1
|
Esteban-Cornejo I, Lara-Jimenez I, Rodriguez-Ayllon M, Verdejo-Roman J, Catena A, Erickson KI, Ortega FB. Early morning physical activity is associated with healthier white matter microstructure and happier children: the ActiveBrains project. Eur Child Adolesc Psychiatry 2024; 33:833-845. [PMID: 37058244 PMCID: PMC10894097 DOI: 10.1007/s00787-023-02197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The background of this study is to examine the associations of individual and combined early morning patterns (i.e., active commuting to school, physical activity before school, having breakfast and good sleep) with white matter microstructure (WMM) and, whether the associated white mater microstructure outcomes were related to mental health outcomes in children with overweight or obesity. 103 children with overweight or obesity (10.0 ± 1.1 years old, 42 girls) from the ActiveBrains project participated in this cross-sectional study. Early morning patterns and mental health indicators (i.e., self-esteem, optimism, positive and negative affect, stress, depression and anxiety) were self-reported by the children using validated questionnaires. WMM was assessed by magnetic resonance imaging using diffusion tensor imaging. When examined independently, early morning patterns were not related with WMM (all P > 0.05). However, the combination of early morning patterns was related with WMM (P < 0.05). Specifically, physically active early morning patterns (i.e., active commuting to school and physical activity before school) were associated with global fractional anisotropy (FA) (β = 0.298, P = 0.013) and global radial diffusivity (RD) (β = - 0.272, P = 0.021), as well as with tract-specific FA (β = 0.314, P = 0.004) and RD (β = - 0.234, P = 0.032) in the superior longitudinal fasciculus (SLF). Furthermore, combined physically active early morning pattern-associated global (i.e., FA and RD) and tract-specific (i.e., FA and RD in the SLF) WMM indicators were positively associated with happiness (β absolute value range from 0.252 to 0.298, all P < 0.05). A combination of physically active early morning patterns may positively relate to white matter microstructure in children with overweight or obesity, and, in turn, happiness.
Collapse
Affiliation(s)
- Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Inmaculada Lara-Jimenez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
| | - Maria Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juan Verdejo-Roman
- Department of Personality, Assessment and Psychological Treatment, Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Andres Catena
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| |
Collapse
|
2
|
Puga TB, Dai HD, Wang Y, Theye E. Maternal Tobacco Use During Pregnancy and Child Neurocognitive Development. JAMA Netw Open 2024; 7:e2355952. [PMID: 38349651 PMCID: PMC10865146 DOI: 10.1001/jamanetworkopen.2023.55952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Importance Maternal tobacco use during pregnancy (MTDP) persists across the globe. Longitudinal assessment of the association of MTDP with neurocognitive development of offspring at late childhood is limited. Objectives To examine whether MTDP is associated with child neurocognitive development at ages 9 to 12 years. Design, Setting, and Participants This cohort study included children aged 9 and 10 years at wave 1 (October 2016 to October 2018) and aged 11 to 12 years at a 2-year follow-up (wave 2, August 2018 to January 2021) across 21 US sites in the Adolescent Brain Cognitive Development (ABCD) Study. Data were analyzed from June 2022 to December 2023. Exposure MTDP. Main Outcomes and Measures Outcomes of interest were neurocognition, measured by the National Institutes of Health (NIH) Toolbox Cognition Battery, and morphometric brain measures through the region of interest (ROI) analysis from structural magnetic resonance imaging (sMRI). Results Among 11 448 children at wave 1 (mean [SD] age, 9.9 [0.6] years; 5990 [52.3%] male), 1607 children were identified with MTDP. In the NIH Toolbox Cognition Battery, children with MTDP (vs no MTDP) exhibited lower scores on the oral reading recognition (mean [SE] B = -1.2 [0.2]; P < .001), picture sequence memory (mean [SE] B = -2.3 [0.6]; P < .001), and picture vocabulary (mean [SE] B = -1.2 [0.3]; P < .001) tests and the crystallized cognition composite score (mean [SE] B = -1.3 [0.3]; P < .001) at wave 1. These differential patterns persisted at wave 2. In sMRI, children with MTDP (vs no MTDP) had smaller cortical areas in precentral (mean [SE] B = -104.2 [30.4] mm2; P = .001), inferior parietal (mean [SE] B = -153.9 [43.4] mm2; P < .001), and entorhinal (mean [SE] B = -25.1 [5.8] mm2; P < .001) regions and lower cortical volumes in precentral (mean [SE] B = -474.4 [98.2] mm3; P < .001), inferior parietal (mean [SE] B = -523.7 [136.7] mm3; P < .001), entorhinal (mean [SE] B = -94.1 [24.5] mm3; P < .001), and parahippocampal (mean [SE] B = -82.6 [18.7] mm3; P < .001) regions at wave 1. Distinct cortical volume patterns continued to be significant at wave 2. Frontal, parietal, and temporal lobes exhibited differential ROI, while there were no notable distinctions in the occipital lobe and insula cortex. Conclusions and Relevance In this cohort study, MTDP was associated with enduring deficits in childhood neurocognition. Continued research on the association of MTDP with cognitive performance and brain structure related to language processing skills and episodic memory is needed.
Collapse
Affiliation(s)
- Troy B. Puga
- College of Public Health, University of Nebraska Medical Center, Omaha
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri
| | | | - Yingying Wang
- Neuroimaging for Language, Literacy & Learning Laboratory, University of Nebraska at Lincoln, Lincoln
| | - Elijah Theye
- College of Public Health, University of Nebraska Medical Center, Omaha
| |
Collapse
|
3
|
Impact of the COVID-19 pandemic on the well-being of preschoolers: A parental guide. Heliyon 2023; 9:e14332. [PMID: 36974319 PMCID: PMC10028354 DOI: 10.1016/j.heliyon.2023.e14332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
Unexpected changes brought about by the coronavirus disease 2019 (COVID-19) have affected humans worldwide. This review attempts to address major parental concerns about the development of preschool-aged children during the pandemic from the perspectives of neuropsychology, consultation, and motor development for preschoolers aged 2–5 years. Methods A total of 273 articles including original data, review articles, national and regional perspectives, government websites, and commentaries were considered in this review, of which 117 manuscripts were excluded because they were unrelated to children, adolescents, or COVID -19 pandemic/upper respiratory infections. A total of 156 manuscripts were included after reading the abstract and entire article. Results Telehealth could be an effective tool for addressing cognitive and emotional challenges that arise during the pandemic. Online consultations are highlighted for nutritional guidelines and to overcome problems that parents face when caring for children in difficult times. Outdoor activities using sanitisers, proper cleanliness, and following standard operating procedures are recommended. Parental preoccupation with media should be avoided. Interpretation: Many preschoolers show delays in reaching their developmental milestones, and the pandemic has increased parents' concerns, as access to practitioners is limited. Therefore, parents should be encouraged to undergo neuropsychological consultations whenever necessary. This study emphasises important strategies to ensure that children's development is minimally affected while staying in the confined environment of their homes. This study serves as a new guide for parents, as they raise young children in the new normal. Parents should undergo basic yearly physical, neuropsychological, nutritional, and speech checkups.
Collapse
|
4
|
Implication of saturated fats in the aetiology of childhood attention deficit/hyperactivity disorder - A narrative review. Clin Nutr ESPEN 2022; 52:78-85. [PMID: 36513489 DOI: 10.1016/j.clnesp.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common mental health disorder in the paediatric population. ADHD is highly comorbid with obesity, and has also been associated with poor dietary patterns such as increased consumption of refined carbohydrates and saturated fats. Although ADHD in children was associated with high consumption of saturated fats, so far there has been no evidence-based attempt to integrate dietary strategies controlling for intake of saturated fats into the etiological framework of the disorder. Evidence from human studies and animal models has shown that diets high in saturated fats are detrimental for the development of dopaminergic neurocircuitries, synthesis of neurofactors (e.g. brain derived neurotrophic factor) and may promote brain inflammatory processes. Notably, animal models provide evidence that early life consumption of a high saturated fats diet may impair the development of central dopamine pathways. In the present paper, we review the impact of high saturated fats diets on neurobiological processes in human studies and animal models, and how these associations may be relevant to the neuropathophysiology of ADHD in children. The validation of this relationship and its underlying mechanisms through future investigative studies could have implications for the prevention or exacerbation of ADHD symptoms, improve the understanding of the pathogenesis of the disorder, and help design future dietary studies in patients with ADHD.
Collapse
|
5
|
Bounoua N, Miglin R, Spielberg JM, Johnson CL, Sadeh N. Childhood trauma moderates morphometric associations between orbitofrontal cortex and amygdala: implications for pathological personality traits. Psychol Med 2022; 52:2578-2587. [PMID: 33261695 PMCID: PMC8319917 DOI: 10.1017/s0033291720004468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Research has demonstrated that chronic stress exposure early in development can lead to detrimental alterations in the orbitofrontal cortex (OFC)-amygdala circuit. However, the majority of this research uses functional neuroimaging methods, and thus the extent to which childhood trauma corresponds to morphometric alterations in this limbic-cortical network has not yet been investigated. This study had two primary objectives: (i) to test whether anatomical associations between OFC-amygdala differed between adults as a function of exposure to chronic childhood assaultive trauma and (ii) to test how these environment-by-neurobiological effects relate to pathological personality traits. METHODS Participants were 137 ethnically diverse adults (48.1% female) recruited from the community who completed a clinical diagnostic interview, a self-report measure of pathological personality traits, and anatomical MRI scans. RESULTS Findings revealed that childhood trauma moderated bilateral OFC-amygdala volumetric associations. Specifically, adults with childhood trauma exposure showed a positive association between medial OFC volume and amygdalar volume, whereas adults with no childhood exposure showed the negative OFC-amygdala structural association observed in prior research with healthy samples. Examination of the translational relevance of trauma-related alterations in OFC-amygdala volumetric associations for disordered personality traits revealed that trauma exposure moderated the association of OFC volume with antagonistic and disinhibited phenotypes, traits characteristic of Cluster B personality disorders. CONCLUSIONS The OFC-amygdala circuit is a potential anatomical pathway through which early traumatic experiences perpetuate emotional dysregulation into adulthood and confer risk for personality pathology. Results provide novel evidence of divergent neuroanatomical pathways to similar personality phenotypes depending on early trauma exposure.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
| | - Rickie Miglin
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
| | - Curtis L Johnson
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
| | - Naomi Sadeh
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, 19716, DE, USA
| |
Collapse
|
6
|
Duerden EG, Chakravarty MM, Lerch JP, Taylor MJ. Sex-Based Differences in Cortical and Subcortical Development in 436 Individuals Aged 4-54 Years. Cereb Cortex 2019; 30:2854-2866. [PMID: 31814003 DOI: 10.1093/cercor/bhz279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/14/2019] [Accepted: 10/19/2019] [Indexed: 11/13/2022] Open
Abstract
Sex-based differences in brain development have long been established in ex vivo studies. Recent in vivo studies using magnetic resonance imaging (MRI) have offered considerable insight into sex-based variations in brain maturation. However, reports of sex-based differences in cortical volumes and thickness are inconsistent. We examined brain maturation in a cross-sectional, single-site cohort of 436 individuals (201 [46%] males) aged 4-54 years (median = 16 years). Cortical thickness, cortical surface area, subcortical surface area, volumes of the cerebral cortex, white matter (WM), cortical and subcortical gray matter (GM), including the thalamic subnuclei, basal ganglia, and hippocampi were calculated using automatic segmentation pipelines. Subcortical structures demonstrated distinct curvilinear trajectories from the cortex, in both volumetric maturation and surface-area expansion in relation to age. Surface-area analysis indicated that dorsal regions of the thalamus, globus pallidus and striatum, regions demonstrating structural connectivity with frontoparietal cortices, exhibited extensive expansion with age, and were inversely related to changes seen in cortical maturation, which contracted with age. Furthermore, surface-area expansion was more robust in males in comparison to females. Age- and sex-related maturational changes may reflect alterations in dendritic and synaptic architecture known to occur during development from early childhood through to mid-adulthood.
Collapse
Affiliation(s)
- Emma G Duerden
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Education, Western University, London, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada.,Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford.,Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Poole KL, Santesso DL, Van Lieshout RJ, Schmidt LA. Trajectories of frontal brain activity and socio-emotional development in children. Dev Psychobiol 2018; 60:353-363. [DOI: 10.1002/dev.21620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kristie L. Poole
- Department of Psychology, Neuroscience and Behaviour; McMaster University; Hamilton Ontario Canada
| | - Diane L. Santesso
- Department of Psychology; University of Winnipeg; Winnipeg Manitoba Canada
| | - Ryan J. Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences; McMaster University; Hamilton Ontario Canada
| | - Louis A. Schmidt
- Department of Psychology, Neuroscience and Behaviour; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
8
|
Urbanik A, Cichocka M, Kozub J, Karcz P, Herman-Sucharska I. Brain Maturation-Differences in Biochemical Composition of Fetal and Child's Brain. Fetal Pediatr Pathol 2017; 36:380-386. [PMID: 29144870 DOI: 10.1080/15513815.2017.1346019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate differences in 1H MRS spectra of the brain of fetuses and children from 6 to 11 years of age. MATERIAL AND METHODS 21 healthy fetuses in the third trimester and 22 children were examined using the proton nuclear magnetic resonance. The relative metabolite concentrations to the sum of all metabolites were calculated. RESULTS In the 1H MRS spectra of the brain from fetuses and children, there are the same characteristic peaks: N-acetylaspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI). NAA/Σ, NAA/Cr, and Cr/Σ concentrations are significantly higher and Cho/Σ, Cho/Cr, mI/Σ, and mI/Cr are significantly lower in children than in the fetuses. CONCLUSIONS It was found that the brain metabolism changes from fetal life to childhood. The results of this study may provide a valuable basis for further research on brain maturation and "healthy aging."
Collapse
Affiliation(s)
- Andrzej Urbanik
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Monika Cichocka
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Justyna Kozub
- a Department of Radiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Paulina Karcz
- b Department of Electroradiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| | - Izabela Herman-Sucharska
- b Department of Electroradiology , Uniwersytet Jagiellonski w Krakowie Collegium Medicum , Krakow , Poland
| |
Collapse
|
9
|
Behrouz R. The prospects and predicaments of intravenous rt-PA in childhood ischemic stroke. Expert Rev Neurother 2014; 14:255-9. [PMID: 24491039 DOI: 10.1586/14737175.2014.884927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the biggest conundrums in acute treatment of childhood arterial ischemic stroke is administration of intravenous recombinant tissue plasminogen activator. Although the benefit of this treatment is well-established in adults, the same effectiveness in children has not been demonstrated. Diversity of underlying causes of ischemic stroke in children and delay and uncertainty in diagnosis are some of the complexities that make intravenous thrombolysis elusive in this population. Physiological, pharmacological and developmental factors may also play roles in variable effect of intravenous recombinant tissue plasminogen activator in children. Current studies are aimed to determine the safety and efficacy of intravenous thrombolysis in carefully-selected children who would benefit the most from this procedure.
Collapse
Affiliation(s)
- Réza Behrouz
- Department of Neurology, Division of Cerebrovascular Diseases and Neurocritical Care, The Ohio State University College of Medicine, 395 West 12th Avenue, Suite 766, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Miao X, Qi M, Cui S, Guan Y, Jia Z, Hong X, Jiang Y. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging. Int J Dev Neurosci 2014; 34:42-7. [PMID: 24480665 DOI: 10.1016/j.ijdevneu.2014.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/23/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Diffusion-tensor imaging (DTI) can be used to investigate water diffusion in living tissue. OBJECTIVE To investigate sequence and relationship of regional maturation in corpus callosum (CC) and internal capsule (IC) in preterm and term. METHODS DTI was performed on 11 preterm infants at less than 37 weeks of corrected gestational age (group I), 21 preterm infants at equivalent-term (group II), 11 term infants during neonatal period (group III). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in: anterior limb of IC (ALIC), posterior limb of IC (PLIC), genu and splenium of CC. RESULTS FA in splenium was more than that in other regions except genu of group I. Differences of FA between genu and PLIC were significant only in group III. ADC in genu was more than that in other regions but in splenium of groups I and II. Differences of ADC between splenium and ALIC were insignificant except group II. Higher FA and lower ADC in PLIC were gotten compared with those in ALIC. Correlations of FA and of ADC existed in CC and IC. CONCLUSION Maturation sequence was splenium followed by genu, then by PLIC and last by ALIC in term at neonatal period. Genu's maturation in preterm at equivalent-term was hindered. Regional maturation's correlations existed in CC and IC.
Collapse
Affiliation(s)
- XiaoLin Miao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - Min Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ShuDong Cui
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China.
| | - YaFei Guan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - ZhenYu Jia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - XunNing Hong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | - YanNi Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| |
Collapse
|
11
|
Duncan AF, Caprihan A, Montague EQ, Lowe J, Schrader R, Phillips JP. Regional cerebral blood flow in children from 3 to 5 months of age. AJNR Am J Neuroradiol 2013; 35:593-8. [PMID: 24091444 DOI: 10.3174/ajnr.a3728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Understanding the relationship between brain and behavior in early childhood requires a probe of functional brain development. We report the first large study of regional CBF by use of arterial spin-labeling in young children. MATERIALS AND METHODS Cerebral blood flow by use of arterial spin-labeling was measured in 61 healthy children between the ages of 3 and 5 months. Blood flow maps were parcellated into 8 broadly defined anatomic regions of each cerebral hemisphere. RESULTS There was no sex effect; however, group analysis demonstrated significantly greater CBF in the sensorimotor and occipital regions compared with dorsolateral prefrontal, subgenual, and orbitofrontal areas (P < .0001). A significant age effect was also identified, with the largest increase in blood flow between 3 and 5 months occurring in the following regions: orbitofrontal (P < .009), subgenual (P < .002), and inferior occipital lobe (P = .001). CONCLUSIONS These results are consistent with prior histologic studies demonstrating regional variation in brain maturation and suggest that arterial spin-labeling is sensitive to regional as well as age-related differences in CBF in young children.
Collapse
Affiliation(s)
- A F Duncan
- From the Department of Pediatrics, Division of Neonatology (A.F.D., J.L.)
| | | | | | | | | | | |
Collapse
|