1
|
Hernandez CA, Delesalle VA, Krukonis GP, DeCurzio JM, Koskella B. Genomic and phenotypic signatures of bacteriophage coevolution with the phytopathogen Pseudomonas syringae. Mol Ecol 2024; 33:e16850. [PMID: 36651263 DOI: 10.1111/mec.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023]
Abstract
The rate and trajectory of evolution in an obligate parasite is critically dependent on those of its host(s). Adaptation to a genetically homogeneous host population should theoretically result in specialization, while adaptation to an evolving host population (i.e., coevolution) can result in various outcomes including diversification, range expansion, and/or local adaptation. For viruses of bacteria (bacteriophages, or phages), our understanding of how evolutionary history of the bacterial host(s) impacts viral genotypic and phenotypic evolution is currently limited. In this study, we used whole genome sequencing and two different metrics of phage impacts to compare the genotypes and phenotypes of lytic phages that had either coevolved with or were repeatedly passaged on an unchanging (ancestral) strain of the phytopathogen Pseudomonas syringae. Genomes of coevolved phages had more mutations than those of phages passaged on a constant host, and most mutations were in genes encoding phage tail-associated proteins. Phages from both passaging treatments shared some phenotypic outcomes, including range expansion and divergence across replicate populations, but coevolved phages were more efficient at reducing population growth (particularly of sympatric coevolved hosts). Genotypic similarity correlated with infectivity profile similarity in coevolved phages, but not in phages passaged on the ancestral host. Overall, while adaptation to either host type (coevolving or ancestral) led to divergence in phage tail proteins and infectivity patterns, coevolution led to more rapid molecular changes that increased bacterial killing efficiency and had more predictable effects on infectivity range. Together, these results underscore the important role of hosts in driving viral evolution and in shaping the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Catherine A Hernandez
- Department of Integrative Biology, University of California, Berkeley, California, Berkeley, USA
| | | | - Greg P Krukonis
- Department of Biology, Angelo State University, San Angelo, Texas, USA
| | - Jenna M DeCurzio
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California, Berkeley, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
3
|
Páez DJ, Kurath G, Powers RL, Naish KA, Purcell MK. Local and systemic replicative fitness for viruses in specialist, generalist, and non-specialist interactions with salmonid hosts. J Gen Virol 2024; 105. [PMID: 38180085 DOI: 10.1099/jgv.0.001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.
Collapse
Affiliation(s)
- David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Rachel L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
- U.S. Geological Survey, Forest Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| |
Collapse
|
4
|
Kawakubo S, Kim H, Takeshita M, Masuta C. Host-specific adaptation drove the coevolution of leek yellow stripe virus and Allium plants. Microbiol Spectr 2023; 11:e0234023. [PMID: 37706684 PMCID: PMC10581216 DOI: 10.1128/spectrum.02340-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Host adaptation plays a crucial role in virus evolution and is a consequence of long-term interactions between virus and host in a complex arms race between host RNA silencing and viral RNA silencing suppressor (RSS) as counterdefense. Leek yellow stripe virus (LYSV), a potyvirus causing yield loss of garlic, infects several species of Allium plants. The unexpected discovery of an interspecific hybrid of garlic, leek, and great-headed (GH) garlic motivated us to explore the host-adaptive evolution of LYSV. Here, using Bayesian phylogenetic comparative methods and a functional assay of viral RSS activity, we show that the evolutionary context of LYSV has been shaped by the host adaptation of the virus during its coevolution with Allium plants. Our phylogenetic analysis revealed that LYSV isolates from leek and their taxonomic relatives (Allium ampeloprasum complex; AAC) formed a distinct monophyletic clade separate from garlic isolates and are likely to be uniquely adapted to AAC. Our comparative studies on viral accumulation indicated that LYSV accumulated at a low level in leek, whereas LYSVs were abundant in other Allium species such as garlic and its relatives. When RSS activity of the viral P1 and HC-Pro of leek LYSV isolate was analyzed, significant synergism in RSS activity between the two proteins was observed in leek but not in other species, suggesting that viral RSS activity may be important for the viral host-specific adaptation. We thus consider that LYSV may have undergone host-specific evolution at least in leek, which must be driven by speciation of its Allium hosts. IMPORTANCE Potyviruses are the most abundant plant RNA viruses and are extremely diversified in terms of their wide host range. Due to frequent host switching during their evolution, host-specific adaptation of potyviruses may have been shaped by numerous host factors. However, any critical determinants for viral host range remain largely unknown, possibly because of the repeated gain and loss of virus infectivity of plants. Leek yellow stripe virus (LYSV) is a species of the genus Potyvirus, which has a relatively narrow host range, generally limited to hosts in the genus Allium. Our investigations on leek and leek relatives (Allium ampeloprasum complex), which must have been generated through interspecies hybridization, revealed that LYSV accumulation remained low in leek as a result of viral host adaptation in competition with host resistance such as RNA silencing. This study presents LYSV as an ideal model to study the process of host-adaptive evolution and virus-host coevolution.
Collapse
Affiliation(s)
- Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Claverie S, Hoareau M, Chéhida SB, Filloux D, Varsani A, Roumagnac P, Martin DP, Lett JM, Lefeuvre P. Metagenomics reveals the structure of Mastrevirus-host interaction network within an agro-ecosystem. Virus Evol 2023; 9:vead043. [PMID: 37475836 PMCID: PMC10354507 DOI: 10.1093/ve/vead043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
As highly pervasive parasites that sometimes cause disease, viruses are likely major components of all natural ecosystems. An important step towards both understanding the precise ecological roles of viruses and determining how natural communities of viral species are assembled and evolve is obtaining full descriptions of viral diversity and distributions at ecosystem scales. Here, we focused on obtaining such 'community-scale' data for viruses in a single genus. We chose the genus Mastrevirus (family Geminiviridae), members of which have predominantly been found infecting uncultivated grasses (family Poaceae) throughout the tropical and sub-tropical regions of the world. We sampled over 3 years, 2,884 individual Poaceae plants belonging to thirty different species within a 2-ha plot which included cultivated and uncultivated areas on the island of Reunion. Mastreviruses were found in ∼8 per cent of the samples, of which 96 per cent did not have any discernible disease symptoms. The multitude of host-virus associations that we uncovered reveals both the plant species that most commonly host mastreviruses and the mastrevirus species (such as maize streak virus and maize streak Reunion virus) that have especially large host ranges. Our findings are consistent with the hypothesis that perennial plant species capable of hosting years-long mixed mastrevirus infections likely play a disproportionately important role in the generation of inter-species and inter-strain mastrevirus recombinants.
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, F-97410 St Pierre, La Réunion, France
| | | | | | - Denis Filloux
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | | | - Philippe Roumagnac
- CIRAD, UMR PHIM, Montpellier F-34090, France
- PHIM Plant Health Institute, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier 34090, France
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, F-97410 St Pierre, La Réunion, France
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
6
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
7
|
Durmaz V, Köchl K, Krassnigg A, Parigger L, Hetmann M, Singh A, Nutz D, Korsunsky A, Kahler U, König C, Chang L, Krebs M, Bassetto R, Pavkov-Keller T, Resch V, Gruber K, Steinkellner G, Gruber CC. Structural bioinformatics analysis of SARS-CoV-2 variants reveals higher hACE2 receptor binding affinity for Omicron B.1.1.529 spike RBD compared to wild type reference. Sci Rep 2022; 12:14534. [PMID: 36008461 PMCID: PMC9406262 DOI: 10.1038/s41598-022-18507-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/08/2022] [Indexed: 01/16/2023] Open
Abstract
To date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread occurred in multiple pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here we report a sequence and structural-bioinformatics analysis to estimate the effects of amino acid substitutions on the affinity of the SARS-CoV-2 spike receptor binding domain (RBD) to the human receptor hACE2. This is done through qualitative electrostatics and hydrophobicity analysis as well as molecular dynamics simulations used to develop a high-precision empirical scoring function (ESF) closely related to the linear interaction energy method and calibrated on a large set of experimental binding energies. For the latest variant of concern (VOC), B.1.1.529 Omicron, our Halo difference point cloud studies reveal the largest impact on the RBD binding interface compared to all other VOC. Moreover, according to our ESF model, Omicron achieves a much higher ACE2 binding affinity than the wild type and, in particular, the highest among all VOCs except Alpha and thus requires special attention and monitoring.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hetmann
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria
| | - Amit Singh
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | | | | | | | | | - Lee Chang
- AWS Diagnostic Development Initiative-Global Social Impact, Seattle, WA, 98109, USA
| | - Marius Krebs
- Amazon Web Services EMEA SARL, 80807, Muenchen, Germany
| | | | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Field of Excellence BioHealth-University of Graz, 8010, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, 8010, Graz, Austria.
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.
| | - Christian C Gruber
- Innophore GmbH, 8010, Graz, Austria.
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
8
|
Páez DJ, McKenney D, Purcell MK, Naish KA, Kurath G. Variation in within-host replication kinetics among virus genotypes provides evidence of specialist and generalist infection strategies across three salmonid host species. Virus Evol 2022; 8:veac079. [PMID: 36101884 PMCID: PMC9463992 DOI: 10.1093/ve/veac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 02/12/2024] Open
Abstract
Theory of the evolution of pathogen specialization suggests that a specialist pathogen gains high fitness in one host, but this comes with fitness loss in other hosts. By contrast, a generalist pathogen does not achieve high fitness in any host, but gains ecological fitness by exploiting different hosts, and has higher fitness than specialists in nonspecialized hosts. As a result, specialist pathogens are predicted to have greater variation in fitness across hosts, and generalists would have lower fitness variation across hosts. We test these hypotheses by measuring pathogen replicative fitness as within-host viral loads from the onset of infection to the beginning of virus clearance, using the rhabdovirus infectious hematopoietic necrosis virus (IHNV) in salmonid fish. Based on field prevalence and virulence studies, the IHNV subgroups UP, MD, and L are specialists, causing infection and mortality in sockeye salmon, steelhead, and Chinook salmon juveniles, respectively. The UC subgroup evolved naturally from a UP ancestor and is a generalist infecting all three host species but without causing severe disease. We show that the specialist subgroups had the highest peak and mean viral loads in the hosts in which they are specialized, and they had low viral loads in nonspecialized hosts, resulting in large variation in viral load across hosts. Viral kinetics show that the mechanisms of specialization involve the ability to both maximize early virus replication and avoid clearance at later times, with different mechanisms of specialization evident in different host-virus combinations. Additional nuances in the data included different fitness levels for nonspecialist interactions, reflecting different trade-offs for specialist viruses in other hosts. The generalist UC subgroup reached intermediate viral loads in all hosts and showed the smallest variation in fitness across hosts. The evolution of the UC generalist from an ancestral UP sockeye specialist was associated with fitness increases in steelhead and Chinook salmon, but only slight decreases in fitness in sockeye salmon, consistent with low- or no-cost generalism. Our results support major elements of the specialist-generalist theory, providing evidence of a specialist-generalist continuum in a vertebrate pathogen. These results also quantify within-host replicative fitness trade-offs resulting from the natural evolution of specialist and generalist virus lineages in multi-host ecosystems.
Collapse
Affiliation(s)
- David J Páez
- School of Aquatic and Fishery Sciences, The University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98195, USA
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Douglas McKenney
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, The University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98195, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| |
Collapse
|
9
|
Vieira AC, Lopes ÍS, Fonseca PLC, Olmo RP, Bittencourt F, de Vasconcelos LM, Pirovani CP, Gaiotto FA, Aguiar ERGR. Expanding the environmental virome: Infection profile in a native rainforest tree species. Front Microbiol 2022; 13:874319. [PMID: 35992690 PMCID: PMC9387356 DOI: 10.3389/fmicb.2022.874319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Agroforestry systems (AFS) for cocoa production combine traditional land-use practices with local biodiversity conservation, resulting in both ecological and agricultural benefits. The cacao-cabruca AFS model is widely implemented in regions of the Brazilian Atlantic Forest. Carpotroche brasiliensis (Raddi) A. Gray (Achariaceae) is a tree found in cabruca landscapes that is often used for reforestation and biotechnological applications. Despite its importance, we still lack information about viruses circulating in C. brasiliensis, particularly considering the possibility of spillover that could affect cocoa production. In our study, we analyzed the Carpotroche brasiliensis virome from Atlantic Forest and cacao-cabruca AFS regions using metatranscriptomics from several vegetative and reproductive organs. Our results revealed a diverse virome detecting near-complete or partial coding sequences of single- and double-stranded DNA and RNA viruses classified into at least six families (Botourmiaviridae, Bromoviridae, Caulimoviridae, Genomoviridae, Mitoviridae, and Rhabdoviridae) plus unclassified elements. We described with high confidence the near-complete and the partial genomes of two tentative novel viruses: Carpotroche-associated ilarvirus and Carpotroche-associated genomovirus, respectively. Interestingly, we also described sequences likely derived from a rhabdovirus, which could represent a novel member of the genus Gammanucleorhabdovirus. We observed higher viral diversity in cacao-cabruca AFS and reproductive organs of C. brasiliensis with preferential tropism to fruits, which could directly affect production. Altogether, our results provide data to better understand the virome in this unexplored agroecological interface, such as cacao-cabruca AFS and forest ecosystem, providing information on the aspects of virus–plant interactions.
Collapse
Affiliation(s)
- Anderson Carvalho Vieira
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Ícaro Santos Lopes
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luize Camargos Fonseca
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Department of Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Flora Bittencourt
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Carlos Priminho Pirovani
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fernanda Amato Gaiotto
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- *Correspondence: Fernanda Amato Gaiotto,
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Eric Roberto Guimarães Rocha Aguiar,
| |
Collapse
|
10
|
He Z, Qin L, Xu X, Ding S. Evolution and host adaptability of plant RNA viruses: Research insights on compositional biases. Comput Struct Biotechnol J 2022; 20:2600-2610. [PMID: 35685354 PMCID: PMC9160401 DOI: 10.1016/j.csbj.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
During recent decades, many new emerging or re-emerging RNA viruses have been found in plants through the development of deep-sequencing technology and big data analysis. These findings largely changed our understanding of the origin, evolution and host range of plant RNA viruses. There is evidence that their genetic composition originates from viruses, and host populations play a key role in the evolution and host adaptability of plant RNA viruses. In this mini-review, we describe the state of our understanding of the evolution of plant RNA viruses in view of compositional biases and explore how they adapt to the host. It appears that adenine rich (A-rich) coding sequences, low CpG and UpA dinucleotide frequencies and lower codon usage patterns were found in the vast majority of plant RNA viruses. The codon usage pattern of plant RNA viruses was influenced by both natural selection and mutation pressure, and natural selection mostly from hosts was the dominant factor. The codon adaptation analyses support that plant RNA viruses probably evolved a dynamic balance between codon adaptation and deoptimization to maintain efficient replication cycles in multiple hosts with various codon usage patterns. In the future, additional combinations of computational and experimental analyses of the nucleotide composition and codon usage of plant RNA viruses should be addressed.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
- Corresponding author.
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
11
|
Busby TJ, Miller CR, Moran NA, Van Leuven JT. Global Composition of the Bacteriophage Community in Honey Bees. mSystems 2022; 7:e0119521. [PMID: 35343797 PMCID: PMC9040601 DOI: 10.1128/msystems.01195-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
The microbial communities in animal digestive systems are critical for host development and health. They stimulate the immune system during development, synthesize important chemical compounds like hormones, aid in digestion, competitively exclude pathogens, etc. Compared to the bacterial and fungal components of the microbiome, we know little about the temporal and spatial dynamics of bacteriophage communities in animal digestive systems. Recently, the bacteriophages of the honey bee gut were characterized in two European bee populations. Most of the bacteriophages described in these two reports were novel, harbored many metabolic genes in their genomes, and had a community structure that suggests coevolution with their bacterial hosts. To describe the conservation of bacteriophages in bees and begin to understand their role in the bee microbiome, we sequenced the virome of Apis mellifera from Austin, TX, and compared bacteriophage compositions among three locations around the world. We found that most bacteriophages from Austin are novel, sharing no sequence similarity with anything in public repositories. However, many bacteriophages are shared among the three bee viromes, indicating specialization of bacteriophages in the bee gut. Our study, along with the two previous bee virome studies, shows that the bee gut bacteriophage community is simple compared to that of many animals, consisting of several hundred types of bacteriophages that primarily infect four of the dominant bacterial phylotypes in the bee gut. IMPORTANCE Viruses that infect bacteria (bacteriophages) are abundant in the microbial communities that live on and in plants and animals. However, our knowledge of the structure, dynamics, and function of these viral communities lags far behind our knowledge of their bacterial hosts. We sequenced the first bacteriophage community of honey bees from the United States and compared the U.S. honey bee bacteriophage community to those of samples from Europe. Our work is an important characterization of an economically critical insect species and shows how bacteriophage communities can contain highly conserved individuals and be highly variable in composition across a wide geographic range.
Collapse
Affiliation(s)
- Taylor J. Busby
- Global Disease Biology, University of California, Davis, Davis, California, USA
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - James T. Van Leuven
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
12
|
Yépez Y, Marcano-Ruiz M, Bezerra RS, Fam B, Ximenez JPB, Silva WA, Bortolini MC. Evolutionary history of the SARS-CoV-2 Gamma variant of concern (P.1): a perfect storm. Genet Mol Biol 2022; 45:e20210309. [PMID: 35266951 PMCID: PMC8908351 DOI: 10.1590/1678-4685-gmb-2021-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Our goal was to describe in more detail the evolutionary history of Gamma and two derived lineages (P.1.1 and P.1.2), which are part of the arms race that SARS-CoV-2 wages with its host. A total of 4,977 sequences of the Gamma strain of SARS-CoV-2 from Brazil were analyzed. We detected 194 sites under positive selection in 12 genes/ORFs: Spike, N, M, E, ORF1a, ORF1b, ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF10. Some diagnostic sites for Gamma lacked a signature of positive selection in our study, but these were not fixed, apparently escaping the action of purifying selection. Our network analyses revealed branches leading to expanding haplotypes with sites under selection only detected when P.1.1 and P.1.2 were considered. The P.1.2 exclusive haplotype H_5 originated from a non-synonymous mutational step (H3509Y) in H_1 of ORF1a. The selected allele, 3509Y, represents an adaptive novelty involving ORF1a of P.1. Finally, we discuss how phenomena such as epistasis and antagonistic pleiotropy could limit the emergence of new alleles (and combinations thereof) in SARS-COV-2 lineages, maintaining infectivity in humans, while providing rapid response capabilities to face the arms race triggered by host immuneresponses.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Rafael S Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Bibiana Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - João PB Ximenez
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Wilson A Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Genética, Ribeirão Preto, SP, Brazil
- Instituto de Pesquisa do Câncer de Guarapuava, Guarapuava, PR,
Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Phylogenetic inference of changes in amino acid propensities with single-position resolution. PLoS Comput Biol 2022; 18:e1009878. [PMID: 35180226 PMCID: PMC9106220 DOI: 10.1371/journal.pcbi.1009878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/13/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.
Collapse
|
14
|
Detecting Selection in the HIV-1 Genome during Sexual Transmission Events. Viruses 2022; 14:v14020406. [PMID: 35215999 PMCID: PMC8876189 DOI: 10.3390/v14020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter–recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter–recipient pairs is required to improve sensitivity of detecting selection.
Collapse
|
15
|
Bienentreu JF, Schock DM, Greer AL, Lesbarrères D. Ranavirus Amplification in Low-Diversity Amphibian Communities. Front Vet Sci 2022; 9:755426. [PMID: 35224079 PMCID: PMC8863596 DOI: 10.3389/fvets.2022.755426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In an era where emerging infectious diseases are a serious threat to biodiversity, epidemiological patterns need to be identified, particularly the complex mechanisms driving the dynamics of multi-host pathogens in natural communities. Many amphibian species have faced unprecedented population declines associated with diseases. Yet, specific processes shaping host-pathogen relationships within and among communities for amphibian pathogens such as ranaviruses (RV) remain poorly understood. To address this gap, we conducted a comprehensive study of RV in low-diversity amphibian communities in north-western Canada to assess the effects of biotic factors (species identity, species richness, abundance) and abiotic factors (conductivity, pH) on the pathogen prevalence and viral loads. Across 2 years and 18 sites, with communities of up to three hosts (wood frog, Rana sylvatica; boreal chorus frog, Pseudacris maculata; Canadian toad, Anaxyrus hemiophrys), we observed that RV prevalence nearly doubled with each additional species in a community, suggesting an amplification effect in aquatic, as well as terrestrial life-history stages. Infection intensity among infected wood frogs and boreal chorus frogs also significantly increased with an increase in species richness. Interestingly, we did not observe any effects of host abundance or abiotic factors, highlighting the importance of including host identity and species richness when investigating multi-host pathogens. Ultimately, only such a comprehensive approach can improve our understanding of complex and often highly context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Joe-Felix Bienentreu
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- *Correspondence: Joe-Felix Bienentreu
| | - Danna M. Schock
- Sciences and Environmental Technology, Keyano College, Fort McMurray, AB, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
16
|
Panwar P, Allen MA, Williams TJ, Haque S, Brazendale S, Hancock AM, Paez-Espino D, Cavicchioli R. Remarkably coherent population structure for a dominant Antarctic Chlorobium species. MICROBIOME 2021; 9:231. [PMID: 34823595 PMCID: PMC8620254 DOI: 10.1186/s40168-021-01173-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/09/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND In Antarctica, summer sunlight enables phototrophic microorganisms to drive primary production, thereby "feeding" ecosystems to enable their persistence through the long, dark winter months. In Ace Lake, a stratified marine-derived system in the Vestfold Hills of East Antarctica, a Chlorobium species of green sulphur bacteria (GSB) is the dominant phototroph, although its seasonal abundance changes more than 100-fold. Here, we analysed 413 Gb of Antarctic metagenome data including 59 Chlorobium metagenome-assembled genomes (MAGs) from Ace Lake and nearby stratified marine basins to determine how genome variation and population structure across a 7-year period impacted ecosystem function. RESULTS A single species, Candidatus Chlorobium antarcticum (most similar to Chlorobium phaeovibrioides DSM265) prevails in all three aquatic systems and harbours very little genomic variation (≥ 99% average nucleotide identity). A notable feature of variation that did exist related to the genomic capacity to biosynthesize cobalamin. The abundance of phylotypes with this capacity changed seasonally ~ 2-fold, consistent with the population balancing the value of a bolstered photosynthetic capacity in summer against an energetic cost in winter. The very high GSB concentration (> 108 cells ml-1 in Ace Lake) and seasonal cycle of cell lysis likely make Ca. Chlorobium antarcticum a major provider of cobalamin to the food web. Analysis of Ca. Chlorobium antarcticum viruses revealed the species to be infected by generalist (rather than specialist) viruses with a broad host range (e.g., infecting Gammaproteobacteria) that were present in diverse Antarctic lakes. The marked seasonal decrease in Ca. Chlorobium antarcticum abundance may restrict specialist viruses from establishing effective lifecycles, whereas generalist viruses may augment their proliferation using other hosts. CONCLUSION The factors shaping Antarctic microbial communities are gradually being defined. In addition to the cold, the annual variation in sunlight hours dictates which phototrophic species can grow and the extent to which they contribute to ecosystem processes. The Chlorobium population studied was inferred to provide cobalamin, in addition to carbon, nitrogen, hydrogen, and sulphur cycling, as critical ecosystem services. The specific Antarctic environmental factors and major ecosystem benefits afforded by this GSB likely explain why such a coherent population structure has developed in this Chlorobium species. Video abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present address: Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , Present address: Pegarah, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present address: Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, Australia
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Present address: Mammoth Biosciences, Inc., 1000 Marina Blvd. Suite 600, Brisbane, CA, USA
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
17
|
DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes. mBio 2021; 12:e0259521. [PMID: 34724822 PMCID: PMC8567247 DOI: 10.1128/mbio.02595-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Soil viruses are abundant, but the influence of the environment and climate on soil viruses remains poorly understood. Here, we addressed this gap by comparing the diversity, abundance, lifestyle, and metabolic potential of DNA viruses in three grassland soils with historical differences in average annual precipitation, low in eastern Washington (WA), high in Iowa (IA), and intermediate in Kansas (KS). Bioinformatics analyses were applied to identify a total of 2,631 viral contigs, including 14 complete viral genomes from three deep metagenomes (1 terabase [Tb] each) that were sequenced from bulk soil DNA. An additional three replicate metagenomes (∼0.5 Tb each) were obtained from each location for statistical comparisons. Identified viruses were primarily bacteriophages targeting dominant bacterial taxa. Both viral and host diversity were higher in soil with lower precipitation. Viral abundance was also significantly higher in the arid WA location than in IA and KS. More lysogenic markers and fewer clustered regularly interspaced short palindromic repeats (CRISPR) spacer hits were found in WA, reflecting more lysogeny in historically drier soil. More putative auxiliary metabolic genes (AMGs) were also detected in WA than in the historically wetter locations. The AMGs occurring in 18 pathways could potentially contribute to carbon metabolism and energy acquisition in their hosts. Structural equation modeling (SEM) suggested that historical precipitation influenced viral life cycle and selection of AMGs. The observed and predicted relationships between soil viruses and various biotic and abiotic variables have value for predicting viral responses to environmental change.
Collapse
|
18
|
|
19
|
Ngiam L, Schembri MA, Weynberg K, Guo J. Bacteriophage isolated from non-target bacteria demonstrates broad host range infectivity against multidrug-resistant bacteria. Environ Microbiol 2021; 23:5569-5586. [PMID: 34390602 DOI: 10.1111/1462-2920.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance represents a global health challenge. The emergence of multidrug-resistant (MDR) bacteria such as uropathogenic Escherichia coli (UPEC) has attracted significant attention due to increased MDR properties, even against the last line of antibiotics. Bacteriophage, or simply phage, represents an alternative treatment to antibiotics. However, phage applications still face some challenges, such as host range specificity and development of phage resistant mutants. In this study, using both UPEC and non-UPEC hosts, five different phages were isolated from wastewater. We found that the inclusion of commensal Escherichia coli as target hosts during screening improved the capacity to select phage with desirable characteristics for phage therapy. Whole-genome sequencing revealed that four out of five phages adopt strictly lytic lifestyles and are taxonomically related to different phage families belonging to the Myoviridae and Podoviridae. In comparison to single phage treatment, the application of phage cocktails targeting different cell surface receptors significantly enhanced the suppression of UPEC hosts. The emergence of phage-resistant mutants after single phage treatment was attributed to mutational changes in outer membrane protein components, suggesting the potential receptors recognized by these phages. The findings highlight the use of commensal E. coli as target hosts to isolate broad host range phage with infectivity against MDR bacteria.
Collapse
Affiliation(s)
- Lyman Ngiam
- Advanced Water Management Centre, University of Queensland, Brisbane, Qld, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld, Australia
| | - Karen Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
20
|
Butković A, González R, Rivarez MPS, Elena SF. A genome-wide association study identifies Arabidopsis thaliana genes that contribute to differences in the outcome of infection with two Turnip mosaic potyvirus strains that differ in their evolutionary history and degree of host specialization. Virus Evol 2021; 7:veab063. [PMID: 34532063 PMCID: PMC8438913 DOI: 10.1093/ve/veab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses lie in a continuum between generalism and specialism depending on their ability to infect more or less hosts. While generalists are able to successfully infect a wide variety of hosts, specialists are limited to one or a few. Even though generalists seem to gain an advantage due to their wide host range, they usually pay a pleiotropic fitness cost within each host. On the contrary, a specialist has maximal fitness within its own host. A relevant yet poorly explored question is whether viruses differ in the way they interact with their hosts' gene expression depending on their degree of specialization. Using a genome-wide association study approach, we have identified host genes whose expression depends on whether hosts were infected with more or less specialized viral strains. Four hundred fifty natural accessions of Arabidopsis thaliana were inoculated with Turnip mosaic potyvirus strains with different past evolutionary histories and that shown different degrees of specialization. Three disease-related traits were measured and associated with different sets of host genes for each strain. The genetic architectures of these traits differed among viral strains and, in the case of the more specialized virus, also varied along the duration of infection. While most of the mapped loci were strain specific, one shared locus was mapped for both strains, a disease-resistance TIR-NBS-LRR class protein. Likewise, only putative cysteine-rich receptor-like protein kinases were involved in all three traits. The impact on disease progress of 10 selected genes was validated by studying the infection phenotypes of loss-of-function mutant plants. Nine of these mutants have altered the disease progress and/or symptoms intensity between both strains. Compared to wild-type plants six had an effect on both viral strains, three had an effect only on the more specialized, and two were significant during infection with the less specialized.
Collapse
|
21
|
Sbaraini N, Junges Â, de Oliveira ES, Webster A, Vainstein MH, Staats CC, Schrank A. The deletion of chiMaD1, a horizontally acquired chitinase of Metarhizium anisopliae, led to higher virulence towards the cattle tick (Rhipicephalus microplus). FEMS Microbiol Lett 2021; 368:6294904. [PMID: 34100915 DOI: 10.1093/femsle/fnab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
The first line of the Arthropods defense against infections is the hard-structured exoskeleton, a physical barrier, usually rich in insoluble chitin. For entomopathogenic fungi that actively penetrate the host body, an arsenal of hydrolytic enzymes (as chitinases and N-acetylglucosaminidases), that break down chitin, is essential. Notably, twenty-one putative chitinase genes have been identified in the genome of Metarhizium anisopliae, a generalist entomopathogenic fungus. As a multigenic family, with enzymes that, presumably, perform redundant functions, the main goal is to understand the singularity of each one of such genes and to discover their precise role in the fungal life cycle. Specially chitinases that can act as virulence determinants are of interest since these enzymes can lead to more efficient biocontrol agents. Here we explored a horizontally acquired chitinase from M. anisopliae, named chiMaD1. The deletion of this gene did not lead to phenotypic alterations or diminished supernatant's chitinolytic activity. Surprisingly, chiMaD1 deletion enhanced M. anisopliae virulence to the cattle tick (Rhipicephalus microplus) larvae and engorged females, while did not alter the virulence to the mealworm larvae (Tenebrio molitor). These results add up to recent reports of deleted genes that enhanced entomopathogenic virulence, showing the complexity of host-pathogen interactions.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| | - Ângela Junges
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| | - Eder Silva de Oliveira
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| | - Anelise Webster
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada Do Conde, 6000 - Sans Souci, Eldorado do Sul, RS, 92990-000, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Agronomia, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
22
|
Shen S, Shimizu Y. Seasonal Variation in Viral Infection Rates and Cell Sizes of Infected Prokaryotes in a Large and Deep Freshwater Lake (Lake Biwa, Japan). Front Microbiol 2021; 12:624980. [PMID: 34046018 PMCID: PMC8144228 DOI: 10.3389/fmicb.2021.624980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
As viruses regulate prokaryotic abundance and the carbon cycle by infecting and lysing their prokaryotic hosts, the volume of infected prokaryotes is an important parameter for understanding the impact of viruses on aquatic environments. However, literature regarding the seasonal and spatial variations in the cell volume of infected prokaryotes is limited, despite the volume of the prokaryotic community varying dynamically with season and water column depth. Here, we conducted a field survey for two annual cycles in a large and deep freshwater lake (Lake Biwa, Japan), where large prokaryotes inhabit the deeper layer during the stratified period. We used transmission electron microscopy to reveal the seasonal and spatial variation in the frequency of viral infection and cell volume of infected prokaryotes. We found that the viral infection rate in the surface layer increased when estimated contact rates increased during the middle of the stratified period, whereas the infection rate in the deeper layer increased despite low estimated contact rates during the end of the stratified period. In addition, in the deeper layer, the fraction of large prokaryotes in the total and infected prokaryotic communities increased progressively while the number of intracellular viral particles increased. We suggest different ways in which the viral abundance is maintained in the two water layers. In the surface layer, it is speculated that viral abundance is supported by the high viral infection rate because of the high activity of prokaryotes, whereas in the deeper layer, it might be supported by the larger number of intracellular viral particles released from large prokaryotes. Moreover, large prokaryotes could contribute as important sources of organic substrates via viral lysis in the deeper layer, where labile dissolved organic matter is depleted.
Collapse
Affiliation(s)
- Shang Shen
- Research Center for Environmental Quality Management, Kyoto University, Kyoto, Japan
| | - Yoshihisa Shimizu
- Research Center for Environmental Quality Management, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Huss P, Meger A, Leander M, Nishikawa K, Raman S. Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. eLife 2021; 10:e63775. [PMID: 33687327 PMCID: PMC8043750 DOI: 10.7554/elife.63775] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many of which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against a urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence-function relationships in many phage-bacterial systems.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
| | - Anthony Meger
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Megan Leander
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Kyle Nishikawa
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-MadisonMadisonUnited States
- Department of Bacteriology, University of Wisconsin-MadisonMadisonUnited States
- Department of Chemical and Biological Engineering, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
24
|
Porath‐Krause A, Campbell R, Shoemaker L, Sieben A, Strauss AT, Shaw AK, Seabloom EW, Borer ET. Pliant pathogens: Estimating viral spread when confronted with new vector, host, and environmental conditions. Ecol Evol 2021; 11:1877-1887. [PMID: 33614010 PMCID: PMC7882977 DOI: 10.1002/ece3.7178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors.To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector-borne viral plant pathogen, Barley Yellow Dwarf Virus PAV (BYDV-PAV) into hosts, vectors, and host nutrient supplies that it had not encountered for thousands of viral generations. We quantified pathogen prevalence over the course of two serial inoculations under the new conditions. Using individual-level transmission rates from this experiment, we parameterized a dynamical model of disease spread and projected spread across host populations through a growing season.A change in nutrient conditions (increased supply of phosphorus) reduced viral transmission whereas shifting to a new vector or host species had no effect on infection prevalence. However, the reduction in the new nutrient environment was only temporary; infection prevalence recovered after the second inoculation. Synthesis. These results highlight how robust the pathogen, BYDV-PAV, is to changes in its biotic and abiotic environment. Our study also highlights the need to quantify longitudinal infection information beyond snapshot assessments to project disease risk for pathogens in new environments.
Collapse
Affiliation(s)
- Anita Porath‐Krause
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Ryan Campbell
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Lauren Shoemaker
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Andrew Sieben
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Alexander T. Strauss
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Present address:
Odum School of EcologyUniversity of GeorgiaAthensGAUSA
| | - Allison K. Shaw
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
25
|
Kumar M, Bharti R, Ranjan T. The Evolutionary Significance of Generalist Viruses with Special Emphasis on Plant Viruses and their Hosts. Open Virol J 2020. [DOI: 10.2174/1874357902014010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The host range of a virus is defined as the number of species a virus potentially infects. The specialist virus infects one or few related species while the generalist virus infects several different species, possibly in different families. Origin of generalist viruses from their specialist nature and the expansion of the host range of the generalist virus occur with the host shift event in which the virus encounters and adapts to a new host. Host shift events have resulted in the majority of the newly emerging viral diseases. This review discusses the advantages and disadvantages of generalist over specialist viruses and the unique features of plant viruses and their hosts that result in a higher incidence of generalist viruses in plants.
Collapse
|
26
|
Ruark-Seward CL, Bonville B, Kennedy G, Rasmussen DA. Evolutionary dynamics of Tomato spotted wilt virus within and between alternate plant hosts and thrips. Sci Rep 2020; 10:15797. [PMID: 32978446 PMCID: PMC7519039 DOI: 10.1038/s41598-020-72691-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is a generalist pathogen with one of the broadest known host ranges among RNA viruses. To understand how TSWV adapts to different hosts, we experimentally passaged viral populations between two alternate hosts, Emilia sochifolia and Datura stramonium, and an obligate vector in which it also replicates, western flower thrips (Frankliniella occidentalis). Deep sequencing viral populations at multiple time points allowed us to track the evolutionary dynamics of viral populations within and between hosts. High levels of viral genetic diversity were maintained in both plants and thrips between transmission events. Rapid fluctuations in the frequency of amino acid variants indicated strong host-specific selection pressures on proteins involved in viral movement (NSm) and replication (RdRp). While several genetic variants showed opposing fitness effects in different hosts, fitness effects were generally positively correlated between hosts indicating that positive rather than antagonistic pleiotropy is pervasive. These results suggest that high levels of genetic diversity together with the positive pleiotropic effects of mutations have allowed TSWV to rapidly adapt to new hosts and expand its host range.
Collapse
Affiliation(s)
- Casey L Ruark-Seward
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - Brian Bonville
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - George Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Ricks Hall 312, 1 Lampe Drive, Raleigh, NC, 27607, USA. .,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
27
|
Merlo LMF, Sprouffske K, Howard TC, Gardiner KL, Caulin AF, Blum SM, Evans P, Bedalov A, Sniegowski PD, Maley CC. Application of simultaneous selective pressures slows adaptation. Evol Appl 2020; 13:1615-1625. [PMID: 32952608 PMCID: PMC7484835 DOI: 10.1111/eva.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/22/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Beneficial mutations that arise in an evolving asexual population may compete or interact in ways that alter the overall rate of adaptation through mechanisms such as clonal or functional interference. The application of multiple selective pressures simultaneously may allow for a greater number of adaptive mutations, increasing the opportunities for competition between selectively advantageous alterations, and thereby reducing the rate of adaptation. We evolved a strain of Saccharomyces cerevisiae that could not produce its own histidine or uracil for ~500 generations under one or three selective pressures: limitation of the concentration of glucose, histidine, and/or uracil in the media. The rate of adaptation was obtained by measuring evolved relative fitness using competition assays. Populations evolved under a single selective pressure showed a statistically significant increase in fitness on those pressures relative to the ancestral strain, but the populations evolved on all three pressures did not show a statistically significant increase in fitness over the ancestral strain on any single pressure. Simultaneously limiting three essential nutrients for a population of S. cerevisiae effectively slows the rate of evolution on any one of the three selective pressures applied, relative to the single selective pressure cases. We identify possible mechanisms for fitness changes seen between populations evolved on one or three limiting nutrient pressures by high-throughput sequencing. Adding multiple selective pressures to evolving disease like cancer and infectious diseases could reduce the rate of adaptation and thereby may slow disease progression, prolong drug efficacy and prevent deaths.
Collapse
Affiliation(s)
| | - Kathleen Sprouffske
- Disease Area OncologyNovartis Institutes for BioMedical ResearchBaselSwitzerland
| | - Taylor C. Howard
- Department of Pathology and Laboratory MedicineUC Davis HealthSacramentoCaliforniaUSA
| | - Kristin L. Gardiner
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Steven M. Blum
- Department of Medical OncologyDana‐Farber Cancer InstituteBroad Institute at MIT and HarvardHarvard Medical School, and Massachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Perry Evans
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonio Bedalov
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Paul D. Sniegowski
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Carlo C. Maley
- Arizona State UniversitySchool of Life SciencesBiodesign InstituteTempeArizonaUSA
| |
Collapse
|
28
|
Variation Profile of the Orthotospovirus Genome. Pathogens 2020; 9:pathogens9070521. [PMID: 32610472 PMCID: PMC7400459 DOI: 10.3390/pathogens9070521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Orthotospoviruses are plant-infecting members of the family Tospoviridae (order Bunyavirales), have a broad host range and are vectored by polyphagous thrips in a circulative-propagative manner. Because diverse hosts and vectors impose heterogeneous selection constraints on viral genomes, the evolutionary arms races between hosts and their pathogens might be manifested as selection for rapid changes in key genes. These observations suggest that orthotospoviruses contain key genetic components that rapidly mutate to mediate host adaptation and vector transmission. Using complete genome sequences, we profiled genomic variation in orthotospoviruses. Results show that the three genomic segments contain hypervariable areas at homologous locations across species. Remarkably, the highest nucleotide variation mapped to the intergenic region of RNA segments S and M, which fold into a hairpin. Secondary structure analyses showed that the hairpin is a dynamic structure with multiple functional shapes formed by stems and loops, contains sites under positive selection and covariable sites. Accumulation and tolerance of mutations in the intergenic region is a general feature of orthotospoviruses and might mediate adaptation to host plants and insect vectors.
Collapse
|
29
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
30
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
31
|
Ellwanger JH, Chies JAB. The triad "dogs, conservation and zoonotic diseases" - An old and still neglected problem in Brazil. Perspect Ecol Conserv 2019; 17:157-161. [PMID: 32572390 PMCID: PMC7148981 DOI: 10.1016/j.pecon.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
The presence of domestic/free-ranging dogs in Brazilian protected areas and native vegetation fragments is an important problem, mainly because these animals pose a threat to wild species that live in such areas. In addition, dogs constantly circulate between wildlife environments and urban regions, acting as "bridges" in spillover events. Dogs are traditionally recognized as vectors of zoonoses, which are correct, but their roles as facilitating agents for the "jump" of pathogens from wild animals to humans (and vice versa) are sparsely debated. In this context, this work briefly describes the different roles of dogs in the dynamics and ecology of infectious diseases, using the Brazilian scenario as a study model.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruíz-Sáenz J. Evolution and Interspecies Transmission of Canine Distemper Virus-An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus. Viruses 2019; 11:v11070582. [PMID: 31247987 PMCID: PMC6669529 DOI: 10.3390/v11070582] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections.
Collapse
Affiliation(s)
- July Duque-Valencia
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia
| | - Nicolás Sarute
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica, Montevideo 11200, Uruguay
- Department of Microbiology and Immunology, UIC College of Medicine, Chicago, IL 60612, USA
| | - Ximena A Olarte-Castillo
- Facultad de Ciencias Exactas, Naturales y Agropecuarias. Universidad de Santander (UDES), sede Bucaramanga 680002, Colombia
| | - Julián Ruíz-Sáenz
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia.
| |
Collapse
|
33
|
Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M, Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, Ferland J, Kandels S, Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JÉ, Vik D, Babin M, Bowler C, Culley AI, de Vargas C, Dutilh BE, Iudicone D, Karp-Boss L, Roux S, Sunagawa S, Wincker P, Sullivan MB. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 2019; 177:1109-1123.e14. [PMID: 31031001 PMCID: PMC6525058 DOI: 10.1016/j.cell.2019.03.040] [Citation(s) in RCA: 414] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven-University of Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Ben Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Mathieu Ardyna
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Margaux Carmichael
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 Roscoff, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Corinne Cruaud
- CEA-Institut de Biologie François Jacob, Genoscope, Evry 91057, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Céline Dimier
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | | | - Joannie Ferland
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Directors' Research, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yunxiao Liu
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Claudie Marec
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, 28359 Bremen, Germany; MARUM, Bremen University, 28359 Bremen, Germany
| | - Marc Picheral
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230 Villefranche-sur-mer, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology of Russian Academy of Sciences, 36 Nakhimovsky prosp, 117997 Moscow, Russia
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Jean-Éric Tremblay
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Marcel Babin
- Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI 3376), Université Laval (Canada)-CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Alexander I Culley
- Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 Roscoff, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8093 Zurich, Switzerland
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France; Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Bera S, Fraile A, García-Arenal F. Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus. J Virol 2018; 92:e01268-18. [PMID: 30257999 PMCID: PMC6258955 DOI: 10.1128/jvi.01268-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
The acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir host Nicotiana glauca and from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates from N. glauca were adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3' untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness in N. glaucaIMPORTANCE The acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host, Nicotiana glauca, and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness in N. glauca Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
35
|
Abstract
Some bacteria can transfer to new host species, and this poses a risk to human health. Indeed, an estimated 60% of all human pathogens have originated from other animal species. Similarly, human-to-animal transitions are recognized as a major threat to sustainable livestock production, and emerging pathogens impose an increasing burden on crop yield and global food security. Recent advances in high-throughput sequencing technologies have enabled comparative genomic analyses of bacterial populations from multiple hosts. Such studies are providing new insights into the evolutionary processes that underpin the establishment of bacteria in new host niches. A better understanding of the genetic and mechanistic basis for bacterial host adaptation may reveal novel targets for controlling infection or inform the design of approaches to limit the emergence of new pathogens.
Collapse
Affiliation(s)
- Samuel K Sheppard
- Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
36
|
Suntsov VV. Quantum Speciation of Yersinia pestis Plague Microbe in a Heteroimmune Environment: In the Populations of Hibernating Tarbagan Marmots (Marmota sibirica). CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s199542551804008x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
A Stochastic Model for Reproductive Isolation Under Asymmetrical Mating Preferences. Bull Math Biol 2018; 80:2502-2525. [PMID: 30094770 DOI: 10.1007/s11538-018-0479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
More and more evidence shows that mating preference is a mechanism that may lead to a reproductive isolation event. In this paper, a haploid population living on two patches linked by migration is considered. Individuals are ecologically and demographically neutral on the space and differ only on a trait, a or A, affecting both mating success and migration rate. The special feature of this paper is to assume that the strengths of the mating preference and the migration depend on the trait carried. Indeed, patterns of mating preferences are generally asymmetrical between the subspecies of a population. I prove that mating preference interacting with frequency-dependent migration behavior can lead to a reproductive isolation. Then, I describe the time before reproductive isolation occurs. To reach this result, I use an original method to study the limiting dynamical system, analyzing first the system without migration and adding migration with a perturbation method. Finally, I study how the time before reproductive isolation is influenced by the parameters of migration and of mating preferences, highlighting that large migration rates tend to favor types with weak mating preferences.
Collapse
|
38
|
Goodacre N, Devkota P, Bae E, Wuchty S, Uetz P. Protein-protein interactions of human viruses. Semin Cell Dev Biol 2018; 99:31-39. [PMID: 30031213 PMCID: PMC7102568 DOI: 10.1016/j.semcdb.2018.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/02/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
Viruses infect their human hosts by a series of interactions between viral and host proteins, indicating that detailed knowledge of such virus-host interaction interfaces are critical for our understanding of viral infection mechanisms, disease etiology and the development of new drugs. In this review, we primarily survey human host-virus interaction data that are available from public databases following the standardized PSI-MS format. Notably, available host-virus protein interaction information is strongly biased toward a small number of virus families including herpesviridae, papillomaviridae, orthomyxoviridae and retroviridae. While we explore the reliability and relevance of these protein interactions we also survey the current knowledge about viruses functional and topological targets. Furthermore, we assess emerging frontiers of host-virus protein interaction research, focusing on protein interaction interfaces of hosts that are infected by different viruses and viruses that infect multiple hosts. Finally, we cover the current status of research that investigates the relationships of virus-targeted host proteins to other comorbidities as well as the influence of host-virus protein interactions on human metabolism.
Collapse
Affiliation(s)
- Norman Goodacre
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Prajwal Devkota
- Dept. of Computer Science, Univ. of Miami, Coral Gables, FL, 33146, USA
| | - Eunhae Bae
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Stefan Wuchty
- Dept. of Computer Science, Univ. of Miami, Coral Gables, FL, 33146, USA; Center for Computational Science, Univ. of Miami, Coral Gables, FL, 33146, USA; Dept. of Biology, Univ. of Miami, Coral Gables, FL, 33146, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
39
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
40
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
41
|
Reynolds MG, Guagliardo SAJ, Nakazawa YJ, Doty JB, Mauldin MR. Understanding orthopoxvirus host range and evolution: from the enigmatic to the usual suspects. Curr Opin Virol 2018; 28:108-115. [PMID: 29288901 DOI: 10.1016/j.coviro.2017.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
In general, orthopoxviruses can be considered as falling into one of three host-utilization categories: highly specialized, single-host; broad host range; or 'cryptic', the last encompassing those viruses about which very little is known. Single-host viruses tend to exploit abundant hosts that have consistent patterns of interaction. For these viruses, observed genome reduction and loss of presumptive host-range genes is thought to be a consequence of relaxed selection. In contrast, the large genome size retained among broad host range orthopoxviruses suggests these viruses may depend on multiple host species for persistence in nature. Our understanding of the ecologic requirements of orthopoxviruses is strongly influenced by geographic biases in data collection. This hinders our ability to predict potential sources for emergence of orthopoxvirus-associated infections.
Collapse
Affiliation(s)
- Mary G Reynolds
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA.
| | - Sarah Anne J Guagliardo
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA; United States Centers for Disease Control and Prevention, Epidemic Intelligence Service, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Yoshinori J Nakazawa
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Jeffrey B Doty
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| | - Matthew R Mauldin
- United States Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Rd., NE Atlanta, GA 30333, USA
| |
Collapse
|
42
|
Bera S, Moreno-Pérez MG, García-Figuera S, Pagán I, Fraile A, Pacios LF, García-Arenal F. Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. J Virol 2017; 91:e00435-17. [PMID: 28679755 PMCID: PMC5571237 DOI: 10.1128/jvi.00435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
In gene-for-gene host-virus interactions, virus evolution to infect and multiply in previously resistant host genotypes, i.e., resistance breaking, is a case of host range expansion, which is predicted to be associated with fitness penalties. Negative effects of resistance-breaking mutations on within-host virus multiplication have been documented for several plant viruses. However, understanding virus evolution requires analyses of potential trade-offs between different fitness components. Here we analyzed whether coat protein (CP) mutations in Pepper mild mottle virus that break L-gene resistance in pepper affect particle stability and, thus, survival in the environment. For this purpose, CP mutations determining the overcoming of L 3 and L 4 resistance alleles were introduced in biologically active cDNA clones. The kinetics of the in vitro disassembly of parental and mutant particles were compared under different conditions. Resistance-breaking mutations variously affected particle stability. Structural analyses identified the number and type of axial and side interactions of adjacent CP subunits in virions, which explained differences in particle stability and contribute to understanding of tobamovirus disassembly. Resistance-breaking mutations also affected virus multiplication and virulence in the susceptible host, as well as infectivity. The sense and magnitude of the effects of resistance-breaking mutations on particle stability, multiplication, virulence, or infectivity depended on the specific mutation rather than on the ability to overcome the different resistance alleles, and effects on different traits were not correlated. Thus, the results do not provide evidence of links or trade-offs between particle stability, i.e., survival, and other components of virus fitness or virulence.IMPORTANCE The effect of survival on virus evolution remains underexplored, despite the fact that life history trade-offs may constrain virus evolution. We approached this topic by analyzing whether breaking of L-gene resistance in pepper by Pepper mild mottle virus, determined by coat protein (CP) mutations, is associated with reduced particle stability and survival. Resistance-breaking mutations affected particle stability by altering the interactions between CP subunits. However, the sense and magnitude of these effects were unrelated to the capacity to overcome different resistance alleles. Thus, resistance breaking was not traded with survival. Resistance-breaking mutations also affected virus fitness within the infected host, virulence, and infectivity in a mutation-specific manner. Comparison of the effects of CP mutations on these various traits indicates that there are neither trade-offs nor positive links between survival and other life history traits. These results demonstrate that trade-offs between life history traits may not be a general constraint in virus evolution.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sara García-Figuera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingenieros de Montes, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
43
|
Woodcock DJ, Krusche P, Strachan NJC, Forbes KJ, Cohan FM, Méric G, Sheppard SK. Genomic plasticity and rapid host switching can promote the evolution of generalism: a case study in the zoonotic pathogen Campylobacter. Sci Rep 2017; 7:9650. [PMID: 28851932 PMCID: PMC5575054 DOI: 10.1038/s41598-017-09483-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Horizontal gene transfer accelerates bacterial adaptation to novel environments, allowing selection to act on genes that have evolved in multiple genetic backgrounds. This can lead to ecological specialization. However, little is known about how zoonotic bacteria maintain the ability to colonize multiple hosts whilst competing with specialists in the same niche. Here we develop a stochastic evolutionary model and show how genetic transfer of host segregating alleles, distributed as predicted for niche specifying genes, and the opportunity for host transition could interact to promote the emergence of host generalist lineages of the zoonotic bacterium Campylobacter. Using a modelling approach we show that increasing levels of homologous recombination enhance the efficiency with which selection can fix combinations of beneficial alleles, speeding adaptation. We then show how these predictions change in a multi-host system, with low levels of recombination, consistent with real r/m estimates, increasing the standing variation in the population, allowing a more effective response to changes in the selective landscape. Our analysis explains how observed gradients of host specialism and generalism can evolve in a multihost system through the transfer of ecologically important loci among coexisting strains.
Collapse
Affiliation(s)
- Dan J Woodcock
- Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry, CV47AL, UK
| | - Peter Krusche
- Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry, CV47AL, UK
| | - Norval J C Strachan
- School of Biological Sciences, University of Aberdeen, Cruickshank Building. St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Ken J Forbes
- School of Medicine and Dentistry, The University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, CT, 06459-0170, USA
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
44
|
Ruiz E, Baudoux AC, Simon N, Sandaa RA, Thingstad TF, Pagarete A. Micromonas versus virus: New experimental insights challenge viral impact. Environ Microbiol 2017; 19:2068-2076. [DOI: 10.1111/1462-2920.13733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Eliana Ruiz
- Department of Biology; University of Bergen; Bergen Norway
| | - Anne-Claire Baudoux
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | - Nathalie Simon
- CNRS, UMR 7144 (Adaptation et Diversité en Milieu Marin), Station Biologique de Roscoff; Sorbonne Universités; UPMC Univ Paris 06 Roscoff 29680 France
| | | | | | | |
Collapse
|
45
|
Emerging Interaction Patterns in the Emiliania huxleyi-EhV System. Viruses 2017; 9:v9030061. [PMID: 28327527 PMCID: PMC5371816 DOI: 10.3390/v9030061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023] Open
Abstract
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.
Collapse
|
46
|
Meaden S, Koskella B. Adaptation of the pathogen, Pseudomonas syringae, during experimental evolution on a native vs. alternative host plant. Mol Ecol 2017; 26:1790-1801. [PMID: 28207977 PMCID: PMC6849854 DOI: 10.1111/mec.14060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
The specialization and distribution of pathogens among species has substantial impact on disease spread, especially when reservoir hosts can maintain high pathogen densities or select for increased pathogen virulence. Theory predicts that optimal within‐host growth rate will vary among host genotypes/species and therefore that pathogens infecting multiple hosts should experience different selection pressures depending on the host environment in which they are found. This should be true for pathogens with broad host ranges, but also those experiencing opportunistic infections on novel hosts or that spill over among host populations. There is very little empirical data, however, regarding how adaptation to one host might directly influence infectivity and growth on another. We took an experimental evolution approach to examine short‐term adaptation of the plant pathogen, Pseudomonas syringae pathovar tomato, to its native tomato host compared with an alternative host, Arabidopsis, in either the presence or absence of bacteriophages. After four serial passages (20 days of selection in planta), we measured bacterial growth of selected lines in leaves of either the focal or alternative host. We found that passage through Arabidopsis led to greater within‐host bacterial densities in both hosts than did passage through tomato. Whole genome resequencing of evolved isolates identified numerous single nucleotide polymorphisms based on our novel draft assembly for strain PT23. However, there was no clear pattern of clustering among plant selection lines at the genetic level despite the phenotypic differences observed. Together, the results emphasize that previous host associations can influence the within‐host growth rate of pathogens.
Collapse
Affiliation(s)
- Sean Meaden
- University of Exeter, Penryn Campus, Penryn, Cornwall, TR11 4EH, UK.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
48
|
Pinel-Galzi A, Dubreuil-Tranchant C, Hébrard E, Mariac C, Ghesquière A, Albar L. Mutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown. FRONTIERS IN PLANT SCIENCE 2016; 7:1779. [PMID: 27965688 PMCID: PMC5125353 DOI: 10.3389/fpls.2016.01779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 05/09/2023]
Abstract
Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point in varietal resistance, we analyzed its efficiency toward RYMV isolates representing the genetic diversity of the virus and the molecular basis of resistance breakdown. Tog7291 resistance efficiency was highly variable depending on the isolate used, with infection rates ranging from 0 to 98% of plants. Back-inoculation experiments indicated that infection cases were not due to an incomplete resistance phenotype but to the emergence of resistance-breaking (RB) variants. Interestingly, the capacity of the virus to overcome Tog7291 resistance is associated with a polymorphism at amino-acid 49 of the VPg protein which also affects capacity to overcome the previously studied RYMV1 resistance gene. This polymorphism appeared to be a main determinant of the emergence of RB variants. It acts independently of the resistance gene and rather reflects inter-species adaptation with potential consequences for the durability of resistance. RB mutations were identified by full-length or partial sequencing of the RYMV genome in infected Tog7291 plants and were validated by directed mutagenesis of an infectious viral clone. We found that Tog7291 resistance breakdown involved mutations in the putative membrane anchor domain of the polyprotein P2a. Although the precise effect of these mutations on rice/RYMV interaction is still unknown, our results offer a new perspective for the understanding of RYMV2 mediated resistance mechanisms. Interestingly, in the susceptible IR64 variety, RB variants showed low infectivity and frequent reversion to the wild-type genotype, suggesting that Tog7291 resistance breakdown is associated with a major loss of viral fitness in normally susceptible O. sativa varieties. Despite the high frequency of resistance breakdown in controlled conditions, this loss of fitness is an encouraging element with regards to RYMV2 resistance durability.
Collapse
Affiliation(s)
- Agnès Pinel-Galzi
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Christine Dubreuil-Tranchant
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Cédric Mariac
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| |
Collapse
|
49
|
Zee PC, Liu J, Velicer GJ. Pervasive, yet idiosyncratic, epistatic pleiotropy during adaptation in a behaviourally complex microbe. J Evol Biol 2016; 30:257-269. [PMID: 27862537 DOI: 10.1111/jeb.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 01/14/2023]
Abstract
Understanding how multiple mutations interact to jointly impact multiple ecologically important traits is critical for creating a robust picture of organismal fitness and the process of adaptation. However, this is complicated by both environmental heterogeneity and the complexity of genotype-to-phenotype relationships generated by pleiotropy and epistasis. Moreover, little is known about how pleiotropic and epistatic relationships themselves change over evolutionary time. The soil bacterium Myxococcus xanthus employs several distinct social traits across a range of environments. Here, we use an experimental lineage of M. xanthus that evolved a novel form of social motility to address how interactions between epistasis and pleiotropy evolve. Specifically, we test how mutations accumulated during selection on soft agar pleiotropically affect several other social traits (hard agar motility, predation and spore production). Relationships between changes in swarming rate in the selective environment and the four other traits varied greatly over time in both direction and magnitude, both across timescales of the entire evolutionary lineage and individual evolutionary time steps. We also tested how a previously defined epistatic interaction is pleiotropically expressed across these traits. We found that phenotypic effects of this epistatic interaction were highly correlated between soft and hard agar motility, but were uncorrelated between soft agar motility and predation, and inversely correlated between soft agar motility and spore production. Our results show that 'epistatic pleiotropy' varied greatly in magnitude, and often even in sign, across traits and over time, highlighting the necessity of simultaneously considering the interacting complexities of pleiotropy and epistasis when studying the process of adaptation.
Collapse
Affiliation(s)
- P C Zee
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - J Liu
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - G J Velicer
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
50
|
Moreno-Pérez MG, García-Luque I, Fraile A, García-Arenal F. Mutations That Determine Resistance Breaking in a Plant RNA Virus Have Pleiotropic Effects on Its Fitness That Depend on the Host Environment and on the Type, Single or Mixed, of Infection. J Virol 2016; 90:9128-37. [PMID: 27489266 PMCID: PMC5044817 DOI: 10.1128/jvi.00737-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Overcoming host resistance in gene-for-gene host-virus interactions is an important instance of host range expansion, which can be hindered by across-host fitness trade-offs. Trade-offs are generated by negative effects of host range mutations on the virus fitness in the original host, i.e., by antagonistic pleiotropy. It has been reported that different mutations in Pepper mild mottle virus (PMMoV) coat protein result in overcoming L-gene resistance in pepper. To analyze if resistance-breaking mutations in PMMoV result in antagonistic pleiotropy, all reported mutations determining the overcoming of L(3) and L(4) alleles were introduced in biologically active cDNA clones. Then, the parental and mutant virus genotypes were assayed in susceptible pepper genotypes with an L(+), L(1), or L(2) allele, in single and in mixed infections. Resistance-breaking mutations had pleiotropic effects on the virus fitness that, according to the specific mutation, the host genotype, and the type of infection, single or mixed with other virus genotypes, were antagonistic or positive. Thus, resistance-breaking mutations can generate fitness trade-offs both across hosts and across types of infection, and the frequency of host range mutants will depend on the genetic structure of the host population and on the frequency of mixed infections by different virus genotypes. Also, resistance-breaking mutations variously affected virulence, which may further influence the evolution of host range expansion. IMPORTANCE A major cause of virus emergence is host range expansion, which may be hindered by across-host fitness trade-offs caused by negative pleiotropy of host range mutations. An important instance of host range expansion is overcoming host resistance in gene-for-gene plant-virus interactions. We analyze here if mutations in the coat protein of Pepper mild mottle virus determining L-gene resistance-breaking in pepper have associated fitness penalties in susceptible host genotypes. Results show that pleiotropic effects of resistance-breaking mutations on virus fitness depend on the specific mutation, the susceptible host genotype, and the type of infection, single or mixed, with other virus genotypes. Accordingly, resistance-breaking mutations can have negative, positive, or no pleiotropic effects on virus fitness. These results underscore the complexity of host range expansion evolution and, specifically, the difficulty of predicting the overcoming of resistance factors in crops.
Collapse
Affiliation(s)
- Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | | | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|