS. GLZ fragment at m/z 324.1>127 was monitored. RESULTS Cumin and garden cress have shown 15.3% and 15.9% reduction in mean BGL (1-24h) (p-value < 0.001), respectively. GLZ reduced mean BGL by 30.0%, which was significantly better than cumin and garden cress (pvalue <0.05). Concurrently administered "garden cress + GLZ" demonstrated the highest reduction in mean BGL (by 40.46%) and showed a prolonged effect. There was no significant advantage of simultaneously administered 'cumin + GLZ'. Cumin did not affect PK of GLZ. Garden cress has significantly enhanced AUC0-t (by 69.8%, pvalue 0.0013), but other PK parameters Cmax, Tmax, and Kel were close to the control group. CONCLUSION PK/PD-based herb-drug interaction was observed. Concurrently administered garden cress + GLZ showed improved antidiabetic effect and has enhanced GLZ bioavailability.
Collapse
Affiliation(s)
| | - Mohd A Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Fauziah F, Ali H, Ilmiawati C, Bakhtra D, Agustin Z, Handayani D. Inhibitory Activity of α-Glucosidase by the Extract and Fraction of Marine Sponge-Derived Fungus Penicillium citrinum Xt6. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetes mellitus is a metabolic condition characterized by high blood glucose levels due to insufficient insulin secretion or activity. Diabetes treatment may include inhibiting carbohydrate breakdown enzymes like α-glucosidase. Chemical compounds of the marine-derived fungus have the potential to inhibit α-glucosidase and, thus, could be used in therapy. Marine sponge-derived fungus lives in a colony on the tissues of living things. In the marine sponge Xestospongia testudinaria DD-01, there is a colony of the fungus Penicillium citrinum Xt6. P. citrinum Xt6 has been reported to reduce blood glucose levels in alloxan-induced diabetic mice.
AIM: This study aimed to investigate the inhibitory activity of α-glucosidase by the extracts and fractions of marine-derived fungus P. citrinum Xt6.
MATERIALS AND METHODS: The study was carried out in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) substrate and α-glucosidase enzyme from Saccharomyces cerevisiae. ELISA was used to measuring the enzyme’s inhibition activity at the wavelength of 405 nm. Acarbose was used as the standard drug, which inhibits the activity of α-glucosidase.
RESULTS: Inhibitory concentration (IC50) value of ethyl acetate extract was 37.39 μg/mL, methanol fraction was 60.01 μg/mL, n-hexane fraction was 75.45 μg/mL, and acarbose was 124.39 g/mL.
CONCLUSION: It can be concluded that the extract and fraction of marine-derived fungus P. citrinum inhibit α-glucosidase activity. P. citrinum could be developed into an antidiabetic agent.
Collapse
|
22
|
Chen Z, Zhang Z, Liu J, Qi H, Li J, Chen J, Huang Q, Liu Q, Mi J, Li X. Gut Microbiota: Therapeutic Targets of Ginseng Against Multiple Disorders and Ginsenoside Transformation. Front Cell Infect Microbiol 2022; 12:853981. [PMID: 35548468 PMCID: PMC9084182 DOI: 10.3389/fcimb.2022.853981] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| |
Collapse
|
23
|
Islam M, Olofinsan K, Erukainure O, Msomi N. Senna petersiana inhibits key digestive enzymes and modulates dysfunctional enzyme activities in oxidative pancreatic injury. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|