1
|
Shidham VB. Cell-blocks and other ancillary studies (including molecular genetic tests and proteomics). Cytojournal 2021; 18:4. [PMID: 33880127 PMCID: PMC8053490 DOI: 10.25259/cytojournal_3_2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
Many types of elective ancillary tests may be required to support the cytopathologic interpretations. Most of these tests can be performed on cell-blocks of different cytology specimens. The cell-block sections can be used for almost any special stains including various histochemistry stains and for special stains for different microorganisms including fungi, Pneumocystis jirovecii (carinii), and various organisms including acid-fast organisms similar to the surgical biopsy specimens. Similarly, in addition to immunochemistry, different molecular tests can be performed on cell-blocks. Molecular tests broadly can be divided into two main types Molecular genetic tests and Proteomics.
Collapse
Affiliation(s)
- Vinod B Shidham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Center, and Detroit Medical Center, Detroit, Michigan, United States
| |
Collapse
|
2
|
Grabowska K, Harwood E, Ciborowski P. HIV and Proteomics: What We Have Learned from High Throughput Studies. Proteomics Clin Appl 2021; 15:e2000040. [PMID: 32978881 PMCID: PMC7900993 DOI: 10.1002/prca.202000040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
The accelerated development of technology over the last three decades has driven biological sciences to high-throughput profiling experiments, now broadly referred to as systems biology. The unprecedented improvement of analytical instrumentation has opened new avenues for more complex experimental designs and expands the knowledge in genomics, proteomics, and other omics fields. Despite the collective efforts of hundreds of researchers, gleaning all the expected information from omics experiments is still quite far. This paper summarizes what has been learned from high-throughput proteomics studies thus far, and what is believed should be done to reveal even more valuable information from such studies. It is drawn from the background in using proteomics to study human immunodeficiency virus 1 infection of macrophages and/or T cells, but it is believed that some conclusions will be more broadly applicable.
Collapse
Affiliation(s)
- Kinga Grabowska
- Laboratory of Virus Molecular BiologyIntercollegiate Faculty of BiotechnologyUniversity of GdanskGdansk80‐307Poland
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Emma Harwood
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental NeuroscienceCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198‐5800USA
| |
Collapse
|
3
|
Ge X, Zhang T, Yu X, Muwonge AN, Anandakrishnan N, Wong NJ, Haydak JC, Reid JM, Fu J, Wong JS, Bhattacharya S, Cuttitta CM, Zhong F, Gordon RE, Salem F, Janssen W, Hone JC, Zhang A, Li H, He JC, Gusella GL, Campbell KN, Azeloglu EU. LIM-Nebulette Reinforces Podocyte Structural Integrity by Linking Actin and Vimentin Filaments. J Am Soc Nephrol 2020; 31:2372-2391. [PMID: 32737144 DOI: 10.1681/asn.2019121261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Collapse
Affiliation(s)
- Xuhua Ge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tao Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxia Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan C Haydak
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jordan M Reid
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Smiti Bhattacharya
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christina M Cuttitta
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - G Luca Gusella
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Saxena R, Vekariya U, Tripathi R. HIV-1 Nef and host proteome analysis: Current perspective. Life Sci 2019; 219:322-328. [PMID: 30664855 DOI: 10.1016/j.lfs.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Proteome represents the set of proteins being produced by an organism at a given time. Comparative proteomic profiling of a healthy and diseased state is likely to reflect the dynamics of a disease process. Proteomic techniques are widely used to discover novel biomarkers and decipher mechanisms of HIV-1 pathogenesis. Proteomics is thus emerging as an indispensable tool of monitoring a disease process and intense interactions between HIV-1 and host. Nef is known to regulate various functions in the host to establish the state of infection. This review gives an overview of all proteomic studies done on HIV infection and HIV associated disorders including recent developments in Nef-host proteomic profiling. Here, we propose an emphasis on Nef based proteomic studies. We also discuss the future prospects and the technical and biological challenges involved in proteomic studies. Future studies with Nef related proteomic investigation are likely to identify more targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Rajkamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
5
|
Lai ZW, Weisser J, Nilse L, Costa F, Keller E, Tholen M, Kizhakkedathu JN, Biniossek M, Bronsert P, Schilling O. Formalin-Fixed, Paraffin-Embedded Tissues (FFPE) as a Robust Source for the Profiling of Native and Protease-Generated Protein Amino Termini. Mol Cell Proteomics 2016; 15:2203-13. [PMID: 27087653 PMCID: PMC5083106 DOI: 10.1074/mcp.o115.056515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Dysregulated proteolysis represents a hallmark of numerous diseases. In recent years, increasing number of studies has begun looking at the protein termini in hope to unveil the physiological and pathological functions of proteases in clinical research. However, the availability of cryopreserved tissue specimens is often limited. Alternatively, formalin-fixed, paraffin-embedded (FFPE) tissues offer an invaluable resource for clinical research. Pathologically relevant tissues are often stored as FFPE, which represent the most abundant resource of archived human specimens. In this study, we established a robust workflow to investigate native and protease-generated protein N termini from FFPE specimens. We demonstrate comparable N-terminomes of cryopreserved and formalin-fixed tissue, thereby showing that formalin fixation/paraffin embedment does not proteolytically damage proteins. Accordingly, FFPE specimens are fully amenable to N-terminal analysis. Moreover, we demonstrate feasibility of FFPE-degradomics in a quantitative N-terminomic study of FFPE liver specimens from cathepsin L deficient or wild-type mice. Using a machine learning approach in combination with the previously determined cathepsin L specificity, we successfully identify a number of potential cathepsin L cleavage sites. Our study establishes FFPE specimens as a valuable alternative to cryopreserved tissues for degradomic studies.
Collapse
Affiliation(s)
- Zon Weng Lai
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Lars Nilse
- From the ‡Institute of Molecular Medicine and Cell Research
| | | | - Eva Keller
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Martina Tholen
- From the ‡Institute of Molecular Medicine and Cell Research
| | - Jayachandran N Kizhakkedathu
- ¶Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Peter Bronsert
- ‖Department of Pathology, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- From the ‡Institute of Molecular Medicine and Cell Research, **German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany ‡‡BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany;
| |
Collapse
|
6
|
Weißer J, Lai ZW, Bronsert P, Kuehs M, Drendel V, Timme S, Kuesters S, Jilg CA, Wellner UF, Lassmann S, Werner M, Biniossek ML, Schilling O. Quantitative proteomic analysis of formalin-fixed, paraffin-embedded clear cell renal cell carcinoma tissue using stable isotopic dimethylation of primary amines. BMC Genomics 2015. [PMID: 26220445 PMCID: PMC4518706 DOI: 10.1186/s12864-015-1768-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness. Results In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non–malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins. Conclusion Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1768-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Weißer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,Present address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090, Vienna, Austria.
| | - Z W Lai
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - P Bronsert
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Kuehs
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - V Drendel
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Timme
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Kuesters
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | - C A Jilg
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, 79106, Germany.
| | - U F Wellner
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. .,Present address: Clinic for Surgery, University Clinic of Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
| | - S Lassmann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Werner
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Qualitative and quantitative proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue. Methods Mol Biol 2015; 1295:109-15. [PMID: 25820718 DOI: 10.1007/978-1-4939-2550-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue has recently gained interest as an alternative to fresh/frozen tissue for retrospective protein biomarker discovery. However, during the formalin fixation proteins undergo degradation and cross-linking, making conventional protein analysis technologies challenging. Cross-linking is even more challenging when quantitative proteome analysis of FFPE tissue is planned. The use of conventional protein labeling technologies on FFPE tissue has turned out to be problematic as the lysine residue labeling targets are frequently blocked by the formalin treatment. We have established a qualitative and quantitative proteomics analysis technique for FFPE tissues that combines label-free proteomic analysis with optimized protein extraction and separation conditions.
Collapse
|
8
|
Steiner C, Ducret A, Tille JC, Thomas M, McKee TA, Rubbia-Brandt L, Scherl A, Lescuyer P, Cutler P. Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics 2014; 14:441-51. [PMID: 24339433 PMCID: PMC4265304 DOI: 10.1002/pmic.201300311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible. In this paper, we review the current status of proteomic analysis of formalin-fixed paraffin-embedded tissues with a particular focus on targeted approaches and the potential for this technique to be used in clinical research and clinical diagnosis. We also discuss the limitations and perspectives of the technique, particularly with regard to application in clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Carine Steiner
- Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland; Human Protein Sciences Department, University of Geneva, Geneva, Switzerland; Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
10
|
Maes E, Valkenborg D, Mertens I, Broeckx V, Baggerman G, Sagaert X, Landuyt B, Prenen H, Schoofs L. Proteomic analysis of formalin-fixed paraffin-embedded colorectal cancer tissue using tandem mass tag protein labeling. MOLECULAR BIOSYSTEMS 2014; 9:2686-95. [PMID: 23986405 DOI: 10.1039/c3mb70177h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In clinical research, repositories of biological samples form a rich source of clinical material for biomarker studies. Banked material, however, is often not stored in optimal conditions regarding the technology used for biomarker research. A case in point is formalin-fixed paraffin-embedded (FFPE) tissue that could be used to obtain large cohorts of samples over a short period of time, as these tissues are routinely prepared for pathological analysis. However, in the context of mass spectrometry based peptide-centric proteomics, protein extraction and identification can be hampered by formalin-induced crosslinking. Furthermore, the molecular formalin crosslinks might be entangled differently across various samples, making it more difficult to reproducibly extract the same proteins from different samples. In this study, we establish the crosslink variability using Tandem Mass Tag (TMT) protein labeling followed by digestion, separation, identification and quantification of proteins extracted from FFPE colorectal cancer and paired healthy tissues. Moreover, by applying de novo interpretation of tandem mass spectra and subsequent analysis by Peaks PTM, unspecified modifications could be elucidated, leading to increased protein and proteome coverage. This approach might be useful for future FFPE proteomics studies.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
12
|
Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 2014; 7:ra12. [PMID: 24497609 PMCID: PMC4220789 DOI: 10.1126/scisignal.2004621] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Collapse
Affiliation(s)
- Evren U. Azeloglu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Simon V. Hardy
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Narat John Eungdamrong
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yibang Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Gomathi Jayaraman
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wei Fang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Susana R. Neves
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Mohit R. Jain
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Center for Advanced Proteomics Research, University of Medicine and Dentistry of New Jersey–New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Avi Ma’ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ronald E. Gordon
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - John Cijiang He
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
- Systems Biology Center New York, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
13
|
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and future prospectives. Amino Acids 2013; 45:205-18. [PMID: 23592010 DOI: 10.1007/s00726-013-1494-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are a real treasure for retrospective analysis considering the amount of samples present in hospital archives, combined with pathological, clinical, and outcome information available for every sample. Although unlocking the proteome of these tissues is still a challenge, new approaches are being developed. In this review, we summarize the different mass spectrometry platforms that are used in human clinical studies to unravel the FFPE proteome. The different ways of extracting crosslinked proteins and the analytical strategies are pointed out. Also, the pitfalls and challenges concerning the quality of FFPE proteomic approaches are depicted. We also evaluated the potential of these analytical methods for future clinical FFPE proteomics applications.
Collapse
|
14
|
Thompson SM, Craven RA, Nirmalan NJ, Harnden P, Selby PJ, Banks RE. Impact of pre-analytical factors on the proteomic analysis of formalin-fixed paraffin-embedded tissue. Proteomics Clin Appl 2013; 7:241-51. [PMID: 23027712 DOI: 10.1002/prca.201200086] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 12/14/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a tremendous potential resource for biomarker discovery, with large numbers of samples in hospital pathology departments and links to clinical information. However, the cross-linking of proteins and nucleic acids by formalin fixation has hampered analysis and proteomic studies have been restricted to using frozen tissue, which is more limited in availability as it needs to be collected specifically for research. This means that rare disease subtypes cannot be studied easily. Recently, improved extraction techniques have enabled analysis of FFPE tissue by a number of proteomic techniques. As with all clinical samples, pre-analytical factors are likely to impact on the results obtained, although overlooked in many studies. The aim of this review is to discuss the various pre-analytical factors, which include warm and cold ischaemic time, size of sample, fixation duration and temperature, tissue processing conditions, length of storage of archival tissue and storage conditions, and to review the studies that have considered these factors in more detail. In those areas where investigations are few or non-existent, illustrative examples of the possible importance of specific factors have been drawn from studies using frozen tissue or from immunohistochemical studies of FFPE tissue.
Collapse
Affiliation(s)
- Seonaid M Thompson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Molecular Medicine, St. James's University Hospital, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Krizman DB, Burrows J. Use of formalin-fixed, paraffin-embedded tissue for proteomic biomarker discovery. Methods Mol Biol 2013; 1002:85-92. [PMID: 23625396 DOI: 10.1007/978-1-62703-360-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Application of mass spectrometry to proteomic analysis of tissue is a highly desirable approach to discovery of disease biomarkers due to a direct correlation of findings to tissue/disease histology and in many respects obviating the need for model systems of disease. Both frozen and formalin-fixed, paraffin-embedded (FFPE) tissue can be interrogated; however, worldwide access to vastly larger numbers of highly characterized FFPE tissue collections derived from both human and model organisms makes this form of tissue more advantageous. Here, an approach to large-scale, global proteomic analysis of FFPE tissue is described that can be employed to discover differentially expressed proteins between different histological tissue types and thus discover novel protein biomarkers of disease.
Collapse
|
16
|
Klockenbusch C, O'Hara JE, Kast J. Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 2012; 404:1057-67. [PMID: 22610548 DOI: 10.1007/s00216-012-6065-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Formaldehyde is a key fixation reagent. This review explores its application in combination with qualitative and quantitative mass spectrometry (MS). Formalin-fixed and paraffin-embedded (FFPE) tissues form a large reservoir of biologically valuable samples and their investigation by MS has only recently started. Furthermore, formaldehyde can be used to stabilise protein-protein interactions in living cells. Because formaldehyde is able to modify proteins, performing MS analysis on these samples can pose a challenge. Here we discuss the chemistry of formaldehyde cross-linking, describe the problems of and progress in these two applications and their common aspects, and evaluate the potential of these methods for the future.
Collapse
Affiliation(s)
- Cordula Klockenbusch
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
17
|
Azimzadeh O, Scherthan H, Yentrapalli R, Barjaktarovic Z, Ueffing M, Conrad M, Neff F, Calzada-Wack J, Aubele M, Buske C, Atkinson MJ, Hauck SM, Tapio S. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. J Proteomics 2012; 75:2384-95. [DOI: 10.1016/j.jprot.2012.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 01/23/2023]
|
18
|
Jain MR, Li Q, Liu T, Rinaggio J, Ketkar A, Tournier V, Madura K, Elkabes S, Li H. Proteomic identification of immunoproteasome accumulation in formalin-fixed rodent spinal cords with experimental autoimmune encephalomyelitis. J Proteome Res 2012; 11:1791-803. [PMID: 22188123 DOI: 10.1021/pr201043u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinically relevant formalin-fixed and paraffin-embedded (FFPE) tissues have not been widely used in neuroproteomic studies because many proteins are presumed to be degraded during tissue preservation. Recent improvements in proteomics technologies, from the 2D gel analysis of intact proteins to the "shotgun" quantification of peptides and the use of isobaric tags for absolute and relative quantification (iTRAQ) method, have made the analysis of FFPE tissues possible. In recent years, iTRAQ has been one of the main methods of choice for high throughput quantitative proteomics analysis, which enables simultaneous comparison of up to eight samples in one experiment. Our objective was to assess the relative merits of iTRAQ analysis of fresh frozen versus FFPE nervous tissues by comparing experimental autoimmune encephalomyelitis (EAE)-induced proteomic changes in FFPE rat spinal cords and frozen tissues. EAE-induced proteomic changes in FFPE tissues were positively correlated with those found in the frozen tissues, albeit with ∼50% less proteome coverage. Subsequent validation of the enrichment of immunoproteasome (IP) activator 1 in EAE spinal cords led us to evaluate other proteasome and IP-specific proteins. We discovered that many IP-specific (as opposed to constitutive) proteasomal proteins were enriched in EAE rat spinal cords, and EAE-induced IP accumulation also occurred in the spinal cords of an independent mouse EAE model in a disability score-dependent manner. Therefore, we conclude that it is feasible to generate useful information from iTRAQ-based neuroproteomics analysis of archived FFPE tissues for studying neurological disease tissues.
Collapse
Affiliation(s)
- Mohit Raja Jain
- Center For Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center , 205 S. Orange Ave., Newark, New Jersey 07103, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ucker DS, Jain MR, Pattabiraman G, Palasiewicz K, Birge RB, Li H. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. J Biol Chem 2012; 287:10325-10343. [PMID: 22262862 DOI: 10.1074/jbc.m111.314971] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The intriguing cell biology of apoptotic cell death results in the externalization of numerous autoantigens on the apoptotic cell surface, including protein determinants for specific recognition, linked to immune responses. Apoptotic cells are recognized by phagocytes and trigger an active immunosuppressive response ("innate apoptotic immunity" (IAI)) even in the absence of engulfment. IAI is responsible for the lack of inflammation associated normally with the clearance of apoptotic cells; its failure also has been linked to inflammatory and autoimmune pathology, including systemic lupus erythematosus and rheumatic diseases. Apoptotic recognition determinants underlying IAI have yet to be identified definitively; we argue that these molecules are surface-exposed (during apoptotic cell death), ubiquitously expressed, protease-sensitive, evolutionarily conserved, and resident normally in viable cells (SUPER). Using independent and unbiased quantitative proteomic approaches to characterize apoptotic cell surface proteins and identify candidate SUPER determinants, we made the surprising discovery that components of the glycolytic pathway are enriched on the apoptotic cell surface. Our data demonstrate that glycolytic enzyme externalization is a common and early aspect of cell death in different cell types triggered to die with distinct suicidal stimuli. Exposed glycolytic enzyme molecules meet the criteria for IAI-associated SUPER determinants. In addition, our characterization of the apoptosis-specific externalization of glycolytic enzyme molecules may provide insight into the significance of previously reported cases of plasminogen binding to α-enolase on mammalian cells, as well as mechanisms by which commensal bacteria and pathogens maintain immune privilege.
Collapse
Affiliation(s)
- David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and.
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612 and
| | - Raymond B Birge
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214
| | - Hong Li
- Center for Advanced Proteomics Research, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214; Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, New Jersey 07214.
| |
Collapse
|
20
|
Tanca A, Pagnozzi D, Addis MF. Setting proteins free: Progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl 2011; 6:7-21. [DOI: 10.1002/prca.201100044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
|
21
|
Ly L, Barnett MH, Zheng YZ, Gulati T, Prineas JW, Crossett B. Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions. J Proteome Res 2011; 10:4855-68. [PMID: 21870854 DOI: 10.1021/pr200672n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Formalin-fixed (FF) autopsy tissue comprises the bulk of existing Multiple Sclerosis (MSc) pathology archives, providing a rich pool of material for biomarker discovery and disease characterization. Here, we present the development of a heat-induced extraction protocol for the proteomic analysis of FF brain tissue, its application to the study of lesion remyelination and its failure in MSc. A 4-round extraction strategy was optimized using FF tissue leading to a 35% increase in the number of proteins identified compared to a single extraction; and a 65% increase in proteins identified with ≥4 peptides. Histological staining of sections with oil red O and luxol fast blue-periodic acid Schiff, required to characterize MSc lesions was found to have minimal effect on LC-MS/MS. The application of the optimized protocol to chronic demyelinated and remyelinated FF MSc lesions and the adjacent periplaque white matter, isolated through laser guided manual dissection from 3 patients, identified 428 unique proteins (0.2% FDR) using LC-MS/MS. Comparison of the lesion types using iTRAQ and 2-D LC-MS/MS revealed 82 differentially expressed proteins. Protein quantitation by iTRAQ and spectral counting was well-correlated (r(s)= 0.7653; p < 10(-30)). The data generated from this work illustrates the scope of the methodology and provides insights into the pathogenesis of MSc and remyelination.
Collapse
Affiliation(s)
- Linda Ly
- Central Clinical School, The University of Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Tyler WA, Jain MR, Cifelli SE, Li Q, Ku L, Feng Y, Li H, Wood TL. Proteomic identification of novel targets regulated by the mammalian target of rapamycin pathway during oligodendrocyte differentiation. Glia 2011; 59:1754-69. [PMID: 21858874 DOI: 10.1002/glia.21221] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/22/2011] [Indexed: 12/12/2022]
Abstract
Previous work from our laboratory demonstrated that the mammalian target of rapamycin (mTOR) is active during and required for oligodendrocyte progenitor cell (OPC) differentiation. Here, we applied an iTRAQ mass spectrometry-based proteomic approach to identify novel targets of the mTOR pathway during OPC differentiation. Among the 978 proteins identified in this study, 328 (34%) exhibited a greater than 20% change (P < 0.05) in control versus rapamycin-treated cultures following 4 days of differentiation in vitro. Interestingly, 197 (20%) proteins were elevated in rapamycin-treated cultures, while 131 (13%) proteins were downregulated by rapamycin. In support of our previous data, inhibiting mTOR caused a dramatic reduction in the expression of myelin proteins. mTOR also was required for the induction of proteins involved in cholesterol and fatty acid synthesis, as well as the expression of many cytoskeletal proteins, cell signaling components, and nuclear/transcriptional regulators. Of particular interest was the identification of several critical mediators of oligodendrocyte differentiation. Specifically, mTOR activity controls the developmentally programmed upregulation of the prodifferentiation factors Fyn and Quaking, whereas the expression of the differentiation repressor Gpr17 was elevated by mTOR inhibition. These data reveal a distinct signature of mTOR-regulated protein expression during OPC differentiation.
Collapse
Affiliation(s)
- William A Tyler
- Department of Neurology and Neuroscience, New Jersey Medical School Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fowler CB, O'Leary TJ, Mason JT. Protein mass spectrometry applications on FFPE tissue sections. Methods Mol Biol 2011; 724:281-295. [PMID: 21370020 DOI: 10.1007/978-1-61779-055-3_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue archives and their associated diagnostic records represent an invaluable source of proteomic information on diseases where the patient outcomes are already known. Over the last few years, advances in methodology have made it possible to recover peptides from FFPE tissues that yield a reasonable representation of the proteins recovered from identical fresh or frozen specimens. These new methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, have developed sufficiently to allow at least a qualitative analysis of the proteome of FFPE archival tissues. This chapter describes the approaches for performing proteomic analysis on FFPE tissues by liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Armed Forces Institute of Pathology, Washington, DC, USA.
| | | | | |
Collapse
|
24
|
DeSouza LV, Krakovska O, Darfler MM, Krizman DB, Romaschin AD, Colgan TJ, Siu KWM. mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues. Proteomics 2010; 10:3108-16. [PMID: 20661955 DOI: 10.1002/pmic.201000082] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC-multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK-M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK-M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK-M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.
Collapse
Affiliation(s)
- Leroi V DeSouza
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Matta A, Ralhan R, DeSouza LV, Siu KWM. Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery. MASS SPECTROMETRY REVIEWS 2010; 29:945-961. [PMID: 20945361 DOI: 10.1002/mas.20296] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS)-based proteomics is a rapidly developing technology for both qualitative and quantitative analyses of proteins, and investigations into protein posttranslational modifications, subcellular localization, and interactions. Recent advancements in MS have made tremendous impact on the throughput and comprehensiveness of cancer proteomics, paving the way to unraveling deregulated cellular pathway networks in human malignancies. In turn, this knowledge is rapidly being translated into the discovery of novel potential cancer markers (PCMs) and targets for molecular therapeutics. Head-and-neck cancer is one of the most morbid human malignancies with an overall poor prognosis and severely compromised quality of life. Early detection and novel therapeutic strategies are urgently needed for more effective disease management. The characterizations of protein profiles of head-and-neck cancers and non-malignant tissues, with unprecedented sensitivity and precision, are providing technology platforms for identification of novel PCMs and drug targets. Importantly, low-abundance proteins are being identified and characterized, not only from the tumor tissues, but also from bodily fluids (plasma, saliva, and urine) in a high-throughput and unbiased manner. This review is a critical appraisal of recent advances in MS-based proteomic technologies and platforms for facilitating the discovery of biomarkers and novel drug targets in head-and-neck cancer. A major challenge in the discovery and verification of these cancer biomarkers is the typically limited availability of well-characterized and adequately stored clinical samples in tumor and sera banks, collected using recommended procedures, and with detailed information on clinical, pathological parameters, and follow-up. Most biomarker discovery studies use limited number of clinical samples and verification of cancer markers in large number of samples is beyond the scope of a single laboratory. The validation of these potential markers in large sample cohorts in multicentric studies is needed for their translation from the bench to the bedside.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | |
Collapse
|
26
|
Markaryan A, Nelson EG, Helseth LD, Hinojosa R. Proteomic analysis of formalin-fixed celloidin-embedded whole cochlear and laser microdissected spiral ganglion tissues. Acta Otolaryngol 2010; 130:984-9. [PMID: 20148753 DOI: 10.3109/00016481003591749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONCLUSION The results of this study demonstrate that proteomic analysis can be successfully performed on formalin-fixed celloidin-embedded (FFCE) archival human cochlear tissues. OBJECTIVE To investigate the feasibility of analyzing protein expression in archival cochlear tissues. MATERIAL AND METHODS A new methodology, referred to as Liquid Tissue(TM), was used to extract proteins from human cochlear tissue sections and spiral ganglion tissue isolated by laser microdissection (LMD). Protein identification was performed by bioinformatic analysis of high resolution tandem mass spectrometric data from fractionated tryptic peptide samples. RESULTS Twenty-six proteins were identified with a minimum of 2 unique peptides and 450 proteins were identified with 1 unique peptide at a confidence level of 95% in cochlear tissue. Ten proteins were identified with a minimum of 2 unique peptides and 485 proteins were identified with 1 unique peptide at a confidence level of 95% in spiral ganglion tissue.
Collapse
Affiliation(s)
- Adam Markaryan
- Section of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Chicago, IL 60637,, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Proteomics has been widely used in the last few years to look for new biomarkers and decipher the mechanism of HIV–host interaction. Herein, we review the recent developments of HIV/AIDS proteomic research, including the samples used in HIV/AIDS related research, the technologies used for proteomic study, the diagnosis biomarkers of HIV-associated disease especially HIV-associated neurocognitive impairment, the mechanisms of HIV–host interaction, HIV-associated dementia, substance abuse, and so on. In the end of this review, we also give some prospects about the limitation and future improvement of HIV/AIDS proteomic research.
Collapse
|
28
|
Xiao Z, Li G, Chen Y, Li M, Peng F, Li C, Li F, Yu Y, Ouyang Y, Xiao Z, Chen Z. Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem 2010; 58:517-27. [PMID: 20124091 DOI: 10.1369/jhc.2010.955526] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissue specimens represent a potentially valuable resource for protein biomarker investigations. In this study, proteins were extracted by a heat-induced antigen retrieval technique combined with a retrieval solution containing 2% SDS from FFPE tissues of normal nasopharyngeal epithelial tissues (NNET) and three histological types of nasopharyngeal carcinoma (NPC) with diverse differentiation degrees. Then two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling was employed to quantitatively identify the differentially expressed proteins among the types of NPC FFPE tissues. Our study resulted in the identification of 730 unique proteins, the distributions of subcellular localizations and molecular functions of which were similar to those of the proteomic database of human NPC and NNET that we had set up based on the frozen tissues. Additionally, the relative expression levels of cathepsin D, keratin8, SFN, and stathmin1 identified and quantified in this report were consistent with the immunohistochemistry results acquired in our previous study. In conclusion, we have developed an effective approach to identifying protein changes in FFPE NPC tissues utilizing iTRAQ technology in conjunction with an economical and easily accessible sample preparation method.
Collapse
Affiliation(s)
- Zhefeng Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayashi E, Kuramitsu Y, Fujimoto M, Zhang X, Tanaka T, Uchida K, Fukuda T, Furumoto H, Ueyama Y, Nakamura K. Proteomic profiling of differential display analysis for human oral squamous cell carcinoma: 14-3-3 σ Protein is upregulated in human oral squamous cell carcinoma and dependent on the differentiation level. Proteomics Clin Appl 2009; 3:1338-47. [PMID: 21136954 DOI: 10.1002/prca.200900091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 08/08/2009] [Indexed: 01/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) has an absolute majority of all oral cancer. We used proteomic technology to analyze the protein expression profile in OSCC tissues and accompanying surrounding normal tissues in four oral locations (buccal mucosa, gingival mucosa, oral floor, and tongue). Ten protein spots were overexpressed more strongly in cancer tissues than normal ones, and were identified as proliferating cell nuclear antigen, 14-3-3 ε, 14-3-3 σ, proteasome subunit α type 5, translationally controlled tumor protein, eukaryotic translation initiation factor 3 subunit, macrophage capping protein, and mitochondrial isocitrate dehydrogenase subunit α. Macrophage capping protein and mitochondrial isocitrate dehydrogenase subunit α had two spots. Especially, we focused on 14-3-3 σ protein, one of the eight identified proteins, and assessed its expression level in four oral locations of OSCC by using differential display methods. The expression level of 14-3-3 σ protein was upregulated in four locations of oral cavity. Eight proteins which we identified in this study may play an important role in OSCC carcinogenesis and progression and could be used as diagnostic biomarkers of OSCC.
Collapse
Affiliation(s)
- Eiko Hayashi
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan; Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scicchitano MS, Dalmas DA, Boyce RW, Thomas HC, Frazier KS. Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J Histochem Cytochem 2009; 57:849-60. [PMID: 19471015 DOI: 10.1369/jhc.2009.953497] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Global mass spectrometry (MS) profiling and spectral count quantitation are used to identify unique or differentially expressed proteins and can help identify potential biomarkers. MS has rarely been conducted in retrospective studies, because historically, available samples for protein analyses were limited to formalin-fixed, paraffin-embedded (FFPE) archived tissue specimens. Reliable methods for obtaining proteomic profiles from FFPE samples are needed. Proteomic analysis of these samples has been confounded by formalin-induced protein cross-linking. The performance of extracted proteins in a liquid chromatography tandem MS format from FFPE samples and extracts from whole and laser capture microdissected (LCM) FFPE and frozen/optimal cutting temperature (OCT)-embedded matched control rat liver samples were compared. Extracts from FFPE and frozen/OCT-embedded livers from atorvastatin-treated rats were further compared to assess the performance of FFPE samples in identifying atorvastatin-regulated proteins. Comparable molecular mass representation was found in extracts from FFPE and OCT-frozen tissue sections, whereas protein yields were slightly less for the FFPE sample. The numbers of shared proteins identified indicated that robust proteomic representation from FFPE tissue and LCM did not negatively affect the number of identified proteins from either OCT-frozen or FFPE samples. Subcellular representation in FFPE samples was similar to OCT-frozen, with predominantly cytoplasmic proteins identified. Biologically relevant protein changes were detected in atorvastatin-treated FFPE liver samples, and selected atorvastatin-related proteins identified by MS were confirmed by Western blot analysis. These findings demonstrate that formalin fixation, paraffin processing, and LCM do not negatively impact protein quality and quantity as determined by MS and that FFPE samples are amenable to global proteomic analysis.
Collapse
Affiliation(s)
- Marshall S Scicchitano
- Department of Safety Assessment, 709 Swedeland Road, Mail Stop UE0364, King of Prussia, PA 19406, USA.
| | | | | | | | | |
Collapse
|